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Let C be a cell complex in d-dimensional Euclidean space whose faces are obtained by orthogonal
projection of the faces of a convex polytope in d + 1 dimensions. For example, the Delaunay
triangulation of a finite point set is such a cell complex. This paper shows that the in_front/behind
relation defined for the faces of C with respect to any fixed viewpoint z is acyclic. This result has
applications to hidden line/surface removal and other problems in computational geometry.

1. Introduction

Suppose you look at two non-intersecting convex bodies in three-dimensional
Euclidean space. If one obstructs (part of) the other in your view it cannot also be
obstructed. If we extend this observation to a finite collection of mutually disjoint
convex objects we get an asymmetric relation which we call the in_front/behind
relation. Notice that the relation is defined relative to a fixed viewpoint and may
change as the viewpoint changes. This relation can be defined for any number of
dimensions. For now, we briefly review two algorithmic problems where this relation
plays a significant role; it is not surprising that both problems are three-dimensional.

A popular algorithm for hidden line/surface removal in computer graphics is the
so-called painter’s algorithm [7]. It orders the three-dimensional objects from back
to front and draws the objects according to this ordering. Hidden parts are thus
removed automatically by “overpainting”. A cycle in the in_front/behind relation,
such as the one shown in Figure 1, contradicts the existence of such an ordering. One
way to deal with this difficulty is to cut the objects into smaller pieces so that the
relation is acyclic for the pieces [8], but no good bounds on the number of necessary
cuts are known.

Another problem where the in_front/behind relation plays a role is the so-called
point location problem in three dimension. Given a cell complex with n convex cells,
the goal is to store it in some data structure so that, for a later specified query
point the cell that contains the point can be determined quickly. For the case where
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Fig. 1. The three triangles from a cycle in the in_front/behind relation

the above/below relation * for the cells is acyclic a data structure that takes O(m)
storage and O(log®m) query time is given in [2] (here m is the total number of faces
of the cell complex). No data structure is known for the general case (for cells with
cycles in the relation) that comes even close to this efficient performance.

The main result of this note is that if the objects are the faces of a certain kind of
cell complex in E, then the in_front /behind relation is acyclic no matter where the
viewpoint is chosen. More specifically, the relation is acyclic for all cell complexes in
E? that can be obtained by projecting the boundary complex of a convex polytope
in E*1, For example, the Delaunay triangulation of any finite point set is a cell
complex of this kind. A special case of this result (for two-dimensional Delaunay
triangulations) was obtained earlier in [6]. Section 2 reviews Delaunay triangulations,
related geometric structures, and some of their properties. In Section 3 we prove the
acyclicity result for the cells of a d-dimensional Delaunay triangulation. In Section
4 we obtain the general form of the acyclic result. Finally, we offer some remarks in
Section 5.

2. Delaunay Triangulations and Related Structures

The most intuitive way to introduce Delaunay triangulations uses so-called
Voronoi diagrams. The former are named after Boris Delaunay, also Delone, for
his pioneering work in [3] which is dedicated to Georges Voronoi, the namesake for
the latter [9]. :

Let S be a set of n points in E4. The Voronoi region of a point p € S is the set
V(p)={z € B| 6(@,p) < 8(z,) for all g € S~ {p} },

where 6 is the Euclidean distance function. V'(p) is the intersection of n — 1 open
half-spaces and thus a convex polyhedron. The Voronoi diagram of S, V(S), is the
cell complex whose cells are the Voronoi regions of the points is S (see Figure 2). We
define the cells and the faces in their boundaries as relatively open sets so that the
collection of all faces of V(S), from dimensionality 0 through d, define a partition of

! This is the in_front/behind relation for the viewpoint at (0,0, co).



AN ACYCLICITY THEOREM FOR CELL COMPLEXES 253

Fig. 2. The Voronoi diagram (solid edges) and the Delaunay triangulation (broken edges) of the
same two-dimensional point set are superimposed. Notice that some edges of the Voronoi diagram
intersect the corresponding edges of the Delaunay triangulation and some do not

E%. The Delaunay triangulation of S, D(S), is dual to V(S) and contains a (d — k)-
face for every k-face of V(S) (see Figure 2). More specifically, let FV be a k-face
of V(S) and let Q C S be maximal so that f¥ belongs to the closure of each V(q),
g € Q. Then the relative interior of the convex hull for Q, fP, is a (d — k)-face
of D(S). If the points of S are in general position (that is, no d + 2 points lie on
a common sphere), then V(S) is a simple cell complex (every k-face is incident to
d—k+1 (k+1)-faces) and D(S) is simplical (every k-face is a k-dimensional simplex).
Assuming general position of the points often simplifies things but is not necessary
for the result of this paper.

The following properties of Voronoi diagrams and Delaunay triangulations will
be important. An empty sphere is the boundary of an open ball that is disjoint
from S.

Property. Let S be a finite set of points in ES.

(i) The relative interior of the convex hull of @ C S is a face of D(S) if and only if
there is an empty sphere o with @ = SN a.

(ii) Let pV and ¢ be two adjacent vertices of V(S). Then q¥ —pV is normal to the
common d — 1-face of cells p? and ¢P of D(S) (see Figure 2 where a pair p?,
qP is shaded).

(iii) Let pP and ¢P be two adjacent cells of D(S) and let f© be the (d — 1)-face that
separates pP and qD . Then the points pV and ¢V lie on the line that contains
the edge V. '
Property (iii) sounds like a void statement since, indeed, p¥ and qv are the

endpoints of fV. However, the important point it makes is that the line through f v

is determined solely by the vertices of f D and thus independent of the other vertices

of pP and ¢P. Together with (ii) this will be the key to our main theorem.

Voronoi diagrams and Delaunay triangulations in E are related to certain con-
vex polyhedra in B4 (see [4]). This is best explained using a geometric transform
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that maps a point p = (71, 73,...,m4) in E% to the point
p+ = ("’Tlaﬂﬁ‘r- --!ﬂ-daﬂf +... +7T¢2,i)

in E%*; we call the transform the lifting map. Intuitively, p can be thought of as a
point of the hyperplane z4,, = 0 in E%*! and p* is the vertical projection of p onto
the paraboloid U : z4,, = z} + 2} +... + 2%. In combination with the lifting map
we use a duality transform that maps a point r = (pi, ps, ..., pg.,) in E4! to the
hyperplane

™ gy = 20121 + 2p2Ta + ... + pazTy — Pd+1s
and vice versa, that is, (r*)* = r. Observe that if r lies on U then 7* is tangent to
U and touches U in point r.

Define P = {p* | p € S} and let P(S) be the convex hull of P. We introduce
some notation in order to describe the relation between P(S) and the Delaunay
triangulation of S. A point r = (py, p2,...,pq.,) is above a non-vertical hyperplane
h:Tgpy =mT+mTs+ ...+ 03%q + Ngy1 Ty, if

Pdy1 > Mp1+Map2+ -+ Ngpg + Ngaq;

it is said to be on the hyperplane if we have equality, and it is below the hyperplane
if the strict inequality is reversed. A face, f¥, of P(S) is a lower face if there is a
non-vertical hyperplane that contains the face and no point of P($ ) lies below this
hyperplane.

Property. (iv) A face P belongs to D(S) if and only if there is a lower face f¥ of

P(8) so that fP is the vertical projection of f¥ onto the hyperplane Togio= 10

It is rather straightforward to prove property (iv) using property (i) of Delaunay
triangulations and the fact that a non-vertical hyperplane intersects U in a (possibly
empty) ellipsoid whose vertical projection onto x4 +1 = 0 is a sphere.

Next, set H = {(p™)" | p € S}, a set of non-vertical hyperplanes in E%+!, and
define

H(S) = {z € E* | z lies above or on all h e H}.

The following relations between the convex polyhedron H(S) and the Voronoi dia-
gram of S can be established (see [4]).

Property. (v) A face fV belongs to V(8) if and only if there is a face f7 of H(S)
so that fH is the vertical projection of fH onto ZTg=0.

Of particular importance will be the case of property (v) that relates edges of
V(S) with edges of H(S). As in this section, we will use superscripts D, V. B,
and H to distinguish faces of D(S), V(S), P(S), and H(S) in the next section.
By convention, we let f0, fV fF, and fH be faces that related to each other via
the transforms explained in this section. For example, if fP is a vertex of D(S)
then fV is a (d-dimensional) cell of V(S), fF is also a vertex of P(8), and fH is a
d-dimensional face of H(S).
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3. The Acyclicity Theorem for Delaunay Triangulations

We start with a formal definition of the in_front/behind relation. Let z be a
point and s and t be two disjoint convex sets in EZ. We write s <z t if there is a
half-line £ starting at = (but not including ) so that £Ns # 0, £Nt # 0, and every
point of £ s lies between = and any point of £Nt. If s<,t we say that s is in front
of t and that ¢ is behind s. Notice that it is not necessary that z lie outside s and ¢.
However, if z lies in the interior of s then s<;u for any u # 0 disjoint from s. The
relation is well-defined and asymmetric because s and ¢ are convex.

In order to prove that <, is acyclic for cells of a Delaunay triangulation we
introduce a numerical function, ®, so that ®,(s?) < ®,(tP) if sP<tL. Clearly, if
such a function exists then < is acyclic since it is impossible to have

B,(sP) < @5(sD) < ... < B4(sP) < B4(sP).

Here is a useful observation that helps establishing the existence of ®, with the
desired properties. Take two cells s? and tP of a Delaunay triangulation so that
sP <, tP. Then there are cells

$P =u{3_-%¢u§)-<z...-<mu§) =P

so that uzp and ug_l are adjacent 2 for 1 <4 < j — 1. For example, the u;-D can
be the cells that intersect the half-line £ between sP and tP. If ¢ intersects some
k-face, for £ < d — 2, of the Delaunay triangulation, in which case the u‘? do not
necessarily form a single chain of adjacent cells, we can perturb £ ever so slightly
(without perturbing its starting point ) so that it still meets sP and tP but no face
of the triangulation whose dimensionality is less than d — 1.

Let us now define ®;. We perform a translation so that z is the origin of E4
(and E%1). We define ®,(sP) as the d + 1% coordinate of s# — recall that sy is
the vertex of H(S) that corresponds to cell s©. Algebraically, ®,(s”) can be defined
in terms of the coordinates of d 41 points of S: let p; through py,, be d+ 1 affinely

independent vertices of sP and write P = (M1, Mip,-- ., M g) for 1 <i < d+1. Then

g waw Ay [ T R
det : . : .
2 2
D Tdr11 o+ Tdy1r,d Tdt1,1 t.-.. Tdt1.d
Pz(s7) =—
M1 s m.d 1
det : . :
Td+11 -+ Tdyid 1

Below we show that indeed ®,(sP) < ®(tP) if sP < £ which implies the acyclicity
of <z for the cells of a Delaunay triangulation.

First, we establish the inequality of the following special case. Let s¥ and t?
be two adjacent d-simplices of D(S) where p; through pg are the vertices of the

2 We say that two cells are adjacent if they have a (d =1)-face in common.
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Fig. 3. Points ps and p; are chosen so that p; and pp define an edge of the Delaunay triangulation

common (d — 1)-face, ps is the d + 1% vertex of sP, and p; is the d + 1% vertex
of tP. We write p; = (M1, Tigy. .. Mig) fori € {1,2,...,d,s,t} and assume that
ws,jzﬂandTrg,j——-2f0ra.llj,7r§,i=1forlSégd,andmgzﬂforlsigd
and j # i. Observe that with this choice of points sP and tP are indeed cells of
D(S), S = {p1,P2---,Pd:Ps, Pt}, since both ps and p; lie outside the sphere with
center (1,1,...,1) and radius v/d — 1 that goes through p; for 1 <i <d. Furthermore,

sP <, tP since z = ps (see Fig. 3). For this special case we have
1 s 0 1N
det : ". : :
\0 cwnn Ok 1)
0 ... 00 0
&, (sP)y=— TS
=(s7) /1 0Ly, .
det | 1 b
§ I I |
_ \ 0 0 1)
and
1 0 1
det :
0 .. T 4
2 ... 2 4d 4d — 2d 2d
D — == .
2(t7) = i o B 1 1-2d 2d-1'
Jwlt T ow
0 e I R
b/ S . S |

Because 0< (2d)/(2d — 1) we thus have established ®,(s”)<®,(tP) for this special
case. We next argue that the general case for cells of D(S) can be reduced to the
special case by a few simple transformations.

Let sP and t? be two arbitrary adjacent cells in D(S) such that s© <z¢P. The
first transformation is a rotation about the origin-of E¢. Since the paraboloid, U,
used to define the lifting map can be obtained by revolution about the zy, -axis,
such a rotation of § and D(S) goes along with:a rotation of P(S) and H(S) about
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the z4,,-axis. We rotate so that the vector (1,1,...,1) in E% is normal to the (d—1)-
face f2 common to sP and P, Second, we scale the coordinates uniformly so that
the hyperplane that contains fP cuts the positive part of the i*" coordinate axis at
distance 1 from the origin for 1<i<d. If we scale the d + 1** coordinate by the same
factor this transformation changes only absolute size and retains angels and relative
sizes.

Third, we replace f2 by the (d — 1)-simplex spanned by the intersection points
of the hyperplane containing f© and the d coordinate axes. Although this seems
like a drastic change in the geometry of s and tP we will see that it retains all the
information that matters. By construction, the vertices of the old 7P lie in the same
hyperplane as the vertices of the (d — 1)-simplex, the new FP. In terms of the lifting
map this means that the lifted points (vertically projected onto U) lie in a common
vertical hyperplane of E4+!. If we apply the duality transform to these points we
get hyperplanes that have a point at infinity in common (this is the dual point of
the vertical hyperplane if we extend the duality transform appropriately). In other
words, these hyperplanes are all normal to a common hyperplane. But this implies
that the line that is the intersection of the hyperplanes dual to the lifted vertices of
the fD, call it Loia, is parallel to 4,..,, the intersection of the hyperplanes dual to the
lifted vertices of the new f2. We orient both lines consistently with t — s (recall
that s and ¥ are the vertices of H (S) that correspond to sZ and tP and therefore
lie on line £54). Since £yq and £,.,, are parallel and consistently oriented the slope of
{014 is the same as the slope of #,.,, where “slope” is defined in terms of the increase
or decrease in the d + 1% cordinate as we move on the lines.

In the fourth step we replace ps by the origin and p; be the point whose
coordinates are all equal to 2. This is legitimate because the exact locations of
points s and + on £,4 are irrelevant as long as sH lies before tH (see Property
(iii)). In other words, @z(sD) < @x(tpj if and only if the slope of £, is positive. But
the slope of £, is the same as the slope of £, Which can be computed by finding
the d + 1** coordinate of some two points on £,.,. Such two points are obtained by
using the origin and (2,2,...,2) as d + I** vertices of the transformed s? and ¢2.

This implies a special case of our main theorem (to be formulated in the next
section) with which we conclude this section.

Theorem. The in_front/behind relation defined for the cells of any Delaunay trian-
gulation and for any fized viewpoint = in E? is acyclic.

4. The General Acyclicity Theorem

This section generalizes the above theorem in two directions. First, we show that
the in_front/behind relation remains acyclic if we generalize Delaunay triangulations
to so-called regular cell complezes. These are cell complexes in E? that can be
obtained by orthogonal projection of the boundary complex of a convex polytope
in B4l — of course, only one side of the boundary of the polytope is projected.
Second, we show that the in_front/behind relation is acyclic not only for the cells
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(the d-dimensional faces) of regular cell complexes but also for the lower-dimensional
faces. :

To show the first generalization we do one more simple transformation to reduce
the problem to Delaunay triangulations. Let P be a convex polytope in E%+1 and let
C be the d-dimensional cell complex obtained by vertically projecting all lower faces
of P onto the hyperplane z4,, = 0. Since P is a convex polytope, we can define H
as in Section 2: if Q is the set of vertices of P then

H = {z € E¥ | z is above or on hyperplane p*, for every p € Q}.

As before, every k-face of P corresponds to a (d — k)-face of H and the vertical
projection of two corresponding faces are orthogonal to each other. The numerical
function we use to prove acyclicity is the same as before: move the viewpoint z to

the origin and set ¢5(s%) equal to the d + 1% coordinate of vertex sH of H. Below
we argue that we still have B,(sC) <@, (t0) if € <, ¢C.

Take two adjacent cells sC <z tC of C and let fC be the (d — 1)-face that is
common to sC and tC. We assume that sC and tC are d-simplices and that f©
is a (d — 1)-simplex. Otherwise, substitute simplices for sC, t€ and fC which are
spanned by appropriately chosen vertices of s¢ and t©. Let s%, tP and fP be the
corresponding faces of P. We have $,(s¢) < &, (t©) if we can show that the directed
line that goes through points sH and t¥ in this order has positive slope; this line, £y,
contains the edge f. To see that this is true translate the vertices of fF vertically
so that they all lie on the paraboloid U : z4,, = 22 + 2} + ... + 2Z. (If necessary,
we also translate the other vertices of s¥ and ¢© so that the dihedral angle at f
remains convex.) These translations leave €, tC, and f€ unchanged. By definition
of the duality transform, the vertical translation of a point p in E% corresponds
to a vertical translation of the dual hyperplane p*. This implies that the line £,4 is
parallel to £y, that goes through the dual images of the new sP and P, in this order.

By construction, £y, is the intersection of d hyperplanes all of which are tangent
to U. By the argument in Section 3, the slope of £, is therefore positive. Thus,

'I*,_(sc) < @w(tc) since f,.., and £,4 are parallel and consistently oriented. This is
what we started out to prove.

Second, we argue that the in_front/behind relation of the lower-dimensional faces
of a projective cell complex is also acyclic. Let C be such a complex in E¢ and assume
it is not true. Thus, there is a cycle

Pt Oy caq Qi fl =g

of faces of C.

The argument is easy if we assume general position of z, that is, z does not lie in
the affine hull of any k-face ® of C for 0<k<d — 1. In this case we can replace each
face fiC by the cell that lies immediately in front of it as viewed from z. The relations
are inherited from the ff ’'s which thus gives a cycle of cells and a contradiction to
the above result.

3 The affine hull of a k-face is the unique affine k-dimensional subspace that contains it.
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What is the difficulty if we remove the general position assumption? We can no
longer replace each face that is not a cell by the cell immediately in front, because
this cell is not necessarily defined. Here is a way around this difficulty. Let z’ be
a new viewpoint sufficiently close to z that is in general position as defined above.
Every ff which is not a cell can now be replaced by the cell cz-c that lies immediately
in front of fiC as viewed from z'. We define cf" = fic if the latter is a cell. Thus we
get a sequence

c ;
of 6 s 0000, =@

of cells, and to reach a contradiction we just need to show that csc =gt cﬁ_l for

1<i¢<k. This is obviously true if féc <t fgl. Otherwise, ff, fgl, and z must
lie in a common hyperplane that avoids /. Let £; be the halfline that starts at
T and intersects the relative interiors of fs-c and fgl= in this order, and let ¢,/ be
the half-line parallel to £; that starts at 2’. Because ' is sufficiently close to z, £y
intersects both c,? and cﬁl, in this order, which implies cf g cg_l. Thus, we have
a cycle of cells and a contradiction.

We conclude with the main result of this paper which summarizes what has been
said in this section.

Main Theorem. The in_front/behind relation defined for the faces of any regular cell
complez and for any fized viewpoint z in E? is acyclic.

The acyclicity of the faces implies that every regular cell complex can be shelled®
so that at any point in time the union of the faces shelled so far is star-shaped.
Furthermore, for any point z there exists such a shelling such that z is always in the
kernel of this evolving star-shaped polyhedron.

Remarks

The most important application of the main theorem is probably in three di-
mensions where it implies that the faces of any regular cell complex can be painted
from back to front without creating inconsistencies. Since Delaunay triangulations
(both closest-point and furthest-point) are regular cell complexes, this is in particu-
lar true for so-called a-shapes of a point set (for a given real number o, the a-shape
of a finite point set is a cell complex defined by a subset of all faces of either Delau-
nay triangulation of the set). In two dimensions, a-shapes are studied in [5] and [4];
extensions to three and higher dimensions are straightforward.

As noticed in [1], regular cell complexes can be viewed as power diagrams defined
by weighted points. Using this interpretation it is straightforward to prove a weaker
version of our main theorem (one where only one side of a hyperplane through the
viewpoint is considered). The idea is to sort the cells according to the z-coordinates
of the points if the viewpoint is at infinity in the direction of the negative z,4-axis.
Otherwise, one can do a projective transformation that maps the problem into this

4 A shelling is a sequence of the faces of the complex so that the union faces of any prefix of the
sequence is topologically a ball.
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case. However, if all parts of the cell complex are treated at once (which is necessary
for a full cyclic view of a scene) then this approach breaks down.

Note added to proof. Raimund Seidel and Bernd Sturmfels observed that the main
theorem of this paper can be established using line shellings of the polytope P. We
also mention that after completion of this paper Franco Preparata and Roberto
Tamassia designed a data structure for three-dimensional point location that is
efficient even in the presence of cycles in the above/below relation of the cells.
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