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Lines in Space—A Collection of Results

HERBERT EDELSBRUNNER

ABSTRACT. Many computational geometry problems are exceedingly more
difficult if the setting is the (three-dimensional real) space R® rather than

the plane R® . Most often the reason for this striking increase in complexity
is the appearance of new geometric phenomena caused by one-dimensional
objects in space. The intention of recent studies on problems for lines in
space is to shed light on these new phenomena and their complexities. This
paper reviews some of the most important results and shows how they are
related to problems in dimensions 2 and 5.

1. Introduction

In computational geometry it is a truism that problems in three-dimension-
al space, R3, are significantly more difficult and complex than the corre-
sponding problems in the two-dimensional plane, R?. Of course, reality is
not that simplistic, but it seems this way often enough to be a generally ac-
cepted view. As an example consider the problem of finding the width of a
convex polygon/polytope with n vertices, that is, the smallest distance be-
tween two parallel lines/planes that bracket the polygon/polytope. In R’ this
distance is realized by a vertex and an edge, and it is fairly easy to see how
to enumerate and test O( n) pairs in time O( n) in order to find the width. In
R’ the problem is more complicated because the width can either be realized
by a vertex-facet pair or an edge-edge pair, and it is not clear how to limit
the number of edge pairs that have to be considered. Indeed, no algorithm is
known that computes the width of a convex polytope in time anywhere close
to linear in n.
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In a nut-shell, the kind of interaction between the edges as it appears in
the width problem is a geometric phenomenon which cannot be observed in
R? and which significantly complicates matters in R>. More generally, the
intricate interplay between one-dimensional objects in space is what makes
computational geometry more difficult and interesting in R’ than in R%.
Fairly recent research in the area specifically concentrated on this aspect of
spatial geometry. This survey is based on this research, more specifically on
the papers [4, 5, 6, 10], and summarizes some of the more important results
in a fairly leisurely manner.

The first part of this survey, §§2-7, is combinatorial in nature and focuses
on the notion of cycles defined by lines or line segments in space. Section 2
formally introduces the notion of a cycle and presents some motivation for
why cycles seem a worthwhile object of study. The second part of this survey,
§§8-15, has a more algorithmic flavor than the first part. The objects under
investigation are sets of line segments and polyhedral terrains.

2. Lines and cycles

Given a finite collection of lines in space and a viewpoint, we can define
a relation “<” that reflects when one line obstructs the view of another line,
see Figure 2.1 for an example.
The main topic of the first part of this survey paper are combinatorial consid-
erations related to “<”. The objects under consideration are (infinite) lines
and line segments (also called rods) in space. Typical questions asked are:

(1) How many cycles can n lines define?
(i) How many cuts are necessary to eliminate all cycles?
(iii) How fast can a cycle be detected, if there is one?
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FIGURE 2.1. a < b, b<c, c<d,d<e,and e < a,
therefore a < b <c<d <e < a is a cycle.
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FIGURE 2.2. A cycle in “<” makes Step 1 of the Painter’s
algorithm impossible. A way out is to cut the objects so that
all cycles are removed.

—

While these questions are of independent interest, there are problems in com-
putational geometry that motivate the study of cycles. The hidden surface re-
moval problem for a set of opaque polygonal objects, e.g. triangles in space, is
the problem of drawing the view of the objects as seen from a given viewpoint.
One of the common algorithm for this problem is the Painter’s algorithm:

1. Sort the triangles consistently with “<.”
2. Paint the objects according to this ordering from back to front.

Overmars and Sharir [9] have algorithms that eliminate hidden lines and
surfaces by constructing the view from the front to the back. The complexity
of their algorithms is sensitive to the output. A common drawback of the
Painter’s algorithm and the algorithms in [9] is that they assume acyclicity of
“<”. Asillustrated in Figure 2.2, “<” can be cyclic for as few as three objects.
So-called binary space partition trees are a common method for removing all
cycles by effectively cutting the objects into smaller pieces; see [8, 11]. This
method is related to the results presented in §§6 and 7.

The point location problem in space seeks to store a cell complex so that for
a given query point the cell that contains it can be found as fast as possible.
While in the plane there are solutions that take storage O( n) and query time
O(logn), where n is the total number of faces (regions, edges, and vertices)
of the complex, the problem in space seems much harder. A data structure
that takes storage O(n) and query time O( log2 n) can be found in [3]; it
assumes, however, that the cells of the complex are acyclic with respect to
the viewpoint at (0, 0, co). Only recently, Preparata and Tamassia [15] gave
an algorithm that is reasonable efficient in the general case. It takes storage
O( nlog’ n) and query time O(log* ).

3. Weavings and perfect weavings

A weaving is a simple arrangement of lines (or line segments) in the plane,
together with a binary “over-under” relation < defined for them. A weaving
is perfect if along each line the lines intersecting it alternate between “over”
and “under.” A weaving is realizable if there are lines (or line segments) in
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FiGURE 3.1. A perfect 4-weaving.

space that project (vertically) onto the weaving. A weaving pattern is a class
of weavings that are combinatorially the same and it is realizable if at least
one representative in the class is realizable. The following result is due to
Pach, Pollack, and Welzl [10].

THEOREM 3.1. Any perfect weaving of n > 4 lines is unrealizable.

The case n = 4 can proved simply by rotating two of the four lines in
space (see Figure 3.1) so that their projections remain the same, three of the
four lines pairwise intersect, and the fourth line still has the strict alternation
between “over” and “under” with respect to the three lines. This, of course, is
impossible because the first three lines lie in a common plane and the fourth
line intersects this plane in a single point. The proof for # > 5 is more
difficult and can be found in [10].

4. Bipartite weavings

The roots of a quadratic form in x, y, z define a quadratic surface in
space (also called gquadric). Some members of the family of quadrics, in

FIGURE 4.1. A hyperbolic paraboloid.
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FiGUre 4.2. A perfect 4-by-4 weaving is not realizable.

particular the hyperboloid of one sheet and the hyperbolic paraboloid (see
Figure 4.1), turn out to be useful in the study of weavings. Both surfaces
have a number of interesting properties.

1. A line not contained in the surface meets it in at most two points.

2. There are two infinite families of lines, 4 and B, so thai the surface
is equal to |JA4 = | B, the lines of each family are pairwise skew,
and any two lines of different families either intersect or are parallel.

3. The surface divides space into two connected components.

4. Any three pairwise skew lines define a unique such surface that con-
tains all three lines.

These properties imply fairly straightforwardly that for four lines in general
position in space there are either two or zero other lines that meet all four.

A weaving of m + n line segments is bipartite if the set of line segments
can be split into sets H = {h;, h,,... ,h,} and V ={v,,v,,... ,0,} s0O
that no two line segments of the same set intersect, and all line segments in
H (V) intersect all line segments in ¥ ( H) in the same order. It is perfect
if along each line segment the other line segments strictly alternate between
“over” and “under,” see Figure 4.2. Note that for fixed m and n there is
only one perfect bipartite weaving pattern. The following result is taken from
[10].

THEOREM 4.1. A perfect bipartite m-by-n weaving is realizable iff
min{m, n} < 3.

We will not repeat the proof of this result which is more complicated than
one would like. It heavily uses properties of the two ruled surfaces mentioned
above. Using either surface it is easy to construct a perfect bipartite 3-by-n
weaving that is realizable. Just take three lines of one ruling family and n
lines of the other family. By slightly rotating a line of the second family we
can generate either an over-under-over or an under-over-under sequence, as
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desired. Since arbitrarily large perfect bipartite weavings are nonrealizable it
seems natural to ask how contaminated with cycles < can get. This leads to
the question of counting or bounding the number of cycles.

5. Counting cycles in bipartite weavings

The question considered in this section is the maximum number of cycles,
where the maximum is taken over all realizable m-by-n weavings. Assume
for simplicity that m = n and that either #; < v ; or v, < h; for every
h; € H and v,eV.

Note that every cycle has even length and contains a subcycle of length
4. Furthermore, the maximum number of 4-cycles is 8(n4) (see Figure
5.1). The following lemma turns out to be rather useful in our combinatorial
analysis. It can be found in Bollobas [2].

LeEMMA 5.1. If a bipartite graph on m and n nodes in each class contains
no K ,, s ofthe m and t of the n nodes, then it has only O(r”smnl_”’+
sn) arcs.

5.1. An upper bound for elementary cycles. A elementary cycle is a 4-cycle
defined by two adjacent line segments in H and two adjacent line segments in
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FIGURE 5.2. Cw and ccw elementary cycles in a 5-by-7 weaving.
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V'; it is either cw or ccw (see Figure 5.2). Every two adjacent line segments
from H and from V in a perfect bipartite weaving define an elementary
cycle. The following result, taken from [6], shows that in the realizable case
the number of elementary cycles is far less than (n — 1)2, the maximum
number in the nonrealizable case.

Upper Bound. A realizable n-by-n weaving has at most O(nz”! 2) elementary
cycles.

ProoF. For reasons of symmetry we count only ccw elementary cycles.
Define a graph (HUV, 4) with H = {(h,, hol1<i<n-1}, V=
{(’Uj-, v,,)|I1<j<n-1},and {(h;s By y)s ('UJ,., vj“)} € A if the four line
segments define a ccw cycle. A K, , in this graph corresponds to a perfect
4-by-4 weaving. Since such a weaving is nonrealizable, the graph cannot have

a K, , and has therefore at most cn”? arcs. O

5.2. A lower bound for elementary cycles. A lower bound of Q(n*/ 3) on
the maximum number of cycles in a realizable n-by-n bipartite weaving can
be found in [6]. The example is based on a construction of » points and #»
lines in the plane that define 8(?:4” 3) point-line incidences (see [16, 7]). The
points in this construction are arranged in a grid-like fashion, and the line
set contains the » lines that contain the most points.

Here is a rough outline (illustrated in Figure 5.3) how this two-dimensional
construction with point set P and line set L can be lifted to three-dimen-
sions.

1. Embed the point-line construction in the yz-plane in space.
2. From each point p € P erect a line v, normal to the yz-plane that
intersects it in p .

FIGURE 5.3. A point-line incidence in the yz-plane is lifted
to an elementary cycle.
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3. For each line £ € L construct a line he parallel to £ so that the
orthogonal projection of /4, onto the yz-plane is £. The distance
from the yz-plane is equal to the slope of £. Notice that v, and h,
intersect iff p e £.

4. Replace h, by two lines parallel to #, , one slightly in front and the
other slightly behind #, , as viewed from the positive x-direction.

5. Replace v, by two lines, one slightly to the left of v, and with
slightly negative slope, and the other slightly to the right of v, and
with slightly positive slope.

The construction can be done so that each point-line incidence becomes an
elementary cycle, in the orthogonal projection of the lines onto the xy-plane.

6. Cutting cycles

As argued in §§5.1 and 5.2, a realizable n-by-n weaving can have Q(n” 3)
elementary cycles. This implies that sometimes Q(n‘” 3) cuts of lines or line
segments are necessary to eliminate all cycles. To get a subquadratic upper
bound we first consider a topological property of cycles.

For a cycle we can look at its polygon and its edges, which are the polygon
edges (see Figure 6.1).

LEMMA 6.1. Any cycle contains a subcycle of length 4 whose “horizontal”
edges lie on edges of the original cycle.

To prove this lemma one can use two operations to simplify the polygon
of the cycle. If the polygon has a self-intersection then a shortcut can be
taken at this point leaving a shorter cycle. If the polygon is simple but not
yet a 4-cycle there is a reflex vertex and the “vertical” edge at this vertex can
be extended until it hits another “horizontal” edge. There is a shorter cycle
either to the left or the right of this extended edge.

Another property of cycles in a bipartite weaving is that if the polygons
of two ccw 4-cycles defined by common “horizontal” line segments overlap,
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FIGURE 6.1. The left illustrates the polygon of a cycle. The
right shows how an edge can be extended so as to get a shorter
cycle.



LINES IN SPACE—A COLLECTION OF RESULTS 85

then they overlap in the polygon of another ccw 4-cycle. Both results suggest
that we cut 4-cycles at their “horizontal” edges and thus eliminate all cycles.

THEOREM 6.2. O(nws)

izable n-by-n weaving.

cuts are sufficient to eliminate all cycles in a real-

PRrOOF. First, set m = n'/® and cut along every (m+ 1)st rod of H and of

V . This requires O( n’! 5) cuts and localizes each cycle to within an m-by-m
bipartite weaving. Second, to eliminate the remaining cycles cut each 4-cycle
at its two “horizontal” rods, unless its quadrilateral contains the quadrilateral
of another 4-cycle and shares at least one of the “horizontal” rods with it.

To count we define a bipartite graph with sets of nodes 4 and B and
prepare a K, , argument. A is the set of pairs (v,, vj) with 1 <j—i<m
and B is the set of pairs (h‘.,kj) with 1 < j—i<m. So 4 and B
are of size O( mn) each. Connect a node ¢ € 4 with a node b € B if
the four lines define a ccw 4-cycle and the quadrilateral does not contain
the quadrilateral of another ccw 4-cycle with which it shares at least one
“horizontal” rod. Partition B into about (™}?) subsets so that for each
subset j — i is invariant and any two nodes define nonoverlapping index
intervals. The subgraph induced by A and such a subset of B hasno K 22
If n; denotes the size of the ith subset of B then the number of arcs/cuts
in the entire graph is bounded by

)
Z (n;v/mn+ mn) = O(m?”{zn}’;2 + m3n).

i=1

The assertion follows because m = n'/>. 0

7. A point-line incidence problem

For a weaving that is not bipartite it is still possible to associate a cycle
with its polygon. In this more general case, a cycle is called elementary if its
polygon is a face of the line arrangement. Clearly, there are at most O( nz)
elementary cycles because there are at most that many faces. Currently no
better upper bound on the number of elementary cycles is known. To shed
some light on this problem we modify it somewhat and study lines in space
and their intersection patterns.

Given a set of »n lines in space, a point is called a joint if it lies on (at
least) three noncoplanar lines of the set. It is fairly easy to see that Q(nz”F 2)
is a lower bound for the maximum number of joints defined by » lines.
Take k planes in general position in space. They define n = (’;] lines and
(¥) = Q(n’?) vertices, each a joint.

The connection between this point-line incidence extremum problem and
counting cycles is that a slight perturbation of the lines can make a joint an
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elementary 3-cycle. The following upper bound on the number of joints is
taken from [6].

TueEOREM 7.1. A set of n lines in space defines at most O(rzm) Jjoints.

PrOOF. Let L be the setof n lines, define 4 = {{a, b} € (5) |anb # 0},
let G= (L, A) be the intersection graph of L, and set k = n'/* . Note that
each joint is “witnessed” by at least one arc in 4. The proof modifies G in
three steps and finally presents the counting argument.

StEP 1. If a joint is incident to at least k lines then remove the (§) arcs

witnessing the joint. This creates at most ;{;:—H = 0(.?*:3’r 2) orphans, that is,
joints not witnessed by any arc.

SteP 2. If a plane contains at least k lines then remove the corresponding
nodes, together with incident arcs. A plane contains fewer than » joints,
which now possibly become orphans. This creates at most "{ = O(n?’r 4)
orphans.

SteP 3. If a quadric contains at least k lines then remove the correspond-
ing nodes with incident arcs. A quadric contains fewer than 2# joints which
now possibly become orphans. This creates at most 3;;—2 = O(n?" 4) orphans.

The remaining graph contains no K; o - Because if there are lines q,, a,,
a, and b, b,, ..., b, that define a K, ,, then some k of the lines b,
either go through a common vertex or lic in a common plane or quadric, a
contradiction. Using the lemma of §5 we get

14 = 0k *’ny = 0. o

8. Bichromatic problems

As mentioned in §1, for many algorithmic problems in space it is important
to efficiently test the relative position of lines or rods. One example is the ray-
shooting problem: given a collection of polytopes and a ray, determine which
polytope intersects the ray closest to its starting point. We refer to Agarwal
and Sharir [1] and Pellegrini [12] who use Pliicker coordinates, explained in
§12, for solutions to this problem. Other examples of such problems deal
with so-called (polyhedral) terrains, that are continuous and piecewise linear
maps from R’ to R.

Given two terrains, one might want to determine whether or not they in-
tersect, or compute their intersection, or compute their pointwise maximum;
see Figure 8.1. These problems will be addressed in §§13-15. The underly-
ing data structures, algorithms, and geometric techniques will be discussed in
889-12. A particularly important data structure in this context is the segment
tree and some of its variants as described in §§9 and 11. This structure facil-
itates the reduction of problems for polyhedral terrains and rods to problems
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FIGURE 8.1. The pointwise maximum of two terrains.

for lines. The latter will be treated with algorithmic techniques based on the
use of Pliicker coordinates to represent lines.

9. The segment tree

The segment tree is a (one-dimensional) data structure storing a set S of 7
intervals (see e.g. [S, 14]). The n intervals have k < 2n endpoints, and the
k endpoints decompose R' into k + 1 atomic segments. The segment tree
is a minimum height, ordered binary tree with k + 1 leaves corresponding
to the atomic segments, from left to right. The segment o(x) of a node
is the corresponding atomic segment if x is a leaf, and o(u) Uo(v) if u
and v are the children of x. Finally, for every node u with parent x (if
it exists) we define L, ={Ie€S|o(u)CIanda(x)ZI}, the list of u, see
Figure 9.1. Here is a short list of basic properties of the segment tree of S.

1. An interval I belongs to the list of at most two nodes per level, thus
it belongs to at most 2log, 7 + O(1) lists or nodes.

2. The segments o(u) of the nodes x with I € L, define a partition
of I.

FIGURE 9.1. The segment tree defined by five intervals with
a total of seven endpoints.
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3. For a point p let p = uy, #;, ... , 4, = A be the path starting at
the root p and ending at the leaf A with p € g(A). Then {/ € § |
pel}=Ui,L

i=0 ", -
Note that the lists of the nodes on the path in property 3 are disjoint, by
definition. Define L; ={IeS|ounlI#0ando(u)ZI}.

4. Te L; i u is ancestor of a node v with e L.

5. An interval I belongs to lists L™ of at most two nodes per level of
the segment tree.

Properties 1 and 5 imply that the segment tree, with lists Lﬂ and L; stored
at nodes u, takes storage O( nlogn) to represent a set of n intervals.

10. A bichromatic intersection lemma

Let B be a set of m blue and R be a set of n red line segments in Rl,
with the property that no two line segments of the same color intersect. We
use a single segment tree to store B and R. The segment tree is defined
for the vertical projections of the line segments onto the x-axis, assuming
no line segment is vertical. However, instead of intervals, the corresponding
line segments are stored in the lists L and L. Accordingly, we extend the
definition of o(u) from a one-dimensional interval to the vertical slab that
intersects the x-axis in this interval. The blue and red line segments are
stored in separate lists, so for each node v we have lists B,, B: v B R: ;
defined just as L, and L;. The following fairly straightforward but very
useful result is taken from [5].

LEMMA 10.1. For every pair bnr#0, b € B and r € R, there is a unigque
node v with

(i) bnreo(v), and
(i) b eB, and re R)) or (b€ B, and r € R)) or (b € B, and
rek j.

ProoF. For p = bnr consider the path p = vy, v,,... ,v, = 1 with
p € g(A). Define i so that b € B, and j sothat re R, . If i = then
u=v‘.=uj.,if i<j then v=v,,and if i > j then u:v;.. O

The three cases in (ii) are disjoint which will be crucial in the upcoming ap-
plications of the lemma. For example, consider the problems of reporting and
counting all pairs (b, r) € B x R so that bnr # 0. The solution sketched
below is based on the segment tree for B U R (with lists B,, B, , R,, R,
per node v). The above lemma admits a reduction to reporting/counting,
for each node v, the pairs (b, r) € (B, xR,)U (B, xR,)U (B, x R)) that
intersect. The intersecting pairs in B x R: can be computed as follows; the
other two cases are similar.
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STEP 1. Sort the line segments in B, from top to bottom. STep 2. Use
binary search to locate the endpoints of the (pieces of the) line segments in
R}, amids the line segments in B, .

The amount of storage needed for the segment tree is O( nlogn), and
the time is O( n log2 n) because there are endpoints of O( nlogn) (pieces of)
red line segments to be located. Also, sorting the lists B, and R, costs
time O(n log2 n). Using refined algorithmic techniques, the storage can be
improved to O( n) (by traversing the segment tree rather than storing it), and
the time can be brought down to O( nlog#n) (using merging and fractional
cascading). Details can be found in [5].

11. Another layer

The above bichromatic line segment intersection problem can also be
solved by adding another layer to the segment tree. In effect, this defines
coverings B = Uf;l B, and R = Ui‘:} R, with the following properties.

1. bnr # 0 iff there is a unique index 1 < i < k with b € B; and
F&Ry.
2. All b € B; meet all r € R, in the same sequence, and vice versa.
3. k=0O(NlogN) with N=m+n.
k 2
4. 3 |1B]+|R]=0(Nlog"N).

bS #}’3
by /

bg /
g
bs
b4 "
bs :

I

NER—

FIGURE 11.1. A slab g(v) with sets B, and R} is shown.
The line segments in B, can be ordered from bottom to top,
each corresponding to a leaf of a secondary segment tree. A
blue line segment & is stored at each ancestor of its leaf. A
line segment in R: intersects a contiguous subsequence of
the line segments in B, and is stored in the nodes that cover
this subsequence, as for ordinary segment trees.
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It should be clear that after constructing the two coverings with the above
properties it is easy to report or count intersecting pairs. Figure 11.1 illus-
trates the definition: of the coverings. The significance of the coverings of B
and R is that they can be used to reduce a bichromatic line segment problem
into “few” and “not too big” subproblems which have the additional structure
expressed in property 2 above.

12. Pliicker coordinates

A (directed) line in space can be given by the homogeneous coordinates of
two of its points:

Qo & Oy Oy
L= , with oy, f,>0,

ﬁo ﬁ 1 ﬁz ﬁ3
, [0 Tt T2 N _
¢ = ,  with 3, d, > 0.
9 6 J,

The eight coordinates of a line can be arranged in a 2-by-4 matrix, as above,
and by taking the determinants of the six 2-by-2 submatrices we obtain the
Pliicker coordinates of the line:

_ o, a;
p(6) = (moy s Mgp» Mo M5 My3s My),  With 7,5 = det (ﬁi. ﬁj) :
i P

We call p(£) the Plicker point of ¢, given by homogeneous coordinates in
projective five-dimensional space, P, Similarly, the m;; can be interpreted
as coefficients of a hyperplane:

V(€)= (My3, =713, Ty, Moz, =Ty, Myy) s

h(€) ={p| (v(¢),p) =0} and K"(¢)={p|(v(¢),p)> 0}

Observe that ¢ and ¢’ intersect (or are parallel which we interpret as an
intersection at infinity) iff the four defining points are coplanar, which is
the case iff the determinant of the 4-by-4 matrix defined by their sixteen
coordinates is zero. This determinant is obtained by plugging p(£¢) into the
equation of A(£’), or p(£') into the equation of h(¢). This implies the
following basic properties; see [4].

Lemma 12.1. (1) €02 # 0 iff p(¢) € h(£') (or, equivalently, p(t) €
h(e)).

(2) If £ and ¢’ are oriented from left to right and ¢ is cw to ¢' (in the
projection onto the xy-plane), then { lies above ¢ iff p(£) € h*(¢)).
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13. The relative position of lines

The segment tree reduction outlined in §§10 and 11 in combination with
Pliicker coordinates as introduced in §12 turn out to be powerful tools in
attacking problems for rods in space. So let B and R be two sets of lines in
R’ , each line oriented consistently with the x-axis, so that in the orthogonal
projection onto the xy-plane each line in R is cw to each line in B . Define
m = |B|, n=|R|, and N = m+ n. The following facts are taken from [4]
and are useful when the above tools are put to work.

1. Aline r € R lies above all lines in B iff p(r) € #(B) = Noer h*(b).
2. P(B) is a convex cone in R® (a polytope in P°) with O( m?) faces.
3. There is a data structure (which we call the envelope structure) that

stores B in storage O( m”*) so that for a given r we can decide in
O(log m) time whether r lies above all b € B.

Sets R and B are said to have the towering property if all r € R lie above
all be B.

4. There is a randomized algorithm that tests in expected time O(N4 3 €
whether or not R and B have the towering property.

14. Detecting the intersection of terrains

Here is a problem that can be solved by application of the segment tree
in combination with Pliicker coordinates. A terrain is a continuous function
from R’ to R and it is polyhedral if it is piecewise linear. For two given
polyhedral terrains, Z, and X,, with m and n edges in space, the problem
is to determine whether or not they intersect.

Z, is above X, iff first, every vertex of X, lies above X,, second, every
vertex of Z, lies below X, , and third, if b € X, and r € X, are two edges
whose projections onto the xy-plane intersect then b lies above r. This
characterization suggests the following high-level algorithm. Primes are used
to denote orthogonal projections onto the xy-plane.

SteP 1. Locate every vertex of Z; in X,, and vice versa, and test points
versus facets.

STEP 2. Use the two-layered segment tree for the line segment sets of Z'I
and E'z (see §11) and test the towering property for each pair (B,, R,),_, 2k
using the algorithm suggested in §12.

Step 1 takes time O( N log N) using any one of the optimal point location
algorithms available in the literature. Step 2 takes expected time O( NY 3*‘).

15. The pointwise maximum of terrains

In the worst case, the pointwise maximum (or the upper envelope) £ of
Z, and Z, has ©(mn) edges (see Figure 8.1), and a trivial algorithm can
construct it in this time. For a given instance, let £ be the number of edges
of Z.
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FiGURE 15.1. Projecting, decomposing into trapezoids, and shrinking.

THEOREM 15.1. There is a randomized algorithm that constructs Z in ex-
pected time O(N>/** + klog® N) and storage O(N).

% can be constructed by reduction to edge-facet intersections. For one
thing, X consists of pieces of X, and pieces of %, pasted together along
curves of X, NX,. Each vertex of such a curve is the intersection between
an edge of X, and a facet of X,, or vice versa. After one such vertex is
found, the entire curve can be completed by tracing the intersection, edge-
by-edge. The following representation of a polyhedral terrain X, is used
to obtain the above result. Project X, onto the xy-plane, decompose the
regions into trapezoids, and shrink the regions symbolically a tiny amount,
as shown in Figure 15.1. Now store the nonvertical sides of the trapezoids as
a collection of blue pairwise nonintersecting line segments in a two-layered
segment tree with lists B , only. Observe that the upper and lower sides of a
trapezoid are stored in exactly the same lists B, , and that B, can be viewed
as an ordered list of line segments spanning o(u) or, alternatively, as an
ordered list of trapezoids. Finally, store a list BF as an envelope structure

if |B,| < NU'"92_ A list takes O( N) randomized time and storage, and

altogether this adds up to O( N W 2“). We find intersections between red
edges and blue facets as follows.

1. Distribute each line segment r € R (the projection of X,)
to the appropriate nodes 4.
2. Query Bﬂ, that is,
2.1. if p is a leaf then test r against the only trapezoid,;
report if there is an intersection;
2.2 10f B, is not stored as an envelope structure then
recurse for both children:
2.3. if B, is stored as an envelope structure then
Case 1. r isabove all b € Bﬂ; return;
Case 2. r isnot above all b e Bﬂ; recurse for both children.
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overhead per r € R is the time spent at lists not stored as envelope

structures, which is O( N''*/?). For each intersection we follow a path with
queries, so we spend another O( log2 n) time per intersection, as claimed in

the t

1

2.
3.

heorem. Details can be found in [5].
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