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Abstract

We study three types of spatial triangulations: Delau-
nay triangulations, triangulations with non-obtuse dihe-
dral angles, and KJ-triangulations. The latter satisfy
a certain angle condition useful for finite element ap-
proximation. We show that the condition for Delaunay
triangulations is incomparable with the other two condi-
tions, and that triangulations with non-obtuse dihedral
angles are necessarily also KJ-triangulations. These re-
lationships are in sharp contrast to the ones in the planar
case.

1 Introduction

There are two reasons why in the plane Delaunay
triangulations are popular for finite element approx-
imation:

(i) for every interior edge the sum of the two op-
posite angles is at most 7, and

(ii) for a finite set of points, the Delaunay triangu-
lation maximizes the minimum angle over all
triangulations of the point set.

Property (i) implies L, stability (see Strang and
Fix [5]), while convergence is guaranteed if small
angles are avoided. We refer to [4, 2] for background
information on Delaunay triangulations.

The situation is quite different in three dimen-
sions. There are finite point sets so that the De-
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launay triangulation maximizes neither the mini-
mum solid angle, nor the minimum dihedral angle,
nor the minimum (two-dimensional) face angle. It
seerns that, unlike in two dimensions, Delaunay tri-
angulations in three dimensions do not distinguish
themselves from other triangulations through any
angle criterion. We add evidence to this view by
showing that the sphere condition for Delaunay tri-
angulations is incomparable with two natural condi-
tions on the dihedral angles of triangulations. The
first condition is that all dihedral angles be non-
obtuse. The second will be stated in Section 2 and
implies L., stability for elliptic gradient equations
in three dimensions, as recently shown in [3].

This paper is organized as follows. Section 2 in-
troduces the formal definitions and states the main
results of this paper. Section 3 reformulates the
angle criterion given by Kerkhoven and Jerome [3].
In Section 4 we show that the sphere condition for
Delaunay triangulations is incomparable with this
condition, and in Section 5 we show it is incompara-
ble with the requirement of having only non-obtuse
dihedral angles. Section 6 studies the relationship
between dihedral angles and face angles. Finally,
Section 7 discusses a few open problems motivated
by the results of this paper.

2 Definitions and Results

A triangulation is a cell complex consisting of rel-
atively open pairwise disjoint simplices. By virtue
of being a cell complex it contains the faces of all
its simplices; these are lower-dimensional simplices.




A triangulation of a finite point set § has the ad-
ditional properties that the union of its simplices
is the convex hull of § and that § is the set of 0-

dimensional simplices. In three-dimensional space,
the simplices are 3-dimensional (tetrahedra), 2-
dimensional (triangles), 1-dimensional (edges) and
0-dimensional (vertices).

In this paper we consider three different kinds
of triangulations distinguished by their geometric
properties.

Delaunay triangulations. The edge ab defined
by points a and b of a finite point set § is said
to be Delaunay if there is a sphere through a
and b so that all other points of S lie outside the
sphere. Similarly, a two-dimensional face with ver-
tices aj,aa,...,a; from § is Delaunay if there is a
sphere that contains a; through a; and all other
points of § lie outside the sphere.

If no five points of § are cospherical and S does
not lie on a plane then each Delaunay face is a
triangle and the collection of Delaunay edges and
triangles defines a unique triangulation, the Delau-
nay iriangulation of S. Otherwise, the Delaunay
edges and faces define a cell complex whose cells
are convex polytopes but not necessarily tetrahe-
dra. This cell complex can be refined to a trian-
gulation by decomposing non-triangular faces into
triangles and non-tetrahedral cells into tetrahedra.
This can be done with semi-Delaunay edges and
triangles, where we call a non-Delaunay edge or tri-
angle semi-Delaunay if there is a sphere through its
vertices so that all other points of S lie on or outside
the sphere. We call such a refinement a Delaunay
triangulation.

In the literature, Delaunay triangulations that
also contain semi-Delaunay edges or triangles are
often called completions of the Delaunay cell com-
plex. In this paper we prefer to give up unique-
ness in exchange for always getting a triangulation
rather than a possibly more general cell complex.
We refer to Delaunay [1] where Delaunay triangu-
lations are introduced and to [4, 2] for background
information.

KJ-triangulations. We call a triangulation 7 of
S a KJ-triangulation if it satisfies the following con-
dition developed in Kerkhoven and Jerome [3]. It
is expressed in terms of edges and dihedral angles.

For a tetrahedron abcd let |abed| be its volume
and for z € {a, b, ¢,d} let h, be the distance of ver-
tex z from the plane spanned by the opposite tri-
angle. Let u. be the inward directed normal vector
of this triangle with length 1/h, (see Figure 2.1}
Now define

Figure 2.1: Tetrahedron with inward directed nor-
mal vectors.

flab,cd) = (ua, up}|abed|

and

flab) =" f(ab, cd),
cd

where the sum is taken over all edges cd so that abed
is a tetrahedron of 7. The condition developed in
(3] is that f(ab) < 0 for each edge abof T.

Non-obtuse triangulations. A dihedral angle is
obtuse if it exceeds the right angle, that is, 5. A
triangulation 7 of S is non-obtuse if all dihedral
angles of its tetrahedra are non-obtuse.

The main result of this paper is the relationship
between the three types of triangulations expressed
by the following theorem.

Theorem 2.1 (1) Every non-obtuse triangulation
is KJ but there are obtuse KJ-triangulations.

(2) There are non-obtuse triangulations (and
therefore KJ-triangulations) that are not Delaunay
and there are Delaunay triangulations that are not
KJ (and therefore obtuse).
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In other words, the non-obtuse dihedral angle condi-
tion and the condition of Kerkhoven and Jerome are
incomparable to the sphere condition for Delaunay
triangulations, and the non-obtuse dihedral angle
condition is strictly stronger than the condition of
Kerkhoven and Jerome. This is in sharp contrast to
the planar case where Delaunay triangulations and
KJ-triangulations are equivalent notions and where
every non-obtuse triangulation is also Delaunay.

In addition to Theorem 2.1 we also show that the
condition for non-obtuse dihedral angles is strictly
stronger than for non-obtuse face angles.

3 KJ-Triangulations

We rewrite the KJ-condition presented in the pre-
vious section in terms of cotangents of dihedral an-
gles. This will lead to a slightly more intuitive for-
mulation.

Lemma 3.1 f(ab,cd) = - }cd] cot ¢, where |cd] is
the length of the edge cd and ¢ is the dihedral angle
at cd inside the tetrahedron abed.

Proof. If ¢ is the angle between the vectors u,
and u; then ¥ = v — ¢. Therefore, hohy{ug, up) =
cos ¢ = — cos ¢. This implies

abed
f(abyed) = — |ha'bb| cos ¢.
Notice that hy = %t sin ¢, where |bed] is the area
of the triangle bcd, because 3]%:—?' is the height of

triangle bcd with base ed (see Figure 3.1). This
gives
cos ¢ |abed||cd| _

i
> =« Zled| estip.
flab,ed) =~ S Tbedn, = ~gledl coté

With this lemma we can now rewrite the KJ-
condition as

—6f(ab) = led|cotd >0
ed

Figure 3.1: Reinterpreting the KJ-condition.

for all edges ab.

Remarks. (1) Recall that the cotangent of an an-
gle ¢ is positive if 0 < ¢ < F.zeroif ¢ = %, and
negative if 3 < ¢ < w. This implies that the KJ-
conditions is satisfied if each dihedral angle is non-
obtuse which thus proves half of Theorem 2.1 (1)-

(2) The KJ-condition as formulated in the previ-
ous section can be extended to arbitrary dimensions
k; just replace-volume by k-dimensional measure
and take the sum over all k-dimensional simplices
that have ab as an edge. This is the form proved in
[3]. We see that it remains a condition on the edges
of the triangulation. For example, in two dimen-
sions, the sum is over the (at most) two incident
triangles. Using the formulation with cotangents
we get

Pl —-%(cota + cot §),

where « and 3 are the angles opposite to ab inside
the two triangles. Now, f(ab) < 0 is equivalent to
a + B < 7 which is exactly the Delaunay condition
in two dimensions.

4 Delaunay Triangulations and
KJ-Triangulations

We give two constructions to prove part of Theorem
2.1 (2), a Delaunay triangulation that violates the
KJ-condition, and a KJ-triangulation that is not
Delaunay.

A triangulation that is Delaunay but not KJ.
Refer to the left part of Figure 4.1. Points a and




b are the north- and south-pole of a sphere ¢ and
form the first two points of the five point example.
Points ¢, d and e are the vertices of an equilateral
triangle in the equator plane so that all three points
lie outside the equator, and the three edges properly
intersect the equator circle. The Delaunay triangu-
lation of the five points consists of the tetrahedra
abzy, with zy € {cd,de,ec}. However, all opposite
dihedral angles of ab are obtuse which implies that
ab cannot be edge of any KJ-triangulation of the
points.

Figure 4.1: The top view of a Delaunay triangula-
tion of five points that is not KJ is shown to the
left. The top view of a KJ-triangulation that is not
Delaunay is shown to the right.

A triangulation that is KJ but not Delaunay.
The construction is illustrated in the right part of
Figure 4.1. Take a and b as north- and south-pole
of a sphere o, as before, and for £ > 3 choose a
regular 3k-gon with vertices ¢;,¢3,. .., Cak, Cake1 =
¢y in the equator plane. The 3k-gon is such that it
contains the equator circle and the distance between
the circle and each edge is equal to some § > 0.
We choose é small enough so that the line segment
¢;-1Ci4+1 properly crosses the equator circle and the
midpoint lies at distance ¢ > 0 inside the circle.
Next, we move three of the 3k vertices towards the
center of the equator circle, namely points cj, ¢z
and caj, until they lie at distance 0 < €; < €g inside
the circle. Note that after moving the three points
the 3k-gon is still convex. The triangulation that
we consider is formed by the tetrahedra abejciyq,
for 1 <1< 3k

triangulation because every sphere through a and b
encloses at least one of the points ¢y, ¢; and ea;. It
thus remains to show that the triangulation satisfies
the KJ-condition. The only obtuse dihedral angles
in the triangulation are the ones at the edges cx_1¢x,
ChkCh+1y C2k—1C2k; C2kC2k4+1, C3k-1C3k and CakCaky1-
Hence, the only edge that could possibly violate
the KJ-condition is ab. However, the absolute con-
tribution of these six edges to f(ab) can be made
arbitrarily small by choosing €y small. Thus, this
positive term is easily compensated by the acute
angles at the other edges of the 3k-gon.

Remark. The triangulation just described is also
an example of an obtuse KJ-triangulation thus
proving the remaining half of Theorem 2.1 (1).

5 A Non-obtuse Triangulations
That Is Not Delaunay

‘We finish the proof of Theorem 2.1 with the con-
struction of a non-obtuse triangulation that fails to
be Delaunay. As a side result we get a non-obtuse
triangulation that is circumscribable (that is, its
vertices lie on a common sphere) and contains an
arbitrary number of vertices. This is in contrast to
the planar case where five or more points on a circle
cannot be triangulated without obtuse angles.

We start with the construction of a non-obtuse
triangulation whose n > 5 vertices lie on a sphere
o; it is illustrated in Figure 5.1.

(i) Choose € > 0 small enough and place n — 2
points €;,¢2,...,¢n-7 on the equator so that
the distance between ¢; and ¢;4, is e.

(ii) For each edge c;c;+1 let s; be the open slab of
points between the planes through ¢; and ¢iy
normal to the edge. The intersection of all s,
is a vertical cylinder which contains the north-
and the south-pole of o.

(iii) We choose points a and b on ¢ so that ab is
parallel to the pole-axis, ab is contained in all
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Notice that ab cannot be edge of any Delaunay s; and is sufficiently far away from the ¢;. We




Figure 5.1: A set of n pointson a sphere that admits
a non-obtuse triangulation.

can assume that ab is arbitrarily close to the
intersection of the plane through ¢; and that
through c,_,.

(iv) The tetrahedra are of the form abcieiyy for1 <
i<n-3,

The dihedral angles at ab are clearly non-obtuse.
The dihedral angle at ¢;c;;; is non-obtuse because
the line through ¢; and ¢;4; is normal to ab and dis-
joint from the sphere 7 whose north-pole is a and
whose south-pole is 6. Finally, the dihedral angles
at ac; and be; are non-obtuse because in the orthog-
onal projection of abe;ciy; onto a plane parallel to
ab and ¢;c;y; the two edges are normal to each other
and intersect. Indeed all dihedral angles are acute,
that is, smaller than Z.
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Finally, we move ¢; and ¢,_, ever so slightly to-
wards the center of o. Because all dihedral angles
were acute before the displacement of ¢; and Cn_z
this can be done without introducing obtuse angles.
But now c¢y¢cq-7 is a Delaunay edge by construction
which shows that the non-obtuse triangulation is
not Delaunay.

6 Dihedral and Face Angles

This section studies the relationship between dihe-
dral angles and (two-dimensional) face angles. We
will see that a triangulation has no obtuse dihedral
angle only if it has no obtuse face angle. On the
other hand, there are triangulations without obtuse
face angles that have obtuse dihedral angles. This
shows that the condition for non-obtuse dihedral
angles is strictly stronger than for non-obtuse j1ce
angles. The investigation will also shed new light on
the relationship between non-obtuse triangulations
and Delaunay triangulations. Everything is based
on the following lemma.

Lemma 6.1 A tetrahedron has an obtuse dihedral
angle if it has an obtuse face angle.

Proof. Let abcd be the tetrahedron and let the
angle 7 at point ¢ in abe be obtuse. Now consider
the orthogonal projection of point d onto the plane
through abc; it must lie in the (closed) triangle abe
because, otherwise, we have an obtuse dihedral an-
gle between abc and another triangle of abed. We
claim that in this case the dihedral angle along the
edge cd is at least as large as v and therefore obtuse.

To see this assume that d does not orthogonally
project onto ¢; if it did the dihedral angle at cd
would be equal to v > 3- Let n be the plane normal
to cd through point d and consider the line £ that is
the intersection between 1 and the plane spanned by
abe (see Figure 6.1). Assume first that the half-line

Figure 6.1: The angle at d' inside a'b'd’ is greater
than the angle at ¢ inside a’d'e.

ca that starts at ¢ and passes through a intersects




£ and that cb intersects £ too. Define @’ = { N ca
and b = £n cb. Now rotate d about £ until it lies
in the plane of abe; call its location d'. Because g
is normal to cd the distance of d’ from { is smaller
than the distance of ¢ from £. It follows that a'b'd’ is
contained in a'b’c and that therefore the angle at d'
— which equals the dihedral angle at c¢d - is greater
than the angle at c.

In the other case we assume that ¢a does not meet
£ (see Figure 6.2). Define d’ and b’ as before and set

Figure 6.2: The angle at d' is necessarily obtuse.

a’ = £ N de, assuming that @' exists. The dihedral
angle at ¢d is equal to the angle at d' defined by the
line through d' and o’ and the line through d' and
b'. This angle is obtuse because a' and 4’ lie on the
same side of the normal to £ through d’ (see Figure
6.2).

Finally, if ¢’ does not exist, that is, ac is parallel
to £, then the angle at d' is obtuse by the same
Teasoning.

Remarks. (1) Let a and b be two antipodal points
on a sphere o, let ¢ be inside ¢ and let d be any-
where. Lemma 6.1 implies that abed has an obtuse
dihedral angle because the face angle at ¢ inside abc
is obtuse.

(2) Remark (1) implies an interesting fact about
the relationship between non-obtuse triangulations
and Delaunay triangulations. Let 7 be a non-
obtuse triangulation. For each edge consider the
unique sphere ¢ that contains a and b as antipodal
points. No point ¢ connected to both, a and b, can
lie inside o; otherwise, we have a contradiction to
Lemma 6.1. In other words, all edges of T are lo-

cally Delaunay (2]. From what we have seen earlier,
7T is still not necessarily a Delaunay triangulation.
This should be contrasted to the fact that 7 is nec-
essarily a Delaunay triangulation if all its edges and
triangles are locally Delaunay [2].

We conclude this section with a triangulation
whose face angles are all acute but which has ob-
tuse dihedral angles. The triangulation consists of
a single tetrahedron whose vertices are the points
(1,0, —¢), (-1,0,—¢), (0,1,€), and (0,-1,¢), for
some sufficiently small € > 0.

7 Conclusions and Open Prob-
lems

This paper compares three types of triangulations
of finite point sets in three-dimensional space: De-
launay triangulations, KJ-triangulations and non-
obtuse triangulations. The main result is that the
condition for nomn-obtuse triangulations is strictly
stronger than for KJ-triangulations and that the
condition for Delaunay triangulations is incompa-
rable with the other two. In addition, this paper
shows that all dihedral angles can be non-cbtuse
only if all face angles are non-obtuse.

Of course, there are point sets that do not admit
non-obtuse triangulations, unless extra points can
be added. This suggests the following question.

What is the minimum g¢(n) so that for
any set P of n points in three-dimensional
space there is a set @ = P of at most g(n)
points so that @ admits a non-obtuse tri-
angulation?

It is fairlv easy to show g(n) < n® as follows.
Through each point of P draw the three planes
parallel to the coordinate planes and take Q as
the set of intersection points between the planes.
Each bounded box can be decomposed into six non-
obtuse tetrahedra by choosing a diagonal and tak-
ing the tetrahedra defined by this diagonal and the
six edges of the box that do not share an endpoint

;
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with the diagonal. If we choose the diagonals con-
sistently then the tetrahedra define a triangulation.
The hope is that g(n) is much smaller than cubic in
n,

i
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The same problem can also be asked for KIJ-
triangulations, for triangulations with acute dihe-
dral angles only, and for triangulations with no di-
hedral angles exceeding a, for some § < a < F.
For the latter two problems it is not clear whether

g(n) exists.

On a more global level, it is interesting to study
how much more general KJ-triangulations are than
non-obtuse triangulations.
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