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1 Introduction

The a-shape of a finite point set is a polytope that is uniquely determined by the set and a real number
a. It expresses the intuitive notion of the shape of the point set, and « is a parameter that controls the
level of detail reflected by the polytope. The original paper on a-shapes [9] defines the concept in R.
An extension to R? together with an implementation is reported in [11]. In both papers the relationship
between a-shapes and Delaunay triangulations [7] is described in detail and used as the basis of an
algorithm for constructing a-shapes.

These algorithms have been implemented by Patrick Moran in R? and by Ernst Miicke in R3, complete
with graphic interface. The availability of these implementations, in particular the one in R3, has led to
applications in various areas of science and engineering. Some of these applications are briefly described
in [11]. A question that was repeatedly asked is whether it is possible to construct a shape that represents
different levels of detail in different parts of space. This is not possible with the a-shape as originally
defined. In this paper we describe a way to achieve different levels of detail in a single shape by assigning
weights to the points. The resulting concept, called the weighted a-shape, is defined and described in
real space of arbitrary finite dimension. The unweighted a-shape is the special case obtained by setting
all weights equal to zero.

What are the applications where weights can be beneficial?

(i) In biology and chemistry a common computational task is modeling molecular structures. It is
natural to use a-shapes for this purpose as they are precise duals of the popular space filling
diagrams obtained by taking the union of balls, one around each atom, see e.g. [15]. Weights are
needed to model atoms with different van der Waals radii. This is discussed in section 4.

(ii) In reconstructing a surface from scattered point data it is rarely the case that the points are
uniformly dense everywhere on the (unknown) surface. Indeed, the density often varies with the
curvature. If « is chosen so that the a-shape produces a piecewise linear surface in sparse regions,
it will be clumsy and hide details in denser regions. Conversely, if « is chosen so that dense regions
are nicely modeled then the a-shape will develop holes and break apart in sparse regions. The
assignment of large weights in sparse regions and of small weights in dense regions can be used to
counteract this undesirable effect.

(iii) Another goal that can be achieved by assigning weights is to enforce certain edges or faces. These
might be given as part of the input, but they cannot be processed directly since a-shapes have been
defined only for finite point sets and not for other geometric objects.

Outline. Sections 2 and 3 give two alternative definitions of weighted a-shapes. The approach in section
2 is more direct but it is difficult to see that the definitions are consistent and free of contradictions.
Section 3 introduces weighted a-shapes via subcomplexes of so-called regular triangulations, see e.g. [16].
This approach requires some concepts from discrete geometry and algebraic topology. The benefits of
this approach are a proof that our definitions are consistent and a method for effectively constructing
weighted a-shapes. The duality between a-shapes and so-called space filling diagrams [15] is explained
in section 4. The results of section 3 suggest that a-shapes be computed from regular triangulations;
efficient algorithms for the latter are known, see e.g. [13]. Section 5 explains how a weighted a-shape
can be derived from the regular triangulation of the points. Section 6 concludes this paper with remarks
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and open questions. Appendix A contains a tedious proof of an important result stated in section 3, and
appendix B provides explicit formulas for the geometric primitives that are needed to construct a-shapes.

2 Weighted Alpha Shapes

Weighted points and orthogonality. As mentioned in the introduction, the weighted a-shape is
defined for a finite set of weighted points. Let S C R% x R be such a set. A weighted point is denoted
as p = (p',p"), with p' € RY its location and p” € R its weight. For two weighted points, p = (p’,p") and
z = (2',2"), define

ﬂ'(p,.’E) — |pl.’El|2 _pII _ .’E”,

where |p'z’| is the Euclidean distance between their locations. Call p and z orthogonal if ©(p,z) = 0.
The choice of words is motivated by the common interpretation of p as a (d — 1)-sphere with center p’
and radius /p": if p” and z" are both positive then m(p,z) = 0 iff the two (d — 1)-spheres intersect at a
right angle. If z is unweighted, that is, 2" = 0, then 7(p, z) is the same as the power distance of z’ from
p, see e.g. [6]. In this case we abuse notation and use 7(p,z’) and 7(p, z) interchangeably.

For a weighted point p and a real « define p.,, = (p',p” + @). So p and p, share the same location
and their weights differ by a. For example, p_,» = (p,0) is the unweighted point at the same location
as p. The following result is an immediate consequence of the definitions.

2.1 For all « € R, 7(p,z) = 7(Pta>T—q)-

As a special case of 2.1 we have 7(p,z) = w(pyyn,x_5#). This means, for example, that if p and z are
orthogonal then (z_,)" lies on the sphere with center p' and radius /p" + z”. We will use the convenient
notation S’ = {p' | p € S} for the projection of S into RY.

Definition of weighted alpha shape. For every fixed a € R, the a-shape of § will be defined as a
polytope in R¢ that is uniquely determined by the points in S. A precise definition of what we mean
by a polytope can be found in section 3. If all weights are 0 then it will coincide with the (unweighted)
a-shape as defined for dimensions 2 and 3 in [9, 11]. In this section, the polytope is specified in terms of
its faces. Throughout, we explicitly or implicitly make various general position assumptions. One such
assumption is that any k£ + 1 < d + 1 points of S’ are affinely independent. Another is that for every
subset of d + 1 weighted points of S there is a unique z = (2, z") that is orthogonal to all points of this
subset, see also section 3. Yet another assumption is that z” # a.

Consider a subset T C S, with |T| = k+ 1 < d. It spans a k-simplex o7 = conv(7"). We call op

a-ezposed if there exists a weighted point z = (2', ) so that

(p, 7) =0 forall peT, and
P >0 forallpe S —T.

The weighted a-shape of S, Wo = Wy(S), is a polytope whose boundary, 0W,, is the union of all
a-exposed simplices spanned by subsets of S. These simplices are the faces of W,,.

At this moment it is not obvious that the collection of a-exposed faces indeed forms the boundary of
a polytope, but this will be discussed in section 3 and formally proved in appendix A. It should be noted
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that the polytope is not necessarily connected and that it is not necessarily the same as the closure of its
interior.

We next specify which components of R — W, are interior to W, and which components are exterior.
The a-exposed (d — 1)-simplices are the facets of W,. Consider such a facet 0 = op. There is either one
weighted point z = (z', a) that identifies o as a-exposed, or there are two such points. In the first case,
o bounds the interior of W, namely the side of o opposite =’ belongs to W, and the side of z' does not.
In the second case, o does not bound the interior of W,. Again it is not obvious that the specification is
free of contradictions; that it is will become clear later.

An interesting special case is the weighted a-shape for & = 4+o00. This is the same as W, for sufficiently
large « because a finite point set has only finitely many different W,. For T C S, o7 is (+00)-exposed
iff it is a face of the convex hull of S’. Furthermore, the interior of conv(S’) belongs to Wi, s0 we
conclude that Wy = conv(S’).

Varying weights instead of alpha. Because of 2.1 it is also possible to define W, in terms of W,
for points at the same locations but with different weights. Define Sy, = {p1q | p € S}. For example,
S+o0 = 8. As a consequence of the definitions and of 2.1 we have the following result.

2.2 For all a € R, Wy (S) = Wo(S+a)-

The collection {W,(S) | @ € R} will be referred to as the family of weighted a-shapes of S. By 2.2 the
family is the same as the collection of Wy for all S;,, a € R.

3 Weighted Alpha Complexes

The weighted a-shape of S, W,, can also be defined as the underlying space of a subcomplex of the
regular triangulation of S. This section explains these terms and presents the alternative definition.

Power diagrams and regular triangulations. As usual let S C R% x R be a finite set of weighted
points. For two points p,q € S define

Xip.qp = {2' €R? | 7(p,a") = n(g,2")}

and observe that this is a hyperplane orthogonal to the edge connecting p and g. For example, if
p" = ¢" then x(p 43 cuts this edge exactly at its midpoint. More generally, for any subset T' C S, with
k+1=|T| > 2, we define x7 = (), 41 X{p,q}> the set of locations z' € R¢ with equal power distance,
7(p,z'), from all p € T. Because of general position, x7 is a (d — k)-flat if 1 < k < d, and xp = 0 if
k>d+1.

The hyperplane x{, 1 bounds two closed half-spaces, namely
dom(p,q) = {«' € R? | n(p,2") < 7m(q,2")},

and dom(g, p) defined symmetrically. For each p € S we can thus define its cell, Zy,,, as the intersection
of the half-spaces dom(p, q), for all ¢ € S — {p}. This is a convex polyhedron in R? and p is called its
generator. The collection of cells generated by points in S is known as the power diagram of S, P = P(S),
see e.g. [1].
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For a subset 7" C S we generalize the definition of a cell to Zr = N,er Zypy. For [T] > 2, Zr
is certainly contained in xr, and because the cells Z,, are convex polyhedra, Zr is also convex. By
assumption of general position, Zp is a either empty or a (d — k)-dimensional polyhedron. Consider the
special case where T is a subset of d + 1 points of S. Then xr is a single point which we denote by y/..
There is a unique weight y/. so that yr = (v, y7) is orthogonal to all p € T. It should be clear that
yp = Zp iff w(q,yr) > 0 for all ¢ € S — T. In any case, the points yr can be used to introduce the
important concept of regularity.

A d-simplex o = conv(T") is called regular if 7(q,yr) > 0 for all ¢ € S — T. The collection of
regular d-simplices defines the regular triangulation of S, denoted R = R(S). The notion of a regular
triangulation has recently become popular in the area of discrete geometry, see e.g. [16]. The power
diagram and the regular triangulation of S are dual to each other in the following sense.

3.1 For every 0 < k < d and every T' C S with |T| = k + 1, or is a regular k-simplex iff Zp # 0.

For the rest of this paper the regular triangulation is a more important concept than the power diagram.
Still, some of the forthcoming arguments may become more intuitive if one visualizes them using the cells
of P and their intersections.

Simplicial complexes. In the language of piecewise-linear topology, see e.g. [14, 18], R is a simplicial
complex with underlying space conv(S’). We begin with some definitions. Call the empty set a (—1)-
dimensional simplex and consider it a face of every simplex. A collection K of simplices in R¢ is a
simplicial complex provided it satisfies the following two conditions: (i) every face of a simplex o € K is
also in K, and (ii) the intersection of any two simplices in K is a face of each. So in order to make R a
genuine complex it ought to be defined as the collection of all regular d-simplices and their faces. Hence
(i) is satisfied.

Why does (ii) hold for R? Map each point p € S to the point p* € R4! as follows. Let p = (p', p")
with p' = (¢1, ¢, - - -, da), and define p* = (¢p1, o, . . ., ba, bas1), where ¢pgi1 = 3%, ¢? —p’". The convex
hull of ST = {p* | p € S} is a convex polytope Q in R4*1. It is simplicial because we assume general
position of the weighted points. Refer to the direction of the (d 4+ 1)st coordinate-axis as vertical. Let
T = {po,p1,---,pq} be a subset of d + 1 points of S, and consider the d-simplex op = conv(T”). Tt is
fairly easy to see that or is a regular d-simplex of S iff conv(T™") is a facet of Q so that Q lies vertically
above the hyperplane aff(T'1). This hyperplane is given by the equation

1 ¢o1 o2 ... Pod+1
1 ¢11 d12 .. drds1

det| : i i oo |=0,
1 Al T2 e Td+1

see also appendix B. Call such a facet a lower facet of Q. So R can be obtained by vertically projecting
all lower facets of Q into R, which is spanned by the first d coordinate-axes of R*t!. Condition (ii)
follows for R because the projection is one-to-one and because (ii) holds for the facets of Q and their
lower-dimensional faces.

Subcomplexes. It follows fairly straightforwardly from the definitions that if o7 is an a-exposed simplex
of S then or € R. In fact, for every k-simplex 0 € R, 0 < k < d— 1, there is an a € R so that ¢ is
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a-exposed. We shed more light on the relationship between the regular triangulation and the a-shapes of
S. We do this by considering subcomplexes of the regular triangulation. A subset £ C K is a subcomplez
of K if it is a complex itself, that is, if (i) also holds for L.

For every simplex or let yr = (v, /) be the point with minimum weight that is orthogonal to all
p € T. As mentioned before, if |T| = d + 1 there is only one weighted point orthogonal to all p € T'. If
|T| =k + 1 < d there are uncountably many such weighted points, but only one minimizes the weight.
In fact, the set of locations of these weighted points is the (d — k)-flat x7 and the one with minimum
weight is located at the intersection of y7 with the orthogonal k-flat aff(7"). Call o = y7 the size of
or. For example, the size of a point p is o) = —p". Include or # o and 7(q,yr) #0 forallge S~ T
in the collection of general position assumptions. The size of simplices obeys the following monotonicity

property.
3.2 If o is a proper face of oy then o1 < gp.

A point ¢ € S—T is a conflict for yr if 7(q,yr) < 0 and yr is conflict-free if it has no conflict. Incidentally,
yr is conflict-free iff Zp Naff(T') # (. For example, yr is always conflict-free if o is a d-simplex in R,
but it can have conflicts if it is a simplex in R whose dimension is less than d. The weighted a-complex
of S, Ko = Ka(S), is the subcomplex of R that contains o7 € R if

(C1) or < a and yr is conflict-free, or

(C2) o7 is a face of another simplex in Ky.

A simplex in K, is a principal simplez if it is not a proper face of any other simplex in K,. Hence, all
principal simplices satisfy (C1), but it is possible that a simplex that satisfies (C1) is not principal.

Underlying spaces. The underlying space of a complex K is |K| = U,cx 0. For example, |R| =
conv(S’). In this paper, and more generally in the algebraic topology literature, a polytope is defined as
the underlying space of a finite simplicial complex. The most important result on weighted a-complexes
is that they provide an alternative way to construct the polytopes called weighted a-shapes in section 2.
Specifically, we have the following result.

3.3 For all « € R, W, = |Kql-

The proof of 3.3 is fairly tedious and can be found in appendix A of this paper.

If o is a d-simplex of R then yr is conflict-free by definition of R. Hence, o € K,, iff o7 < . Let
now or be a k-simplex of R, with k < d. If yr is conflict-free then again we have gr < « as the only
condition for o € K,. Otherwise, o is a face of another simplex in X,. This implies the following
monotonicity property for weighted a-shapes and a-complexes.

3.4 For all a; < ag, Ky, is a subcomplex of Ky, and therefore W,, C W,,.

Section 5 will pick up on the above idea of determining thresholds for each simplex that help decide
for which values of « it belongs to K,. Based on these thresholds and the corresponding formulas in
appendix B we will be able to quickly identify k.. Weighted a-shapes can thus be constructed by first
computing R and then selecting the desired simplices. The construction of R is the algorithmically more
demanding step and we refer to [13] for details.
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4 Space Filling Diagrams

A popular concept in computational biology and chemistry is the so-called space filling diagram, see
[15, 19, 5]. It models a molecule by representing its atoms as overlapping balls in R3. The radius of a
ball is chosen so that its bounding sphere approximates the van der Waals surface of the atom. Different
ball sizes are necessary for different types of atoms. This is where weights are needed.

Definition of space filling diagram. For a weighted point p = (p', p") € R xR define the closed d-ball
B, ={z' e R?| |z'p'|? < p"}. If p" < 0 then B, = 0. The space filling diagram of S C R¢ x R is

Fo :-7:0(5) = U Bp-
peES

A point p € S is redundant if Fo(S) = Fo(S—{p}). For example, all p with negative weight are redundant.
For general a € R, we define F, = F,(S) = Fo(S+q)- Intuitively, F, can be derived from Fy by blowing
up or shrinking the balls. Note that the change affects the balls in a non-linear manner. More precisely,
the squares of the radii all grow or shrink by the same amount, namely a.

It follows from 2.1 that F, consists of all locations z’ of weighted points z = (z', @) so that 7(p,z) <0
for at least one p € S. Furthermore, z' € 0F, iff w(p,z) > 0 for all p € S and 7(p,z) = 0 for at least
one p € S. For any arbitrary point z = (z/, @) let T, be the subset of points p € S for which 7 (p, z) = 0.
The following property follows from the definitions.

4.1 7' € 0F, iff op, is a~exposed.

Details of the relationship between F, and W, indicated by 4.1 will be explained shortly.

Why the square of the radius? We explain why we increase the weight of the points by a uniform
amount in the above definition of the family F,. Natural alternatives would be to increase the radii of
the B, by « or to multiply the radii by a. Consider a single d-ball B), under the proposed model. As «
increases continuously from —oo to 400, the contribution of 0B, to 0F, is a changing portion of a growing
(d — 1)-sphere. It is fairly easy to see that this portion sweeps out a convex polyhedron, namely the cell
Zypy in the power diagram P = P(S), see section 3. Recall that P is the dual of the regular triangulation,
R. Now repeat the same experiment but increase the radii of the d-balls by a. The portion of 0B, on
OF, sweeps out a region in R? that is connected but not necessarily convex. This region is the cell of p
in the additively weighted Voronoi diagram of S, see e.g. [17]. If the radii of the balls are multiplied by «
then the region swept out by the portion of 0B, on 0F, is no longer necessarily connected. In this model
it is the (possibly disconnected) cell of p in the multiplicatively weighted Voronoi diagram of S, see e.g.
[3]. Of the three diagrams, the power diagram is computationally most tractable and it is the only one
with a natural dual, namely the regular triangulation.

Duality between F, and W,. The boundary of F, consists of pieces of spheres of various dimensions.
More specifically, let T' C Sy, [T| = k+1 < d, so that o € R and (e Bp # (. Because of the general
position assumption, the intersection of the corresponding (d — 1)-spheres,

Kr = () 0By,
peT

is an /-sphere, with £ = d — k — 1. For example, if |T'| = d then K7 is a pair of points, and if |T'| =d — 1
then K7 is a circle. An £-face of F, is a connected component of the intersection of 0F, with an £-sphere
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Kyp. If T is a subset of S, so that the ¢-sphere K1, £ = d — |T'|, contains at least one ¢-face of F, then
there is a weighted point z = (z',a) with T, = T. By 4.1, or is therefore a-exposed and thus a face of
Wy. The argument can also be made in the other direction. We therefore have the following result.

42 Let T C S1q with0 < |T| =k +1<dandset £=d—k— 1. Then or is a k-face of W, iff Kr
contains at least one /-face of F,.

Given the faces of W, it is thus straightforward to identify the spheres that contribute faces to the
boundary of F,. By exploiting the incidences between the faces of W, one can also recover the faces of
F. and their incidence structure. This will be described elsewhere.

5 Face Classification

There are simple necessary and sufficient conditions when a k-simplex opr € R belongs to K, that can
be derived from the definition of K, in section 3. We refine these conditions to distinguish between three
types of simplices in K, depending on their relationship to W,. Recall that a principal simplex of £, is
not a proper face of any other simplex in . Call a k-simplex o1 € K,

singular if o is a face of W, and also a principal simplex of ICg,
reqular  if o is a face of W, and not a principal simplex of K, and
interior if it is not a face of W,,.

Note that every d-simplex in K, is interior by definition. This classification is somewhat arbitrary and a
finer differentiation, in particular of the set of regular simplices, can be established if need be.

The classification of o as singular, regular, or interior is related to a certain subcomplex of K, defined
for op. The link of o € K, is

Lko(or) ={oy € Ko | TNV =0, oruv € Ko}

As an example consider the link of o7 in R = K. We call a complex £ a topological i-sphere if its
underlying space is homeomorphic to a geometric i-sphere, and we call it a topological i-ball if it is
homeomorphic to a geometric i-ball. If a k-simplex o7 is a face of conv(S’) then Lk (or) is a topological
¢-ball, where £ = d — k — 1. On the other hand, if op does not lie on the boundary of conv(S’) then
Lkoo (o) is a topological /-sphere. The following relationship between the type and the link of oy is
fairly straightforward. Call the empty set a topological (—1)-sphere.

singular if Lk, (or) =0 and £ > 0,
5.1 or € Ky is interior  if Lk, (or) is a topological £-sphere, and
regular otherwise.

We need some more definitions to express the classification in terms of intervals for a. A k-simplex
or € R is attached if there is no a@ € R so that or is a principal simplex of K,. Otherwise, or is
unattached. Notice that all d-simplices are unattached. This notion is related to the point yr defined in
section 3. Indeed, the following result can easily be proved using 3.2.
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5.2 or is unattached iff yp is conflict-free.

For a k-simplex or € R, with k < d — 1, let up(or) be the set of all simplices that contain or as a
proper face, that is, up(or) = {oy € R | T C U}. If or is unattached then it belongs to Iy iff o7 < «.
Otherwise, o € K, iff at least one oy € up(or) belongs to K,. We thus define

by =min{oy | oy € up(or), oy is unattached}.

If o7 is attached then or € K, iff By < a. If or is unattached then it is a non-singular simplex of I, iff
B < . To distinguish between regular and interior simplices we define

Iy = max{oy | oy € up(or)}.

By 3.2, mp is always the size of a d-simplex. Unless or is a face of conv(S’) it is an interior simplex of
Ko iff fir < . Faces of conv(S’) cannot ever be interior simplices. Finally, we set y,, = fip = or for all
d-simplices o of R.

Depending on whether or not o is attached and whether or not it is a face of conv(S’) we can thus
specify the intervals for « in which o7 is singular, regular, and interior, see table 5.1. If o7 is a d-simplex

‘ or H singular ‘ regular ‘ interior ‘
unattached, mnot on dconv(S') || (o1, py) | (g Br) | (B, o0]
attached, not on dconv(S’) 0 (tps Br) | (B, o]
unattached, on dconv(S’) (o1, pp) | (g 0] 0
attached, on dconv(S’) 0 (1,15 2] 0

Table 5.1: Intervals of a for which o7 € R belongs to K.

of R then the first row of the table applies. In this case the intervals for the singular and regular columns
are empty so that the only interval is (fiy, oo] = (g7, 00| in the interior column.

Computing intervals. In order to classify a simplex o7 € R we need a test that decides whether o is
attached or unattached. By the regularity of R it suffices to check points ¢ € S—T for which o7y € R.
We have yr conflict-free iff no such point ¢ is a conflict of yr. By 5.2, op is unattached iff 7(q,yr) > 0
for all such points gq.

The intervals can conveniently be computed in the order of decreasing dimension. At the time a
k-simplex o is processed the values oy, Bys Bu for all (k + 1)-simplices oy € up(or) are available.
Denote this set of (k + 1)-simplices by up (o). The following simple rules are easily verified.

5.3 Let op be a k-simplex of R, with 0 < k <d — 1.
(i) pp is the minimum of the gy, over all unattached oy € upy,i(or), and the p , over all
attached oy € upg((or).

(ii) fip is the maximum of the fig;, over all oy € upy,(or).

We assess the time needed by an algorithm that computes the values g, y, and z using 5.3. The assumption
is that d is a constant and that for a given o7 the (k + 1)-simplices in upy,;(o7) can be accessed in
constant time per simplex. The time required for or is therefore proportional to the cardinality of
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upy1(0o7). The sum of cardinalities, over all simplices in R, is the same as as the sum of |T'| 41, over all
simplices o € R, which is less than d + 1 times the total number of simplices in R. We conclude that
the running time is proportional to the size of the set R.

6 Remarks

The main contribution of this paper is the generalization of a-shapes [9, 11] to a weighted environment.
The new concept, the weighted a-shape, is closely related to regular triangulations and to space filling
diagrams. All definitions and results are given for real space of arbitrary finite dimension. Weighted
a-shapes will be implemented and applications including the ones mentioned in the introduction will be
explored. It is planned to report on these experiments later and elsewhere.

A fascinating aspect of weighted a-shapes is the possibility to influence the generation of shapes
through different weight assignments. On the one hand, this makes a very flexible tool with a great
facility for adaptation. On the other hand, the amount of flexibility offered by free weight assignment is
currently not well understood. Here are two sample problems worth studying.

(i) Given a finite point set in R?, decide whether there is an assignment of real weights so that W is
a closed surface or a collection of disjoint closed surfaces.

A question related to the two-dimensional version of problem (i) has been studied in [12]. The goal is to
find weights so that Wy is a closed cycle or a collection of disjoined closed cycles. The result is that for
n points in R? it is possibly to find such weights in time O(n?logn), if they exist.

(ii) Let S be a set of n points in R and let E be a collection of non-crossing edges and triangles defined
by S. How fast can one decide whether there are weights for the points so that all edges and
triangles in E belong to the thus defined regular triangulation of 57

The special case of deciding whether or not a given triangulation is regular has been studied by several
authors, see e.g. [2, 21]. A related problem is to decide whether there is any triangulation of S that

contains E. This is known to be NP-complete [20]. Maybe the study of secondary polytopes, see e.g. [4],
can shed some light on these and related problems.
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Appendix A  Proof of 3.3

This appendix presents a proof of the important result 3.3 stated in section 3. At several places in the
proof we use a point v = (v',v”) that continuously moves while remaining orthogonal to all points of
some set T' C S. We first discuss the constraints on this continuous motion imposed by T

Let T = {po,p1,...,pr} be a set of k + 1 weighted points in R? x R, for some 0 < k < d. Recall that
v is orthogonal to p;, 0 <1 < k, iff
I|2

7(pi,v) = |piv'|* —p! —v" = 0.

This relation by itself does not constrain the location of v, but for a given v’ there is only one choice for
v”. For two indices, 0 < ¢ < j < k, the relations 7(p;,v) = 7(p;,v) = 0 constrain v’ to a hyperplane
normal to the edge connecting p; and p;. This is the hyperplane x(p, ».} of section 3. The k + 1 points

of T give rise to a total of k + 1 relations constraining v’ to the (d — k)-flat x7 defined in section 3.

The location v of v can move freely in x7, and v" can always be adjusted so that 7(p;,v) = 0 for all
0 <1 < k. Conversely, if d — k > 1 it is possible to freely increase v" and to adjust v’ in x7 so that v
remains orthogonal to all p; € T. Recall that yr = (v/, ¥/) is the point with minimum weight orthogonal
to all points in T'. So ¥ € xr, and indeed y = xr N aff(7”), as mentioned in section 3. At a certain
step in the proof of 3.3, v will move continuously while v” remains fixed and v remains orthogonal to all
pi € T. The set of possible locations is a (d — k — 1)-sphere with center y/. contained in x7. Provided
d—k —1 > 1 this set is connected and every point can be reached by a continuous motion within the set.

The remainder of this appendix restates 3.3 and presents a proof of this result. It is useful to recall
the definitions of W, and K, before reading the proof.

3.3 For all a € R, W, = |Kql-

Proof. Fix a € R and consider values of & between 0 and d — 1 inclusive. First we prove that all k-faces
of W, are contained in the boundary of |K,|, second we show that all k-simplices of K, contained in the
boundary of |K,| are faces of W,, and third we consider the interiors of W, and |K,|.

For the first step let o7 be a k-face of W,. So o1 is a-exposed which means there exists a weighted
point z = (z', @) with w(p,z) =0, for all p € T, and ©(q,z) > 0, for all g € S —T. Set v = z, increase the
weight of v continuously, and adjust its location so that 7 vanishes for all p € T' and remains non-negative
for all ¢ € S —T. Eventually, the weight of v exceeds every finite bound, in which case o7 is a face of
conv(S’), or v reaches a point yy, T' C U, of some d-simplex oy. In the latter case we have oy > a so
oy & Kqo- In either case it is true that if oy € Ky then it is contained in the boundary of |K,|. Because
of general position the existence of z implies that y; has weight smaller than «, so gr =y} < a. i yp
is conflict-free then o7 € K, by condition (C1) of section 3. Otherwise, there are points ¢ € S — T with
w(q,yr) < 0. If op is a (d — 1)-face then there is such a point g so that oy, with V =T U {q}, is a
d-simplex of R. Move v’ continuously on the edge from 2z’ to v/, and decrease v" accordingly. At some
moment we have (g, v) = 0 which implies that gy < a. It follows that oy € K, and hence or € K, by
condition (C2). For k < d — 1 we assume inductively that all (k + 1)-faces of W, are (k + 1)-simplices in
Ko. Again set v = z. Now move v continuously so that its weight remains unchanged and = (p,v) = 0 for
all p € T'. For each g € S —T there is such a v so that 7(g,v) < 7(g,yr). This is because x{y,y,} contains
all points of T" and is therefore a hyperplane that passes through y7. As v moves this hyperplane pivots
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about yr. In particular, there is such a v for each conflict ¢ of yp. This implies that there is a point v
with 7(g,v) equal to zero for one point ¢ € S — T and positive for all others. Stop the motion at such
a point v. Set W = T U {¢} and notice that oy is an a-exposed (k + 1)-simplex of R. By induction
hypothesis o € K, and by condition (C2) we have op € K,. As mentioned earlier, op is therefore
contained in the boundary of |4

We begin the second step by considering the principal simplices of K,. Let o be such a principal
k-simplex. By definition of K, yr is conflict-free and or < a. If k < d then o7 is contained in the
boundary of || Let oy be any incident d-simplex in R. Since oy is not in K, we have gy > a.
Now move a point v continuously from v/ to yy; and define v” so that =(p,v) = 0 for all p € T. Stop
when v” = a which must happen between y;. and y;; because y;. < a < yf;. We have 7(p,v) > 0 for
allp € S — T so or is a face of W,. Next, consider a non-principal k-face o € K, contained in the
boundary of |K,|. If K = d — 1 then one incident d-simplex oy has gy < . Assume first that o is not a
face of conv(S’). Therefore the other incident d-simplex oy € R has size oy > a. Move v/ continuously
from yi, to y;; and adjust the weight v" so that 7(p,v) =0 for allp € T = U NV. Again we stop the
motion when v" = o which must occur because y{, < a < yf;. As before, o is therefore a face of W,. If
or is a face of conv(S’) and oy therefore does not exist then the argument is similar. The only change
is that now v’ moves continuously from y{, to infinity along a path so that n(g,v) >0 forallge S —T.
Finally, let £ < d — 1 and assume inductively that all (k + 1)-simplices of K, contained in the boundary
of |K4| are faces of W,. Since or is not principal it is a face of some such (k + 1)-simplex oy. So oy is a
(k + 1)-face of W, which implies that o is a k-face of W,.

The third step shows that the interior of W, is the same as the interior of [Ky|. We already proved
that OW, = 0|K4|. This boundary decomposes R? into a number of connected components. Since these
components are the same for W, and |C,|, we just need to show that a component belongs to W, iff it
contains at least one d-simplex of K,. The unbounded component is, of course, exterior to both. Each
bounded component, C, is the connected interior of the union of some d-simplices in R. Let o be a
facet of C' and let oy be the d-simplex with facet o7 whose interior lies in C. Let {r} = U —T. Now,
oy € Ko iff oy < a because yy is conflict-free by definition of R. Since o7 is a (d — 1)-simplex there are
two points with weight « that are orthogonal to all p € T. Let = = (z', ) be the one so that z’ lies on
the same side of aff(T") as oy. We have n(q,z) >0 forallge S —T iff 7(r,z) > 0. So oy & K, iff z is
a witness of o being a-exposed. The latter is exactly the condition that C is exterior to W,,.

Appendix B Geometric Primitives

The construction of the regular triangulation of a set S of n weighted points in R? requires only two
types of geometric tests. We call the first a hyperplane test; it decides on which side of a hyperplane
spanned by d given points a (d + 1)st given point lies. The second is the orthogonality test; it decides
the sign of m measured between a (d + 2)nd point and the unique weighted point orthogonal to d + 1
given points. Once R is constructed, we need to compute the intervals as described in section 5. For
this, the size of each simplex o € R must be computed. Furthermore, it is necessary to test whether
ot is attached or unattached. This appendix derives an explicit formula for each test. Implementation
decisions, such as how to evaluate a determinant, whether or not to use integer arithmetic, and how to
resolve ambiguities arising from degenerate data, are left to the programmer. We will, however, assume
there is no degeneracy in our data, which can be simulated by programming techniques such as SoS [10].
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Let S = {p1,p2,...,pn}, where p; = (p},p}) and p; = (¢i1,di2,--.,¢Piq)- It will be convenient to
set ¢io =1 and ¢ 441 = 2?21 gbzz,j —p}, for all 1 < i < n. We introduce the following auxiliary points
in R, For —(d + 1) < —i < —1 denote by p_; the point at infinity with homogeneous coordinates
(p—i0; P—its P—i2s- - P—id+1), where ¢p_;; =1 and ¢_; j = 0 for j # 3. The special index z is used for
the generic point py = (z¢g = 1;z1,22,...,24+1). The geometric primitives will be expressed using minors
with the notation

¢i1,j1 ¢i1,j2 ¢i1,jk
Dirgr  Piniga -+ Pisi

Z15Z27 alk —
15525050k det

qsik,jl ¢ik,j2 ¢ik,jk

Hyperplane test. The input to this test consists of d + 1 points given by their indices ig,%1,- .-, 4
between 1 and n inclusive. The first d points span a hyperplane, h, and their sequence imposes an
orientation on h. We call one open half-space defined by h its positive and the other its negative side.
The two sides are distinguished by evaluating the sign of the following minor.

B.1 Point p;, lies on the positive side of h iff Mé‘?ﬁfj_’;&’id > 0.

Of course, p;, lies on the negative side of h iff the minor is negative. The case where the minor vanishes
corresponds to the degenerate case where p;, lies on h.

Orthogonality test. The input are d + 2 points with indices g, ?1,...,i4+1 between 1 and n inclusive.
The first d + 1 points define a unique weighted point y orthogonal to all p;;, 0 < j < d. The test decides
whether 7(p;,, ,,y) is positive or negative. The case 7(p;,,,,y) = 0 corresponds to the degeneracy when
Piy,, and y are orthogonal. As mentioned earlier this is assumed not to happen.

] . 20,81 50-58d 10,81 yeeybd 41
B.2 m(pigy,,y) <OHEMeT 0 - Moy 5™ <.

The first minor is a corrective term that is necessary because m(p;,,,,¥) is unaffected if we change the
order of the points although the sign of the second minor may change. We omit an argument for the
correctness of B.2 as it will follow from the discussion of the more general attachment test below.

Lifted orthogonal point. Before discussing the size of a simplex or and whether or not it is attached,
we show how to determine the coordinates of the lifted version of the point y = yr. Recall from section
3 that y is the point with minimum weight that is orthogonal to all points in T. As usual We write
y = (¢¥,9¥") and denote its coordinates as y' = (vi,v9,...,vq). Define vgy; = E;i 1’U — 9", and
yt = (v1,v2,...,v441) € R*1 as in section 3. We show how to compute the coordinates of yT; the
location and weight of y can easily be derived from y™.

Let or be a k-simplex, with 0 < k < d, and let ig,%1,-..,%; be the indices of the points in 7. The
requirement that m(pg,y) =0, for £ =i; and 0 < j <k, can be formulated as follows.

0 = (pﬁay)
=|WM2 e —y"
d d

- Z (qbezm B Um)2 - (Z ¢%,m o d—l—l Z U72n — Ud_|_1
m=1 m=1
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d
= -2 Z bem Vm + Grar1 + Va1

m=1

Thus, for 0 < j < k, yT lies on the hyperplane hj: x4 = 22%:1 be,mTm — Ped+1, Where £ = i; as
before. These k + 1 hyperplanes intersect in a (d — k)-flat in R%+1.

We need d—k additional constraints to find the point y™ on this (d—k)-flat. These will be hyperplanes
chosen so that each contains the points of 7 € R? and is parallel to the (d+ 1)st coordinate-axis. So their
intersection is the (k + 1)-flat parallel to the (d + 1)st axis that contains the k-flat aff(T"). For each such
hyperplane we arbitrarily pick d — k — 1 coordinate-axes in addition to the (d+ 1)st one. The requirement
that the hyperplane be parallel to these d — k axes determines it uniquely. Note that the number of
choices is (;, ¢ ) = (k_‘f_l) > d —k, so it is indeed possible to find d — k such hyperplanes. The constraint
that a hyperplane be parallel to the jth coordinate-axis is equivalent to requiring it contains the point
p—;, which is at infinity in the direction of the jth axis. Let I = {ix41,%+2,---,%d—1,%4 = —(d+1)} be a
set of d — k indices between —1 and —(d + 1) inclusive; it represents a choice of d — k axes including the
(d + 1)st one. The corresponding hyperplane can be expressed as

iO;-“aikaik—{—la""id’w _
MO,l,...,d—H = 0. (]‘)

Each row that corresponds to a negative index contains only one non-zero element, and this element is
equal to 1. The absolute value of the minor is therefore unaffected if we delete these rows and the columns
that correspond to the 1’s. Let J = {jo,j1,---,Jk+1} ={0,1,...,d+1} —{—igs1, —iks2,...,—1q} be the
index set of the remaining columns, and notice that 0 € J and d + 1 € J. The equation

k+1

MZ(),’Ll,...,Zk,z‘ — Z NI,jm-'Ejm — 0
m=0

jO:jlr":jk—{—l

defines the same hyperplane as (1), where

Npj, = (1FFEmpgiottte
J05J15- 0 mse-3J k41

ajm

for 0 <m < k+ 1. The hat indicates that the marked index is dropped. Set N7 ; =0 for j ¢ J. Putting

things together we thus get y* = (v1,v9,...,v441) as the unique solution to the linear system I' - z = ~:
20i51  20i02 - 204 -1 T Gig,d+1
20i,1 2002 oo 244 —1 | oz [ ] Pian
N11,1 N11,2 ... NIl,d NIl,d—f—l Tk42 —Nll,o
Nig i Nigwz oo Nigd Nigan Tdt1 N1y 10

The sets I; through I;_; are arbitrary but pairwise different choices of d — k coordinate-axes including
the (d + 1)st one, as described above. Let I'; be I' after replacing the jth column with . By Cramer’s

detly for1<j<d+1.

rule we thus get v; = 47,

The size of a simplex. The size of a simplex o7, or, is by definition the same as the weight of y = yr,
namely E;l:l ’UJZ- — vg+1. The following formula can now be readily derived.
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>, (detT;)% — detT det Tap
(detI")? :

B3 or =

Attachment test. The k-simplex o € R is incident to various (k+1)-simplices oy, and each U contains
a point not in 7. By 5.2, op is attached iff 7(q, yr) < 0 for at least one of these points g. We thus define
this test for an input of £+ 2 points with indices g, ¢2, . .., ix+1 between 1 and n inclusive. The first £+ 1
points span o7 and thus define y. The question is whether or not 7 (p;,,,,y) < 0. We have

ﬂ'(pik_,_l ) y) ¢’Lk+17] - y” - pglk+1

2o
0

d
2
¢'Lk+1,] Z vj — Vdy1) (Z ¢ik+1,j - ¢ik+1’d+1)
j=1

d
= _2 Z IU.] ¢ik+1’j + Ud+1 + ¢ik+1,d+1
Jj=1
1 d
= 3T (—2 Z detT'; ¢;,,,j +detTgp +det Ty, av1)
e =
¢i0,d—|—1 2¢i0,1 2§bi0,2 . 2§b’i0,d —1
(—1)%+1 bid+1 2001 2002 .. 2044 ~1
" T detD - det —Nn 0 N Nz oo Nipg Niyd+1
_NId—ImO NId—k,l Nld—k,Q NId—kyd Nldfk;d‘f'l

¢ik+1,d+1 2¢ik+1,1 2¢ik+1,2 2¢ik+1=d -1

Denote the final matrix by A. The sign does not change if we multiply the equation with the square of
detT', so we get

B4 7(pi,,,y) <O0iff (1)1 - detT - det A < 0.

For the special case where k = d we have detT' = (—1)¢+1 . 24. Mé‘j’lﬁ_’_"'d’id and det A = 27 - Mg:’f:_’_';jjff L
If follows that for this case B.2 and B.4 are equivalent.



