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Introductory Remarks

The orlginal idea of this column was to present interesting topics in
comp!.:tational geometry in an informal and informative manner. This means
blending discussions about new and old trends in the field with reports on major
events, presentations of technical results, and reflections of people working in
the field. Following these guidelines eight sequels have been written and are
collefcted in this book. There are only minor differences to the original
pub_hcations in the EATCS Bulletin. For convenience, each sequel is now
assigned a descriptive title. The references are kept the same, by and large, to
properly represent the time the sequels have been written.

H. Edelsbrunner

What Is Computational Geometry?

What exactly does the term “computational geometry” represent? The lack of
answering this question is possibly a sign of wisdom, or interpreted as such. Never-
theless we attempt to offer some answers. It does not coincide with the areas usually
referred to as “computer graphics” and “computer aided design (CAD)", although
there are many problems common to these three areas. Typical problems in com-
putational geometry have a more theoretical touch than typical problems in the two
areas mentioned. If we consult a library and search for books whose titles contain

both important keywords, that is,

computational and geometry,

then we find at least four items:' ? * *. In 2, computational geometry represents an
area also know as geometric modeling. Among other things it is concerned with mod-
eling curves and surfaces by means of splines. This area is closer in spirit to numerical
analysis than to geometry. Nevertheless, there is considerable overlap between this
area and computational geometry as it will be defined below. In !, the complexity of
predicates that recognize geometric properties, such as connectivity and convexity, is
investigated. The aim of the study is to determine the power of large arrays composed
of simple circuits in performing pattern recognition tasks. The corresponding notion
of computational geomeiry is unrelated to ours, which coincides with the definition

adopted in ® and *:

computational geometry is the study of the computational complexity of
well defined geometric problems.

Thus, we are talking algorithms, data structures, analysis of time and storage, lower
and upper bounds, and also geometric objects, geometric operations, and combina-
torial complexity of structures.

'Minski, M. I. and Papert, S. Percepirons. An Introduction to Computational Geomnetry. MIT
Press, Amherst, Mass., 1969.

?Faux, I. D. and Pratt, M. J. Computational Geomeiry for Design and Manufacture. John Wiley
& Sons, New York, 1981.

3Mehlhorn, K. Multidimensional Searching and Computational Geometry. Springer-Verlag, Hei-
delberg, 1984.

4Preparata, F. P. and Shamos, M. [. Computational Geomeitry - an Introduction. Springer-Verlag.
New York, 1985.




A different way to specify a research area is by means of exhaustively enumerating
all subareas. In this column, we take a similar approach, that is, we present a tree of
keywords that classifies work done in computational geometry. Besides for defining
computational geometry, this tree can also be used to structure a bibliography in the
area - and | hope that everybody agrees that a structured bibliography would be
an awfully useful thing to have. If you are interested in obtaining a copy of such a
bibliography, then it is vital that you continue to read.

To the best of my knowledge, there was only one attempt to maintain a bibliog-
raphy in computational geometry,® and this project ended a few years ago. It lead
to the compilation of a list of papers that was reasonably complete until the summer
of 1982. There are two reasons why it was not continued beyond 1982. One was the
increasing amount of time necessary to maintain the list, which was caused by the
growing interest in the area and the thus increasing number of publications per year.
The other reason was that besides alphabetical order and an attached author list it
was entirely unstructured. A bibliography that is not structured into sublists in some
way or the other becomes increasingly clumsy to use if it grows beyond some crucial
size. This is exactly what happened in 1982.

Now, here is a proposal that describes how a bibliography in computational ge-
ometry should be maintained today. We believe it is absolutely crucial that as many
people as possible contribute to such an undertaking; still it is a good idea to keep
the bibliography at a central location and to have somebody in charge of maintaining
it there. The structure of the bibliography can be obtained by means of keywords
associated with each paper. Assigning appropriate keywords to a large number of
publications is a major task which can only be completed by the community of re-
searchers itself. To achieve a uniform assignment of keywords, we thus need a scheme
of keywords — to be maintained through time as well - that we all agree upon. The
suggested scheme is a tree of height four whose leaves are the keywords (italics) and
whose interior nodes represent categories of keywords. Below, we give a pre-order
traversal of the suggested tree.

Keywords in computational geometry
Keywords that refer to research areas
Theory of computation
complézity theory, parallel computation, network algorithms, design of,
algorithms, data structuring, implementing algorithms.
Computer applications
computer aided design (CAD), VLSI design, computer graphics, robotics,

SEdelsbrunner, H. and van Leeuwen, J. Multidimensional algorithms and data structures - bib-
liography. Bull. EATCS 11 (1980}, 46-T4. Supplement to “Multidimensional algorithms and data
structures — bibliography”. Bull. EATCS 13 (1981), 76-85. Multidimensional data structures and
algorithms: a bibliography. Report F104, Inst. Informationsverarb., Techn. Univ. Graz, Austria,
1983.

motion planning, computer vision, image processing, pattern recognition,
cluster analysis, database theory, artificial intelligence (Al), software.

Geometry
elementary geometry, combinatorial geometry, discrete geomeiry,
probabilistic geometry, differential geometry, algebraic geometry, linear,
algebra, topology.

Non-geometric mathematics
probability theory, statistics, graph theory, algebra, calculus, numerical,
analysis, operations research.

Keywords addressing problem characteristics

Algorithmic characteristics _
optimization, construction, detection, sorting, reporting, counting, searching,
probing, approzimation.

Geometric characteristics
decomposition, packing, covering, separation, partition, prozimity,
intersection, visibility, domination, diameter, area, volume, length,
distance, geodesic distance, measure, feature, shape.

Particular problems
convez hull, range search, point location, linear programming, path planning,
hidden line/surface elimination.

Keywords addressing algorithmic aspects

Algorithmic methods
binary search, graph traversal, plane-sweep, space-sweep, divide-and-conquer,
prune-and-search, dynamic programming, incrementation, branch-and-bound,
heuristics, bucketing, repeated search; geometric transformations,
locus approach, dynamizing daia structures.

Data structures
trees, range trees, segment trees, interval lrees, priority search trees, quad

trees, oct trees, kd-trees, iries, directed acyclic graphs (DA G), arrays,
hashing, implicit data structures, plane graph representations, incidence
graph; constructive solid geometry (CSG).
Complexity analysis

worst-case analysis, amortized analysis, expected case analysis, Monte Carlo,
Las Vegas, complezity classes, NP-completeness, output dependent,
computational model, numerical stability, numerical precision, lower bounds.

Keywords addressing geometric aspects

Geometric structures
subdivisions, cell complezes, arrangements, Voronoi diagrams, Delaunay

triangulations, triangulations, polygons, polyhedra; geometric graphs,
traveling salesman tours (TST), minimum spanning trees (MST), Steiner

trees, matchings.



Geometric objects
points, lines, planes, hyperplanes, rays, half-planes, half-spaces, line
segments; intervals, rectangles, hyperrectangles, circles, disks, spheres, balls;
triangles, tetrahedra, simplices; curves, splines; translates, homothets.
Geometric attributes

one-dimensional, two-dimensional, three-dimensional, d-dimensional, convez.

star-shaped, connected, simply connected, congruent, symmetric,
weighted; topological.

Keywords for non-research papers
book, doctoral thesis, survey paper, bibliography, problem collection.

The main objective in the construction of this tree of keywords is that it allows a useful
clustering of the bibliography into not necessarily disjoint but significantly different
sublists. It is planned to publish such sublists periodically - not in this column,
however. We therefore encourage everybody who is interested in contributing to the
bibliography to raise his or her voice, to criticize the proposed plan, and Jor to suggest
changes and improvements. Besides publishing sublists, we hope to be able to offer
on-line access to the bibliography in the near future so that everybody can search the
bibliography, extract information from it, and create his or her own sublists.

Currently, a preliminary version of the bibliography exists in bibref format in the
Computer Science Department in Urbana, Illinois. It was initially created by merging
® with a list of references collected over the years by Leonidas Guibas and Jorge Stolfi,
Department of Computer Science, Stanford University. Currently, the bibliography
contains about fourteen hundred entries. The next step is to provide every interested
author with a sublist of his or her co-authored papers and to leave it up to him or
her to correct and extend this sublist and to provide keywords for each of his or her
publications. If you are interested, then let me know and I will provide you with a
sublist that contains your papers already entered into the bibliography. We hope to
be able to make copies of the complete list available sometimes not far in the future.

SEdelsbrunner, H. and van Leeuwen, J. Multidimensional data structures and algorithms: a
bibliography. Report F104, Inst. Informationsverarb., Techn. Univ. Graz, Austria, 1983.

Publishing in Computational Geometry

It takes a lot of time and effort on the side of the people working in it before a scientific
discipline gets established as a respected member of the family. Many new areas do
not make it that far and there are a number of reasons that can be responsible for
falling short. As it stands now, computational geometry seems to be among the lucky
ones in the battle for a sunny place. Over 10 years ago, Michael Shamos worked on
his influential thesis that shaped the area for quite some time, and there are many
signs that testify excellent health to this flourishing field.

In this issue, I would like to talk about ways the computational geometry commu-
nity expresses itself, which most prominently includes the publication means it uses.
Of course, there are conferences, journals, and books, and we will chat a little about
each one of the three categories.

Conferences. For many years, computational geometry papers gol presented an
theory of computing conferences such as the International Colloquium on Automata,
Languages, and Programming (ICALP), the Symposium on Theory of Computing
(§TOC), and the Symposium on the Foundations of Computer Science (FOCS), just
to name a few. It is still the case that many computational geometry papers make
it into these conferences, in particular those that have a strong algorithmic compo-
nent of general interest. One could even say that there is at least one computational
geometry session by tradition. For example, the next years Symposium on Mathemat-
ical Programming in Japan includes an organized special session on computational

geometry.

The main occasion, however, is the Symposium on Computational Geometry which
is now annually held as an ACM symposium supported by SIGACT and SIGGRAPH,
two suborganizations of the ACM. I can warmly recommend the attendance at this
yearly event to everybody who has an interest in new developments or who wants
to get in touch with active researchers in the area. Next year, 1988, the fourth
conference is going to be held in Urbana, Illinois, and I sign responsible for the local
organization. For historical interest I mention that the first three conferences were
held in Baltimore, Maryland, organized by Joseph O'Rourke, in Yorktown Heights.
New York, organized by Alok Aggarwal, and this year in Waterloo, Ontario, with
Derick Wood as the local chairman. We are all indebted to Joseph O'Rourke who
took the first and daring step to start this successful series of conferences.



Aside from these annual events, there are workshops and other meetings that en-
hance the communication within the community as well as with other communities.
For example, the AMS Workshop on Discrete and Computational Geometry held 1986
in Santa Cruz, California, was organized to build a bridge between researchers in dis-
crete geometry and in computational geometry. Another such effort was constituted
by the Workshop on Polyhedral Complexity and Geometric Complezity which took
place in Minneapolis, Minnesota. Its emphasis is on problems in the interface between
combinatorial optimization and computational geometry.

Journals. [ remember David Dobkin, Michael Shamos's thesis advisor, once men-
tioning that at the beginning it was not clear at all to what journals computational
geometry papers should be sent. Many issues in geometry have numerical aspects
which suggested that numerical analysis journals were, maybe, the right forum. Be-
cause of the strong algorithmic contents, however, the decision was made to seek the
theory of computer science audience. Partly because of this decision, we find many
of the computational geometry papers in journals such as the Communications of the
ACM, IEEE Transactions on Computers, Information Processing Letters, Journal of
Algorithms, Journal of the ACM, SIAM Journal on Computing, Theoretical Computer
Science, and others. We can also find papers in the mathematical programming lit-
erature, such as in the Journal of Mathematical Programming, and in more applied
journals, such as Computer Aided Design and Computer Graphics, Vision, and Image
Processing.

I deliberately leave out the Journal on Discrete and Computational Geomelry
which is run by Jacob Goodman and Richard Pollack. This journal is unique in
the choice of topics it covers. Its purpose is to offer a forum for computational
geometry papers with strong combinatorial component as well as for discrete geometry
papers with algorithmic potential. Currently, among all journals this is probably the
one that publishes the largest number of computational geometry papers — without
compromising the quality of its selection. We should also mention two new journals,
Algorithmica and the Journal on Symbolic Computation, which emphasize that they
consider computational geometry as one of their main areas of interest.

Books. By now, there are four textbooks on the market documenting the matu-
rity of computational geometry as a scientific discipline. N evertheless, it is still true
that the dynamics of the area make it very difficult to write such a text. On the
other hand, computational geometry is rich enough to provide sufficient space for
a few more textbooks which do not interfere in contents or style with the current
four. Naturally, the four books share some of the material, but everything consid-
ered they are reasonably disjoint and emphasize different aspects of computational
geometry. The book published first, Kurt Mehlhorn’s Data Structures and Algorithms
3: Multidimensional Data Structures and Computational Geometry, Springer-Verlag
1984, concentrates on the data structuring aspects of computational geometry. It
nicely fits into his series of three data structures and algorithms texts. In 1985, the
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long awaited Computational Geometry — an Introduction, by Franco Preparata and
Michael Shamos, was published by Springer-Verlag. It offers a broad view of what
can be called the classic part of computational geometry. In 1987, two books entered
the scene of computational geometry texts. Joseph O’Rourke’s Art Gallery Theorems
and Algorithms, Oxford Press, concentrates on problems for polygons and gives a nice
collection of mathematical as well as algorithmic results. The other book, Algorithms
in Combinatorial Geometry, Springer-Verlag, is by myself. Its goal is to present fun-
damental results both in combinatorial and in computational geometry. Ignoring my
personal bias, I think it is fair to say that this book is the most comprehensive text
available in the combinatorially influenced part of computational geometry.
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Shaving Logs

The Topic. “The disease of the log-factor” or “Why is it that some complexity
functions are common and some are not?”,

What is the reason that so many researchers in design of algorithms pick on log-
factors, our beloved friends that seem to be integral parts of so many time-complexity
analyzes. Indeed, log-factors are being “shaved off” the time-complexities of all kinds
of problems these days'. The ultimate goal seems to be the elimination of all log-
factors — as if they were contagious (well, maybe they are; just think of the polylog
which describes both small families to large populations of logs by one deceivingly
short word). When we attempt to shave off a log-factor we might have the unpleasant
experience that this superficial operation leaves little pieces of the poor fellow behind.
These pieces come in different sizes such as %‘—g, V1og, loglog, log®, and a; we call
these the descendents® of the log.

We consider three questions, the first of which is often asked by people who like
logs because they are so easy to get and because they are too small to be real trouble:
“Why bother?”. The second looks at the most successful insecticides in current use
figa.'{nst logs. The final question has to do with the widespread belief that the world
is simple — we just don’t look at it from the right angle. In terms of algorithms
atnd complexities this can only imply that the “real” complexities of problems are
simple and “natural”. It seems that there are a few complexity formulas that contain
respected log-factors, but most often their presence raises suspicion. In any case, il
a log-factor shows signs of weakness it should be terminated without mercy - whick
means leaving no descendents behind, for if we cannot trust the log, how can we
trust its descendents? To counter this belief, section 3 will show a few examples
where honest descendents of the log were covered underneath dishonest logs or other
(bigger) descendents of it.

1 thank Mikhail Atallah for pointing out that this colloquial phrase is commonly used for im-
provements by log-factors, as opposed to improvements by factors bigger than log.

2The loglog of something is equal to the log of what remains if we take the log of the something.
If we iterate until what is left is smaller than 2 then the number of iterations is known as the log”
of this something. & is also known as the inverse of Ackermann’s function; it pretends to decreases
everything down to size at most 4 but it is actually true that a of something goes Lo infinity when
the something does. However, one must be real patient to see this with ones own eyes.

A

1 Why don’t we leave the log alone?

Much of the today’s reputation of the log is based on the time-complexity of sorting.
There are a number of algorithms that show that n numbers can be sorted in time
O(nlogn)®*® and Q(nlogn) is a lower bound on the complexity under a very general
although comparison based model of computing®. This result implies the existence of
honest logs in the complexity formulas on many problems, namely those that can be
solved in time O(nlogn) and that can be shown to be at least as difficult as sorting.
Examples in computational geometry include the construction of the convex hull and
the Voronoi diagram of a set of n points in the plane” . Although ©@(nlogn) is
the worst-case complexity of the convex hull problem, Kirkpatrick and Seidel® have
shown that time O(nlog k) time suffices if only A of the n points lie on (rather than
within) the convex hull. Is this a sign of weakness of the log? Not really. The same
paper proves that Q(nlog /) is a lower bound for this problem.

So what are examples of dishonest logs, that is, for which problems can we avoid
the log-factor we have to pay for sorting? In this section we mention three such

examples:
(i) finding the median of an unsorted list of numbers'®,
(i) constructing the convex hull of a simple polygon in the plane'!, and

(iii) sorting the intersections of a line with a Jordan curve if the intersections are

given in their order along the curve'?.

3Knuth, D. E. Sorting and Searching - the Art of Computer Programming ITI. Addison-Wesley.
Reading, Mass., 1973.

4Aho, A. V. Hoperoft, J. E. and Ullman, J. D. The Design and Analysis of Compuier Algorithms.
Addison-Wesley, Reading, Mass., 1974.

SMehlhorn, K. Data Structures and Algorithms I; Sorting and Searching. Springer-Verlag, Hei-

delberg, Germany, 1984,
%Ben-Or, M. Lower bounds for algebraic computation trees. In “Proc. 15th Ann. ACM Sympos.

Theory Comput. 1983", 80-86.
"Preparata, F. P. and Shamos, M. I. Computational Geometry - an Introduction. Springer-Verlag,

New York, 1985.
8Edelsbrunner, H. Algorithms in Combinatorial Geomelry. Springer-Verlag, Heidelberg, Ger-

many, 1985.
9Kirkpatrick, D. G. and Seidel, R. The ultimate convex hull algorithm? SIAM J. Compul. 15

(1986), 287-299.

19Blum, M., Floyd, R. W., Pratt, V. R., Rivest, R. L. and Tarjan, R. E. Time bounds for selection.
J. Comput. System Sci. T (1972), 448-461.

UMeCallum, D. and Avis, D. A linear algorithm for finding the convex hull of a simple polygon.
Inform. Process. Lett. 9 (1979), 201-206.

2Hoffmann, K., Mehlhorn, K., Rosenstiehl, P. and Tarjan, R. E. Sorting Jordan sequences in
linear time using level-link search trees. nform. and Control 68 (1986), 170-184.
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Many other examples can be found in section 2. There we also touch upon the
properties of problems that admit solutions without sorting.

The real question in the mind of a practitioner is whether these new algorithms
are really any faster. After all, they are only a factor of logn faster in the theoret-
ical sense, which doesn’t mean much if the constant hidden by the big-Oh increases
significantly. The answer to this question depends on the case. Sometimes, the ini-
provement is based on new insights into the combinatorics of the problem and the
resulting algorithm is indeed faster than previous log-infected algorithms. Sometimes
the algorithm remains the same and only the analysis improves. In other cases the
new algorithms are more difficult to understand but that the resulting programs
are significantly simpler than those generated from the old algorithms. Indeed this
phenomenon occurs unexpectedly often, which may tell us something about the ade-
quateness of our current understanding of algorithms.

2 What makes the log disappear?

One of the most common methods for avoiding log-infested complexities is to exploit
a priori sorting information. This sounds simple enough but can be exceedingly
difficult. A well-known case where this method is successful is the problem of sorting
a list that consists of two already sorted lists. To sort the entire list, we scan the
two sublists and, at each step, we take the smaller of the two current numbers and
advance the corresponding pointer. This scheme is known as merging sorted lists.
Similar although more sophisticated techniques are necessary to get linear algorithms
for constructing the kernel of a simple polygon'® ', for constructing the convex hull
of a simple polygon'!, and for finding the nearest neighbor of each vertex of a convex
polygon'®, All these algorithms follow the same philosophy as merge sort: exploit the
order information of the input or of intermediate structures. The order information
in the first two cases is that the polygon is simple, which excludes many otherwise
possible point sequences. In the third case, the order information is even stronger — the
points are the vertices of a convex polygon, given in the order around the polygon.
The additional structure is compensated by the more demanding requirements to
compute a piece of information for each vertex of the polygon.

To illustrate that exploiting sorted input is not always as simple as it sounds,
we mention the problem of sorting the n? numbers in an n-by-n matrix whose rows

13The kernel of a simple polygon is the set of points that can be connected by straight line
segments contained in the polygon to all other points within the polygon.

"“Lee, D. T. and Preparata, F. P. An optimal algorithm for finding the kernel of a polygon. J.
Assoc. Comput. Mach. 26 (1979), 415-421.

'*Lee, D. T. and Preparata, F. P. The all-nearest neighbor problem for convex polygons. Inform.
Process. Lett. T (1978), 189-192.
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and columns are all sorted in increasing order. Indeed, it seems that the degree of
presortedness is substantial. Contrary to our intuition, it can be shown that this type
of input admits 277 1°8™ different sorting permutations, which implies an §)(n* logn)
lower bound for comparison based algorithms'®. The situation is different if there
are sorted vectors X = (z1,22,...,%,) and ¥ = (y1,¥2,...,¥x) so that the matrix
is equal to X + Y, that is, its entry in row 7 and column j is equal to z; + y;. In
this case, only 216" sorting permutations exist, and Fredman'? proves that there
is an algorithm that takes only O(n?) comparisons to sort X + Y. However, it is not
known whether there is an O(n?) time algorithm for sorting X + Y.

Another popular method for eliminating logs is the use of intricate recursive
schemes. If we have an algorithm whose time-complexity follows a recurrence re-
lations of the form

T(n)=T(a-n)+T(b-n)+ O(n),

with a+b < 1, we have won. The reason is that a+b < 1 implies that the homogeneous
solution to the recurrence relation is of the form n”, with ¥ < 1. Thus, the additive
term, which is linear in n, determines the solution, which is O(n). Possibly the.ﬁrst
algorithm that made use of this observation is the linear median finding a.]gornthm
in'?, see also®®, Hence, finding the median of an unsorted list of numbers is easier than
sorting the list. In computational geometry, algorithms using the same paradigm have
been found for linear programming in a fixed number of dimensions!® !° 2%, finding
the furthest neighbor of every vertex of a convex polygon®! ??, and constructing the
Voronoi diagram of the vertices of a convex polygon?®. For each one of the three
problems it is necessary to bring in non-trivial ideas which lead to three inherently
different generalizations of the by now classic median finding scheme. Each one of
these generalized schemes has been applied to a number of other geometric problems.
These can be found in the mentioned papers.

$Harper, L. H., Payne, T. H., Savage, J. E. and Straus, E. Serting X +Y. Comm. ACM 18

(1975), 347-349. _ _ )
Fredman, M. L. On the information theoretic lower bound. Theoret. Comput. Sci. 1 (1976),

355-361. e

18Megiddo, N. Linear-time algorithms for linear programming in R? and related problems. SIAM
J. Comput. 12 (1983), 759-776. o

1%Megiddo, N. Linear programming in linear time when the dimension is fixed. J. Assoc. Comput.
Mach. 31 (1984), 114-127.

20Dyer, M. Linear time algorithms for two- and three-variable linear programs. SIAM J. Comput.

13 (1984), 31-45. -
2The furthest neighbor of a vertex, u, is the vertex of the same polygon that maximizes the

distance to u.
22pggarwal, A., Klawe, M. M., Moran, S., Shor, P. and Wilber, R. Geometric applications of a
matrix sorting algorithm. In “Proc. 2nd Ann. Sympos. Comput. Geom. 1986”", 285-292. )
23pggarwal, A., Guibas, L. J., Saxe, J. and Shor, P. A linear time algorithm for computing the
Voronoi diagram of a convex polygon. In “Proc. 19th Ann. ACM Sympos. Theory Comput. 1987".

39-45.



Balanced trees have been a bastion of the log since searching and updating trees
requires {}(log n) time per operation, even on the average. This is true since otherwise
we could sort in asymptotically less than O(nlogn) time. Without contradicting this
lower bound, it is still possible to take asymptotically less than logarithmic time
per operation - the catch is that the operations performed cannot quite be used for
sorting. The difference to the common collection of operations (searching, inserting,
deleting) is often subtle. The key is the use of advanced balanced tree schemes, such
as 2,4-trees®. If we perform n arbitrary insertions and deletions in a 2,4-tree we use
only constant time for rebalancing per operation — in the amortized sense, that is,
O(n) time for the entire sequence. Of course, this does not account for the amount of
time needed to find the entry to be deleted or to find the right location for an entry
that is to be inserted. The way around this difficulty is the use of pointers (so-called
fingers) that point from the outside into the tree.

Using families of such finger trees (which can also be split in amortized constant
time), Hoffmann et al.’? solve the Jordan sorting problem mentioned in section 1
in time linear in the number of intersections. Another problem where the a priori
order information can be exploited using finger trees is the triangulation of a simple
polygon; in this case, the early O(nlogn) time algorithms have been improved to
O(nloglogn)*. Surely, the log was not of the honest type, but is the loglog fake
too? The safest bet still is the existence of a linear time algorithm for triangulating
a simple n-gon - but one cannot be sure.

The technique to design data structures that are efficient in the amortized sense
but not necessarily in the worst-case per operation sense has a wide range of appli-
cations not restricted to binary search trees. The construction of an arrangement of
n lines in the plane is probably the closest one can get to a two-dimensional gener-
alization of sorting®. Their O(n*logn) time algorithm was improved to O(n?) in?
?7. The improvement was made possible not by intricate algorithmic techniques and
data structures (those could have been used but were not necessary) but by proving
a certain combinatorial property of line arrangements. The message here is that the
right kind of combinatorial insight leads to simple algorithms which can be optimal
nevertheless. More recently, Edelsbrunner and Guibas?® showed by an amortized time
analysis argument that n lines in the plane can be swept in O(n?) time and only O(n)

#Tarjan, R. E. and Van Wyk, Ch. J. An O(n loglog n)-time algorithm for triangulating simple
polygons. SIAM J. Compul., to appear.

#Goodman, J. E. and Pollack, R. Multidimensional sorting. SIAM J. Comput. 12 (1983), 484-
507.

#6Chazelle, B., Guibas, L. J. and Lee, D. T. The power of geometric duality. BIT 25 (1985),
76-90.

#"Edelsbrunner, H., O'Rourke, J. and Seidel, R. Constructing arrangements of lines and hyper-
planes with applications. SJAM J. Comput. 15 (1986), 341-363.

?®Edelsbrunner, H. and Guibas, L. J. Topologically sweeping an arrangement. In “Proc. 18th
Ann. ACM Sympos. Theory Comput. 1986”, 389-403.

15

storage. One of the applications of the line arrangement algorithms is a quadratic
solution to the following n-fold sorting problem. Given n points in the plane, for each
point p construct the list of the other n — 1 points sorted around p. Becaus‘e of the
sorting lower bound, the construction of only one such list takes Q(rnlogn) time.

3 Also dishonest logs can have honest descendents

The probably best known example of a problem that can be solved in time asymptoti-
cally less than O(n log n) but still takes asymptotically more than Q(n) is the so—f:a.llicg
union-find problem*®. The execution of a sequence of n union and find operatlonzu
takes time ©(na(n)). The lower bound is proved for the pointer machine model E
So a is of the honest type here and we should respect it, There is, however, this
nagging feeling that na(n) is not really a natural function, and how come i't is the
right complexity function for the union-find problem. Could it be that. t.he u‘mon—ﬁlnd
problem itself is unnatural? Probably not, because it has many applications including
such natural problems as finding minimum spanning trees of graphs. Can it be that
the notion of time-complexity or maybe of computing altogether is unnatural in the
way we currently understand it?

Fortunately, there is a way out of this dilemma: na(n) is indeed a natural function
— how could it otherwise be the answer to many other problems which describe rather
concrete things in our world. For example, there is the notion of a Da.\tenport-Schinzcl
sequence of order 3 and it is known that the longest such sequence conms.ts of G.(no:(n))
letters®!, where n is the number of different letters in its alphabet®?. Using this result,
Wiernik® shows that the largest number of linear pieces of the upper envelope of n
possibly intersecting line segments in the plane® has length ©(na(n)). The upper
envelope of line segments is something very concrete which leads the author of this
column to believe that na(n) is a natural function. Davenport-Schinzel sequences
can be generalized to orders s > 1 by disallowing alternating sequences of length

29Before performing the operations we have a collection of n singleton sets. Each union operation
merges two sets of the system to one set, and each find operation tells us for a given element to

what set it currently belongs. ) .
30Tarjan, R. E. On the efficiency of a good but no linear set union algorithm. J. Assoc. Compul.

Mach. 22 (1975), 215-225. .
31ffart, S. and Sharir, M. Nonlinearity of Davenport-Schinzel sequences and of a generalized path
compression scheme. Combinatorica 6 (1986), 151-177.

324 sequence of letters ay,az, . ..,am, where the letters are taken from the set {1,2,... ,n},isa
Davenport-Schinzel sequence of order 3 if there are no five indices i} < i3 < i3 < 14 < i5 50 that
@i, = Gy = Giy # iy = Gig.

33Wiernik, A. Planar realizations of nonlinear Davenport-Schinzel sequences by segments. In
“Proc. 27th Ann. IEEE Sympos. Found. Comput. Sci. 1986™, 97-106. _

34Think of the line segments as partial univariate functions. The upper envelope of the line
segments is the pointwise maximum of these functions.
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s + 2. For each constant order, the maximum length is bounded from above by
O(nlog®n)*. Recent advances show that this upper bound is not asymptotically
tight®8, but except for s < 4 the known bounds are not known to be tight. For s = 4,
the bound is @(n . 2¢(™)37,

An interesting case is also the E{;—’f’;, which appears to be a rather unnatural
function. There are surprisingly many cases for which it is the honest part of a
complexity bound. Blum® proves that the worst-case per operation complexity of
the union-find problem is O(ﬁ—:;]. For the range search problem in the plane®
Chazelle proves that in order to get polylogarithmic search time the data structure
must use Q(nﬁ,;%] memory space, and this bound can be achieved. Finally, b—t’&—g
appears as a tight bound of a combinatorial problem. Consider a convex polytope
with n faces in three dimensions. We take an orthogonal projection, which is a
convex polygon, and let the size of this projection be the number of vertices of the
polygon. The minimum, taken over all convex polytopes with n faces, of the maximum
projection, taken over all directions. is ©(2E2_)4!

Why does ﬁlﬁﬁ appear as a tight bound for so many unrelated problems? An
answer can be given when we realize that the complexity of a problem is usually boru
out of a compromise between sufficiency and necessity. As such, the bounds are the

roots of equations describing this compromise. For example, logn is the root of
2F =n,

an equation that takes only four different symbols each appearing once. The equation
whose solution is l'n_]{;%* or some constant multiple of it, is

I =n.

The number of symbols is still four but there are only three different symbols in the

equation. Doesn’t this mean that the ﬁﬁi is more natural than log?

35Szemerédi, E. On a problem by Davenport and Schinzel. Acta Arithmetica 25 (1974), 213-224.

3%Sharir, M. Almost linear upper bounds on the length of general Davenport-Schinzel sequences.
Report 29/85, The Eskenasy Inst. Comput. Sci., Tel Aviv Univ., Israel, 1985.

37Agarwal, P., Sharir, M. and Shor, P. Improved upper and lower bounds for the length of general
Davenport-Schinzel sequences. Manuscript, Courant Inst., New York Univ., 1987,

3Blum, N. On the single-operation worst-case time complexity of the disjoint set union problem.
Report 84/04, Fachbereich 10, Univ. Saarlandes, Germany, 1984.

3%Given a set of n points in the plane, the range search problem asks for a data structure that
admits reporting the points inside a query rectangle in {(hopefully) little time. The search time is
defined as the overhead needed on top of the time required for reporting the points.

“"Chazelle, B. Lower bounds on the complexity of multidimensional searching. In “Proc. 27th
Ann. IEEE Sympos. Found. Comput. Sci. 1986”, 87-96.

“'Chazelle, B., Edelsbrunner, H. and Guibas, L. J. The complexity of cutting convex polylopes.
In “Proc. 19th Ann. ACM Sympos. Theory Comput. 1987", 66-76.
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The moral. “Keep this in mind the next time you get hit on the head” or “Some
strange functions sit on lower bounds like a bump on a log”*%.

42] thank Steven Skiena for his wise words which summarize this column.




The 4-th Computational Geometry Symposium

The 4-th Annual Symposium on Computational Geometry is coming up. By the way,
did you know that the ACM distinction between a workshop, a symposium, and a
conference is that the expected number of attendees is fewer than 100 for a workshop,
between 100 and 300 for a symposium, and more than 300 for a conference? Anyway.
the dates for the Computational Geometry Symposium are June 6, 7, 8 {Monday,
Tuesday, Wednesday), the place is Champaign-Urbana in Illinois, the program chair-
man is Bernard Chazelle, and the local chairman is the writer of this column. As
you can imagine the latter is spending much time worrying and looking forward to
this event. This column contains a few random thoughts about the conference (ex-
cuse me, symposium) in general and about its program in particular. In addition, it
remarks on new trends in computational geometry (as derived from the statistics of
the program).

There are two invited addresses, the first by Bruno Buchberger (Johannes Kepler
Universitat Linz, Austria), the other by Thomas Banchoff (Brown University, Rhode
Island). Buchberger will deliver a survey on new results in symbolic computation.
Just in case the connection between computational geometry and symbolic compu-
tation is not obvious: every geometric algorithm must, at some point (in fact most
of its running time), do primitive geometric calculations such as intersecting two line
segments or determining which one of two triangles in three-dimensional space is
closer to the viewer, etc. Such computations can be done in various ways, including
symbolic manipulation of the data. In a nut-shell, the symbolic approach would not
compute the intersection of the two line segments explicitly but store the intersection
implicitly, e.g. by pointers to the two line segments plus, maybe, a bit that indicates
whether the line segments intersect at all,

Banchoft is scheduled to talk about visualizations of four- and higher-dimensional
objects. Few people can visualize even four-dimensional geometric objects (can any-
body?) but there is hope to get some feel for what they really are. (Yes, I insist that
four and higher dimensions are real.) Take, for example, a hyperplane in four dimen-
sions (this is a three-dimensional space) that sweeps slowly through a four-dimensional
object. At every point in time the hyperplane cuts the object in a three-dimensional
cross-section, which can be understood by human beings. If, for example, the object
is a four-dimensional convex polytope, the cross-section is a three-dimensional convex
polytope. Initially (when the hyperplane does not intersect the object), the cross-
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section is empty, then it is a point, and then it grows and becomes a three-dimensional
polytope. Eventually, it becomes empty again. At discrete points in time, this poly-
tope gains and looses faces. Between those events, the polytope changes continually
by increasing and decreasing the sizes of its edges and faces. A graphics package that
simulates such a sweep would be a fantastic tool, no? Of course, many other aids for
visualizing (getting feel for) objects in four and higher dimensions are conceivable.

I believe that by inviting talks on those two subjects the program committee
sends the message that its members consider the two areas as part of or related to
computational geometry and that they encourage submissions from these areas in the
future. Generally, it is rather difficult to attract good papers from areas which are
not considered mainstream. For one thing, the strongest papers in these areas tend
to go to specialized meetings. There is a rather unfortunate corollary of this fact.
If the program committee decides not to accept a paper from some area X because
the quality of the paper does not live up to the usual standards, it is often perceived
as a statement that the committee is not interested in area X. Such a statement is
usually not intended.

Two interesting pieces of statistics. The number of different authors is up - it
is now 73 ~ and so is the average number of authors per paper — it is 2.46 (2.53 if
the two invited talks are not counted). The number of talks is 41 (including the two
invited talks). A quick calculation shows that the number of not necessarily different
authors is therefore 100.83 which suggests that it is really 101.

This brings us to the first trend we observe when we browse through the program:
there are quite a number of papers concentrating on robustness issues in implement-
ing geometric algorithms. Of course, there are several aspects of a program that
contribute to its robustness or non-robustness. However, the main source for non-
robust or even non-correct behavior of a program is the necessary finiteness of the
representation of numbers. Assume you design a car on a computer and the car is
represented by a polytope with integer coordinate vertices. This can be nicely drawn
on a graphics output device. Of course, you and your friends would like to admire
your creation from more than one point of view, in fact from any point of view they
please to choose. To satisfy these desires, you set up a rotation matrix that, if applied
to the coordinates, maps the points to their new locations. Unfortunately, these new
locations do not necessarily have integer coordinates. So you take the nearest integer
and everything seems fine. Only after iterating the rotation a couple of times, the car
takes on strange and surprising shapes. This may or may not be to the advantage
of the design. It is clear what went wrong - what is less clear is how to avoid this
effect. A partial answer is that we should always keep the original representation
around. Every rotation should be calculated directly from this original rather than
from intermediate results. But what do we do if we want to intersect the car (which
is a polytope) with a copy of itself rotated by one degree about some line? Not many
automated design systems will be able to produce a meaningful result, in particular
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when we let the angle be even smaller,

Many instances of a geometric operation are not this subtle. But imagine a pro-
gram that performs a million geometric operations of some kind to finish its task.
Now, there might be one that does not quite work because of numerical instabilities
- this one instance is enough to make the program fail. 1 do not claim to know a
satisfying answer to all these questions and refer to the Tuesday morning session of
the symposium for new results on this topic.

The other trend in computational geometry apparent from the program is the
increased interest in randomized algorithms. Does the term “randomized” needs
some clarification? We certainly do not mean the type of “random” behavior that
results from numerical instability as discussed above, nor do we refer to algorithms
that use “random” access memory (what a thought). We mean algorithms that make
use of a string of random bits - given the string, the behavior of the algorithm is
deterministic. Of course, truly random bitstrings are hard to get (do they exist?)
and must be simulated by the use of random number generators. That no random
number generator is perfect will not be our concern here.

There is a classical randomized algorithm! for primality testing. It fails only with
a constant probability smaller than one. If we repeat the algorithm we can get the
probability of a wrong answer (failure all the time) arbitrarily close to 0. So in this
case, the randomization influences the output of the algorithm, which is not always
correct.

The randomized algorithms that will be presented at this year’s computational
geometry symposium are of a different breed though. They always compute the (or
a) correct result, but it is not quite clear what the amount of time or memory space
is the algorithms need. So we will hear statements of the kind “the randomized time-
complexity of this algorithm is”, etc. What does this mean? Here is my interpretation.
Take a worst-case input (it will become clear in a second what “worst-case” means
in this context) and, for every (random) bitstring of the desired length, estimate
the amount of time the algorithm takes. The mean of these amounts is called the
randomized time-complexity of the algorithm. So this is really the ezpected time the
algorithm takes, right? There is, however, one difference to the usual meaning of
expected complexity which is that the expectation is computed for a single input
example over all bitstrings and not over all sets of input data.

As far as | can see there are really two reasons that make randomization so at-
tractive (at least in computational geometry). One is that better time-bounds than
in the deterministic model with the worst-case measure can be obtained with simpler
algorithms (and “simplicity” often means “efficiency” in practice). The other is that

!See for example Brassard, G. and Bratley, P. Algorithmics - Theory & Practice. Prentice Hall,
Englewood Cliffs, New Jersey, 1988.
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randomization is closely related to certain combinatorial properties of sets of geo:l-nc.t-
ric objects. It is at least plausible that a reasonably large sample of a set of objects
faithfully represents the distribution of the objects in the underlying set. The mean-
ing of “faithfully representing” and “reasonably large” can be made concrete using
probabilistic counting arguments®. Well, to put everything in perspective, not every
sample faithfully represent the distribution of the underlying set but an overwhelr‘nmg
number of samples do so. That is to say, a randomly chosen sample is very likely
to faithfully represent the distribution (whatever this means exactly). But this also
means that there is at least one sample which faithfully represents the distribution.
A number of new combinatorial results have been obtained by means of such samples
whose existence can be established via probabilistic counting arguments.

Enough idle talk. I hope that many of you are interested in these and other issues.
and I certainly hope that many of you will be able to attend the symposium.

2Gee for example Spencer, J. Ten Lectures on the Probabilistic Method. SIAM, Philadelphia.
Penn., 1987 for an account of probabilistic counting methods.



Two Weeks Worth of Teaching

For the good of an area such as computational geometry it is wise to sometimes ask
what its impact on a higher level is or can be. Will computational geometry change
(parts of) computer science or will it disappear after a while? - remember that nobody
seemed to have needed computational geometry 20 yeats ago (silly argument?, well,
I guess so). And there are always people, mostly not from within the area, who ask
the question - and rightfully so.

Well, there are many meanings one can assign to the above question and there
are answers in many different directions. In this column I would like to discuss
the possible impact of computational geometry in the classroom. More particularly, |
will talk about adding topics in computational geometry to by now standard graduate
level algorithm courses. Graph algorithms have become a standard part of algorithin
courses, and so should geometric algorithms. There is only one difficulty, namely that
the area of geometric algorithms is much more diverse than graph algorithms so that
it is difficult for a non-specialist to make a good choice of material if, say, only two
to three weeks of lecture time are available. Sedgewick’s algorithm text! realizes this
idea and contains a chapter on geometric algorithms - next to chapters on sorting,
searching, string processing, graph algorithms, and mathematical algorithms. I guess
it is not too unusual for someone working in the area to disagree with Sedgewick’s
choice of topics. In graph algorithms there is a well-defined core of problems that
everybody should know, such as depth-first and breadth-first search, shortest path
finding, minimum spanning trees, etc., but there is no such set of established problenis
in geometric algorithms. My personal explanation for this state of affairs is that the
area of geometric algorithms is, by definition, much larger than graph algorithms.
After all, a graph is a discrete object, whereas geometry is an area that contains
an inexhaustible collection of objects which are sometimes less and sometimes more
complicated than graphs.

Below, I present a possible choice of material with the aim of showing as many
aspects of geometric programming as possible. That is, there should be some ele-
gant geometric reasoning, some numerical considerations, some interesting algorith-
mic paradigms, all grouped together in a coherent package. The idea is to give a taste
of what computational geometry is and not to present the problems that are consid-
ered most important by any standard (assuming such problems can be identified al

'Sedgewick, R. Algorithms. Addison-Wesley, Reading, Mass., 2nd edition, 1988.
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all).

Let us start by briefly discussing what some of the different aspects of a geometric
algorithm are or can be. In other words, what are the right questions we can ask and
spend some well-used class-time to answer them? Here is a group of questions which

will be answered later.
(i) What is the data and how can it be represented?
(ii) How can we implement geometric primitives?

(i1i) How can we distinguish the combinatorial from the numerical part of a geometric
program?
(iv) What mathematical understanding is necessary or useful in computational ge-

ometry?

We propose to discuss geometric algorithms in class after the chapter on graph al-
gorithms (this is a different ordering than suggested in') so that basic notions and
manipulations on graphs can be assumed. With this assumption it is natural to talk
about geometric graphs, such as subdivisions or alike. The material proposed below
indeed focuses on general triangulations, Delaunay triangulations, and Voronoi dia-
grams which are different types of subdivisions of the plane. We now enter the more
technical part of the discussion. It consists of eight sections:

1. Planar graphs, Euler’s relation, and maximal planar graphs.
2. Triangulating a point set by plane-sweep.

3. Delaunay triangulations and Voronoi diagrams in the plane.
4. A few applications of Delaunay triangulations.

Lawson’s diagonal-flip algorithm for Delaunay triangulations.
. Testing the local Delaunayhood of an edge.

Three-dimensional interpretation of triangulations and of Lawson's algorithm.

e T O

. A conceptual perturbation for coping with degenerate cases.

Each section addresses a different aspect of computational geometry, but together
they form a well rounded discussion of one theme: Delaunay triangulations of finite

point sets in the plane.

1. Planar graphs, Euler’s relation, and maximal planar graphs. One advan-
tage of talking about geometric algorithms after the discussion of graph algorithms
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is the possibility of a gradual transition from graphs to geometry. A natural choice
for the transition are planar graphs.

So we can introduce the notions of plane embeddings of graphs and that of planar
graphs. An embedding of a planar graph generates a subdivision of the plane into
faces or regions. Let G = (V, B} be a planar graph that is simple (no multiedges, no
loops) and write v and e for the cardinalities of the vertex set, V, and the edge set,
E. Using induction over the number of edges, it is straightforward to prove Euler’s
relation which is

v—e+ f=2,
if G is connected and f is the number of faces of any plane embedding of G. The
extension of this relation to the case where G is not connected can now be shown if
so desired.

A mazimal planar graph is one where no edge can be added without violating
planarity; thus, all faces of a maximal planar graph are bounded by exactly three
edges. It follows that 3f = 2e, and, together with Euler’s relation, this can be used
to show that

e<3v—6 and [f<2v-4
for arbitrary planar graphs if v > 3 (why are the inequalities not true if v < 27). From
an averaging argument we also get that every planar graph has a vertex of degree at
most 5. The above topological results will be useful later when geometric questions

are considered, (]

2. Triangulating a point set by plane-sweep. For a given finite point set, P, in
the plane, a triangulation is a planar graph that is maximal contingent upon V = P
and the edges can be embedded as non-intersecting straight line segments. This is a
natural place to introduce notions such as converity and the convexr hull of a point
set. In fact, every triangulation of P is a subdivision of the convex hull of P into
triangles; only the unbounded face is not necessarily a triangle.

Now comes the first geometric algorithm: given P, construct a triangulation of £
(any triangulation will do). The probably simplest algorithm that solves this problem
sorts the points from left to right (increasing z,-coordinates) and adds one point after
the other according to this ordering. Let py,pa,...,p. be the n points from left to
right. To get the algorithm started, we can first construct the triangle spanned by
points pi, p2, and p3. Then we add py, next ps, and so on and so forth. What does it
mean to “add point p;” to the current triangulation? It means that we connect p; to
all vertices of the current triangulation that are “visible” from p;. How can we find
these visible points? For one thing, p;_, is visible from p; because it is the rightmost
of all points to the left of p;. After connecting p; to p;_; we traverse the unbounded
face of the current triangulation, starting at p;_;, in counterclockwise order and add
the edge from p; to the current point g if (p;, ¢, succ(q)) is a right-turn, where succ(q)
is the next point after ¢ on the boundary of the unbounded face (yes, the unbounded
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Figure 0.1: When we add p; we connect it to p;_; and to all other visible vertices by
scanning the current unbounded face, once in counterclockwise and once in clockwise

order.

face has a boundary too). After that we do the same scan, again starting at p;_;, in
clockwise order (see Figure 0.1). This algorithm was generalized to d > 3 dimensions
by Raimund Seidel and can be found in?.

There are several interesting questions that we have to answer now. First, what do
we do if two or more points have the same z,-coordinate, if three points are collinear,
etc. We propose to defer all degenerate position problems to later and to temporarily
pretend that such cases do not occur.

Second, how do we represent a triangulation? We could use the adjacency struc-
ture of the underlying graph (introduced earlier in the graph algorithms section), but
the quad-edge data structure® is a more elegant choice which supports all the geomet-
ric operationr: one needs (such as walking along the boundary of a face, or walking
around a vertex). No fear, it is not necessary to present the full-fledged quad-edge
structure plus procedures as given in® because we talk only about planar graphs in
the (one-sided) plane.

Third, what is a good way to decide whether a sequence of three points, (p,q,7},
forms a left- or a right-turn? The most elegant way uses determinants. Write p =
(m1,72), ¢ = (¥1,2), and r = (py, p2). Then, (p,q,7) is a left-turn iff the determinant
of

T wy 1
P Y 1
P P2 1

is positive. If the determinant is negative then the three points form a right-turn,
and if it is zero then they are collinear. As mentioned above we assume that no three
points are collinear and thus design our algorithms without any branch for the case
the determinant vanishes. Later we introduce a conceptual perturbation method (a

2Edelsbrunner, H. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, Ger-

many, 1987.
3Guibas, L. J. and Stolfi, J. Primitives for the manipulation of general subdivisions and the

computation of Voronoi diagrams. ACM Trans. Graphics 4 (1985), 74-123.
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systematic way to treat degenerate cases) that takes care of all those temporarily
undesired cases.

For the analysis of the above algorithm note that O(nlogn) time is needed to sort
the points; the additional time is O(n) because each step creates a new edge and from
Euler’s relation we know that the total number of edges of a triangulation cannot be
more than 3n — 6. o

3. Delaunay triangulations and Voronoi diagrams in the plane. The Delau-
nay triangulation of a point set P, D(P), is named after the Russian mathematician
Boris Delaunay?, also Delone. It is rather straightforward to give a definition if P is
finite:

an edge connecting p,q € P belongs to D(P) if there is a circle through
p and g so that no point of P lies inside and no other point of P lies on
the circle (see Figure 0.2).

[t is less straightforward to see that this really defines a triangulation ~ in fact, it does
not necessarily if four or more cocircular points are allowed in P, but if we exclude
these degenerate cases (and we do exclude them) then D(P) is always a triangulation
of P. How can we see that? Maybe the easiest way is by first introducing so-called
Voronoi diagrams.

The Voronoi region of a point p € P, V(p), is the set of points z in the
plane that are closer to p than to any other point in P. The Voronoi
diagram of P, V(P), is the subdivision defined by the Voronoi regions of
the points of P (see Figure 0.2).

By definition of Delaunay triangulation and Voronoi diagram we have V(p) and V(q)
adjacent iff the edge connecting p and ¢ is an edge of D(P). This implies that every
vertex of V(P) corresponds to a triangle of D(P), every edge of V(P) corresponds
to an edge of D(F), and every region of V(P) corresponds to a vertex of D(P) (see
Figure 0.2). From our consideration of planar graphs we know that D(P) has at most
3n — 6 edges and at most 2n — 5 triangles, n = |P|. By the “dual” correspondence
between V(P) and D(P) we thus conclude that V(P) has at most 3n — 6 edges and
at most 2n — 5 vertices. ]

4. A few applications of Delaunay triangulations. Maybe the best justification
for choosing Delaunay triangulations as the central topic of the chapter on geometric
algorithms is the elegance of the concept and the inherent magic that reveals a lot
of the beauty of geometry (as we will see a little later). Still, it is difficult to present

1Delaunay, B. Sur la sphére vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestven-
nyka Nauk 7 (1934), 793-800.
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Figure 0.2: The solid edges show the Delaunay triangulation of P and the broken
edges belong to the Voronoi diagram of P.

this as a convincing argument to novices in geometry for which reason it might be
helpful to briefly discuss a few applications of Delaunay triangulations.

A tree with vertex set P is a minimum spanning tree of P if the total edge length
is a minimum. For minimum spanning trees of finite points sets in the plane we have

the following result.
Every minimum spanning tree of P is a subgraph of D(P).

To prove this result one can use the lemma that if e = {a, b} is an edge of 2 minimum
spanning tree then there is a partition of P into sets A and B, a € A and b € B, so
that e is a shortest edge between A and B. It follows that e is an edge of D(P) since
there is no point of B inside the circle through b centered at a and no point of A inside
the circle through a centered at b; thus, the circle through a and b centered at et is
a witness for the Delaunayhood of e. With this result we can construct a minimum
spanning tree of P by first constructing D(P) and second running any fast minimum
spanning tree algorithm on D(P). Indeed, this is the only known O(nlogn) time
algorithm for the problem. Note, however, that the algorithm for constructing D(F)
that we will describe below does not run in O(nlog n) time, but there are others that
do, see ? or®.

The Gabriel graphof P, G(P), is the graph with vertex set P that contains an edge
{p, ¢} if the circle through p and q with center 3‘;—'1 is a witness of its Delaunayhood.
This graph has found applications in geography® and other areas. It is straightforward
from the definition that G(P) is a subgraph of D(P) and that it contains every
minimum spanning tree of P. To construct G(P) we can construct D(P) first and

then delete all edges that do not intersect their dual Voronoi edges.

5Fortune, S. A sweepline algorithm for Voronoi diagrams. Algorithmica 2 (1987), 153—1?41 _
SMatula, D. W. and Sokal, R. R. Properties of Gabriel graphs relevant to geographic variation
research and clustering of points. Geogr. Analysis 12 (1980), 205-222.




The Delaunay triangulation of P somehow captures the relative nearness of the
points in P, and this is really the reason why the Gabriel graph of P and every
minimum spanning tree of P are subgraphs of D(P). It is thus not surprising that
D(P) also contains the nearest neighbor graph of P that contains a directed edge (p, q)
if no other point of P is closer to p than q. To compute all nearest neighbor pairs
we first construct D(P) and then, for each p € P, test all Delaunay neighbors of p.
Since D(P) has at most 3n — 6 edges the second step takes only time O(n).

Finally, we mention the application of Delaunay triangulations to finite element
methods. These methods can be based on a triangulation of the domain of interest.
A sufficient condition for the effectiveness of the triangulation is that & + 8 < =
for every interior edge e, where a and § are the angles of the two incident triangles
that are opposite to e. As we will see later, this condition is satisfied only if the
triangulation is a Delaunay triangulation. . o

5. Lawson’s diagonal-flip algorithm for Delaunay triangulations. This is not
the most efficient algorithm for constructing D(P) but one of the simplest and most
interesting ones. It starts with an arbitrary triangulation of P (for example with
the one constructed by the left-to-right sweep as described above) and modifies this
triangulation through a sequence of local changes. Let T be an arbitrary triangulation
of P and let e = {p,q} be an edge of T. We say that ¢ is locally Delaunay if e is a
convex hull edge or there s a circle through p and ¢ so that the respective third vertices
of the two incident triangles lie outside the circle. Note that a locally Delaunay edge
is not necessarily an edge of the Delaunay triangulation, but every edge of D(P) is
also locally Delaunay. An elementary geometry lemma implies that if e is locally
Delaunay but not a convex hull edge then o + 8 < = with @ and 8 as defined above.
The algorithm can now be described.

Step 1. Construct an arbitrary triangulation of P.
Step 2. Check all edges and push non-locally Delaunay edges onto a stack.
Step 3. while the stack is non-empty do
{p, g} := poP;
if {p, ¢} is non-locally Delaunay then replace {p, q} by the edge
connecting the third vertices of the two incident triangles
endif;
Push the other four edges of the two triangles onto the stack,
unless they are already there
endwhile.

We will talk about the correctness of Lawson’s algorithm and how to implement the
test for local Delaunayhood later. For now let us just convince ourselves that the
algorithm eventually halts. Whenever we do a diagonal-flip we retriangulate a convex
quadrilateral. Such a triangulation consists of two triangles and thus uses six angles.
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Using the elementary geometry lemma mentioned before it is not difficult to show
that the smallest of the six new angles is larger than the smallest of the six old angles.
Thus, the non-decreasing angle vector of the triangulation increases lexicographically
if we do a diagonal-flip. This implies that the algorithm does not run into a cycle,
and since there are only finitely many triangulations of P, it must finally halt. O

6. Testing the local Delaunayhood of an edge. An edge, e, incident to two
triangles, t; and {3, is locally Delaunay if there is a circle throu‘gh a alnd b, the' two
endpoints of e, so that ¢ and d, the other vertices of t; and #,, lie outside the circle.
Such a circle exists iff d lies outside the unique circle through a, b, and ¢. Thus, to
decide whether or not an edge is locally Delaunay we can perform a so-called in-circle

test®:

given a sequence of four points, a, b, ¢, d, decide whether d lies inside, on,
or outside the circle spanned by a, b, and c.

A formula for this test consisting of one four-by-four and one three-by-three (.:lc—
terminant can be developed using the following geometric transform. For a point
p = (m,7;) define p* = (my,my, 7] + x) (p* is the vertical proje.ction of p to the
paraboloid U : z3 = &? + z3). This transform turns out to be quite useful for our
needs because the vertical projection into the zyzs-plane of RN U, h a non-vertical
plane, is a (possibly empty) circle - this is real easy to prove using analytic seometry.
It follows that point d lies inside (on, outside) the circle through a, b, and ¢ iff d* lies
vertically below (on, vertically above) the plane through a*, b*, and ¢*. Now we can
use elementary analytic geometry and eventually arrive at the following statement
which ignores the degenerate case where the four points are cocircular.

Point d = (&,6;) lies inside (outside) the circle through points‘a =

(e1,02), b = (B1,B2), and ¢ = (m,7:) iff the sign of the determinant

of the matrix
a; oy oy +o3

1
B B Bi+P7 1
mn oy ntn 1
61 5-3 6? + 512. 1

is equal to (different from) the sign of the determinant of the matrix

a; o 1
B f2 1
n o121

We need the determinant of the second matrix in order to compensate for permu-
tations of the first three points. For example, notice that the four-by-four matrix
changes the sign of the determinant if we swap points a and b. 5till, the result should
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be the same since swapping a with b does not change the circle through a, b, and .
]

7. Three-dimensional interpretation of triangulations and of Lawson’s al-
gorithm. The mapping from two to three dimensions used to develop the in-circle
test can be applied more globally. If P is the set of points in the plane then define
P* = {p* | p € P}, that is, P* is the vertical projection of P to the paraboloid /.
Let P* be the convex hull of P*, and call a vertex, edge, and facet of P+ lower if
it can be seen from underneath, that is, from point (0,0, —o0). Three points at, b+,
ct form a lower facet of P* iff all other points of P+ lie vertically above the plane
through a*t, b*, ¢*, which is the case iff all other points of P lie outside the circle
through a, b, c¢. In other words, the vertical projection of all lower vertices, edges, and
facets of P* yields the Delaunay triangulation of P. Algorithmically, this could be
used to construct D(P) via a three-dimensional convex hull algorithm, but this is not
our goal. We are going to use the transform to prove Lawson’s algorithm correct, to
give a time analysis, and to derive an optimality property of Delaunay triangulations.

The only way Lawson's algorithm could fail to construct D(P) is if it gets stuck
with a triangulation 7 # D(P) which has no locally non-Delaunay edge. If we raise
T up to three dimensions by projecting P to {/ we get a piecewise linear surface
which is not convex, for otherwise T would be D(F). But then there is also an edge
so that the dihedral angle below the edge is less than 7. Such an edge corresponds
to a locally non-Delaunay edge in the z,z;-plane, a contradiction.

Let us think about this argument for a minute. It means that whatever triangu-
lation T of P we have, if T # D(P) we can apply a diagonal-flip step which lexico-
graphically increases the sorted angle vector of the triangulation. This immediately
implies that D(P) maximizes the angle vector. In particular,

over all triangulations of P, the smallest angle over all triangles of the
triangulation is a maximum for the Delaunay triangulation of P.

Another corollary of the above considerations is a characterization of D(P): a trian-
gulation 7 of P is the Delaunay triangulation of P iff every edge is locally Delaunay
or, equivalently, o + 8 < = for every interior edge of 7.

We have seen how an arbitrary triangulation 7 of P corresponds to a piecewise
linear surface in three dimensions. In this space, what does it mean to perform a
diagonal-flip? Such a flip is performed only at an edge, e, whose lower dihedral
angle is less than 7. The diagonal-flip can be interpreted as gluing the tetrahedron
spanned by the two incident triangles of e to the piecewise linear surface. When
viewed from underneath, e cannot be seen any longer; instead we see the other edge
of the quadrilateral. Thus, every step of Lawson’s algorithm adds another tetrahedron
and eventually constructs a cell complex of tetrahedra in three dimensions. This cell
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complex has n vertices and can therefore have at most O(n?) tetrahedra. (Why ‘is
that? Because every vertex can be incident to at most 2n — 6 tetrahedra.) This
implies that Lawson’s algorithm runs in O(n?) time in the worst case. Indeed, thl:‘,l'("
are examples where it takes ©(n?) time, but it is not known how many diagonal-flips
it takes “on the average”. o

8. A conceptual perturbation for coping with degenerate cases. This con-
cludes the chapter on geometric algorithms — except that we did not yet cover degen-
erate cases, and an algorithm is not correct unless it works for all cases, no? The idea
is to use a tiny bit of symbolic computation that simulates non-degeneracy if degen'er-
ate input is fed to the program. This method, developed in® is termed the S,l,mu!aho_n
of Simplicity, where “simplicity” is used as a synonym for “non-degeneracy”. Here is
how it works.

Let P = {pi,p2,...,pn} be the input, with p; = (mi1,mi2). Thereis a degeneracy
if three points are collinear, that is,

i1 Wiz |
det | 1 m2 1| =0,
Ty ez 1

or if four points are cocircular, that is,

i1 T2 ‘4‘1"?’] -+ 17;-{2 1
Tl Ti2 ﬁ?‘l + ﬂ?’g 1
Tea Tk2 Tig+ 7Ty 1
Ter Tz TF?J + ﬂ'iz 1

det

We replace the coordinates by polynomials in ¢, where € is an indeterminant that is
supposed to be a positive by sufficiently (in fact, arbitrarily) small real number, The
polynomials are chosen so that the new point set is non-degenerate and so that the
primitive operations (left/right-turn and in-circle tests) can still be computed fast.
Both goals can be met if we replace
- 2i—2
pi = (migymiz) by pi(e)=(ma+e mate ).

It is a simple exercise to show that for ¢ > 0 sufficiently small no three perturbed
points can be collinear and no four perturbed points can be cocircular.

So how about the fast simulation? The polynomials seem rather complicated;
even calculating the exponents of ¢ would be too costly. Fortunately, there_]s a way
around it. Consider a left/right-turn test for points (p;, p;,px) and assume 1 < j < k

TFortune, S. A note on Delaunay diagonal flips. Manuscript, AT&T Bell Lab., Murray Hill, New

Jersey, 1987. N ' .
8Edelsbrunner, H. and Miicke, E. P. Simulation of Simplicity: a technique to cope with degenerate

cases in geometric algorithms. In “Proc. 4th Ann. Sympos. Comput. Geom. 1988", 118-133.
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(otherwise, exchange points and remember the parity of the number of exchanges).
As mentioned above we have to compute the sign of

2i=1
Tig + € Tig+ €
25—-1 25~
D=det| my+€"7 mia+e " 1
k=1
Tha + € Tk

This determinant is itself a polynomial in €. If we sort the terms in order of decreasing
exponents we get

g w1 |
D=det| m, miz 1 | =" . det ( il ) + e det ( T2 1 +
%05 Tis 1 T 1 ez 1

+€22;-—2 vt ( il 1 ) + 622;—2 - E22"-1 n
1r;,_1 1
Note that the sign of the first non-zero coefficient decides the sign of D because all
later terms are astronomically smaller than this term. Thus, the simulation consists
of computing, in turn, the coefficients of the polynomial D and stopping when the
first non-zero coefficient is found. It is reassuring that the first term is exactly the
test for the unperturbed points; thus, if the unperturbed points are non-degenerate
then the test is just the same as before. o

The above eight points contain material on geometric algorithms that can be
worked into a course on algorithms. To present the material in class takes about two
to three weeks. Except for minor changes, the above is exactly what I taught in the
fall semester of 1988, and it took me about seven full hours of lecture time. Upon
request I will be happy to provide additional details and possibly copies of my class
notes. Some of the important concepts in geometric algorithms covered by the above
material are

planarity, Euler’s relation, convex hull, triangulation, quad edge struc-
ture, Delaunay triangulation, Voronoi diagram, plane-sweep algorithm,
geometric transform, primitive geometric operation, conceptual perturba-
tion.

Most importantly, the above collection of material demonstrates the richness of the
area and the relations between seemingly different concepts (such as three-dimensional
convex hulls and two-dimensional Delaunay triangulations).
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Two Small Results

In every area of research there are results that fall through the cracks ... I guess. In
any case, some of these results turn out to be useful and often several people thought
of them independently. Then they become common knowledge - inside a limited
community. Often, such results are extensions or modifications of published work, or
corollaries thereof, that did not quite make the deadline. Now they are wondering
about in the wilderness. A column like this seems like a good shelter for such orphans
and we can put them on display in case anybody wants to adopt them. The shelter
may not be as comfortable or respected a place as a refereed journal, but sometimes
it is not appropriate to be overly picky.

I use this issue of the computational geometry column to present two such or-
phans and explain how they came about and why their family status is somewhat
questionable. The reader is invited to comment on the presented orphans, to curi-
ously explore them, and to bring other orphans to my attention if he or she feels
that this shelter is an appropriate and warm home. It is understood that we can
give a home only to orphans that fall into the categories known as “discrete geom-
etry”, sometimes called “combinatorial geometry”, and “computational geometry”,
also known as “algorithmic geometry”.

The first result we discuss is on triangulations in the plane, the second deals
with lines that stab a collection of triangles in the plane. In both cases we start by
introducing some terminology and then proceed to describe the result. We also briefly
sketch the history, to the extent known to me, and review some of the relatives with
more respected social status.

1 Non-Obtuse Triangulations

A triangulation of a finite point set S in the plane is an embedding of a planar graph
with vertex set S so that
1. each edge is a straight line segment, and

2. every face of the embedding is a triangle, except the unbounded face which is
equal to the complement of the convex hull of S.



34

By Euler’s formula for planar graphs, we have
n—e+t=1,

where n = |S|, e is the number of edges of the triangulation, and ¢ is the number of
triangles (we do not include the unbounded face). By the way, from this equation
and because every triangle is bounded by three edges and every edge bounds at most
two triangles, we get e < 3n — 6 and ¢ < 2n — 5. So every triangulation of a set of n
points consists of enly O(n) edges and triangles.

There is a special triangulation of S, called the Delaunay triangulation, D(S), of
§, which is rather important because of various applications including the generation
of meshes for finite element methods. D(S) can be defined as follows.

An edge pq is in D(S) if and only if there is a circle through points p and
g so that all other points of 5 lie strictly outside this circle.

Notice that the edges that belong to the triangulation determine the entire triangu-
lation, that is, the triangles do not have to be specified separately. - Note also that
the convex hull edges belong to D(S) because there is always a large enough circle
that approximates the line through the edge in the neighborhood of S, and there is
no other point of S on or inside the circle because one open half-plane bounded by
the line through the edge contains no point of §.

The critical reader may wonder wheéther or not this definition really specifies a
triangulation. In fact, it does if we assume general position of the points which in
this case means that no four points are cocircular; still it is not trivial to see why this
is so. If S is not in general position then it can be that some of the bounded faces of
D(S) are bounded by more than three edges. For example, if § contains k > 3 points
on a circle and no point of S lies inside the circle, then the k points define a face
with k edges in D(:5). To force a triangulation we can either decompose such faces
into triangles by drawing appropriate diagonals or we can simulate a perturbation of
the points to guarantee general position. Below, we assume general position of the
points.

The Delaunay triangulation of S satisfies a certain angle condition which turns
out to be important for finite element applications.

Lemma. Let 7 be a triangulation of S and for each edge e that does not lie on the
boundary of the convex hull of S let a. and 8. be the two opposite angles of e (see
Figure 1.1). Then 7 = D(S) if and only if a, + 8. < 7 for each such edge e of 7.

In the finite element literature it is proven that this condition is exactly what
is needed for certain approximation methods. Before the event of this proof it was
known that a sufficient condition for the well-behavior of the approximation methods
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Figure 1.1: The two opposite angles of an edge.

is that all angles of the triangulation are non-obtuse, that is, at ff’lOSt Z. The existence
and construction of non-obtuse triangulations, triangulations with non-obtuse angles
only, is interesting from a theoretic point of view too. Below, we present a result
which will enable us to decide, for a given set S, whether or not there is a non-obtuse

triangulation of 5.
Baby theorem. There is a non-obtuse triangulation, 7, of S iff 7 = D(S) and
D(S) is non-obtuse.

Proof. Notice that if 7 is non-obtuse then @, + 8. < w for every edge incident tu
two triangles. Therefore 7 = D(S), if it exists. 0

So in order to construct a non-obtuse triangulation of S just compute the Delaunay
triangulation of S - and there are many efficient algorithms known for this problem!
? _ and test whether it is non-obtuse. If it is not, then there does not exist any

non-obtuse triangulation of S.

It is also interesting to ask how many angles of D(S), on the average, are non-
obtuse. One answer to this question is that if § is a set of n points chosen indepen-
dently and uniformly in the unit-square, then about one sixth of the at most 6n — 15
angles are obtuse. This follows from a result of Matula and Sokal® that about one
third of all edges of D(S) do not intersect the dual Voronoi edge (this is equivalent
to saying that for each such edge pgq not all other points of S lie outside the circle
through p and ¢ whose center is the midpoint of p and ¢). The result follows because
there is a one-to-one correspondence between such edges and obtuse angles.

There are very few papers in the literature that address questions about triangu-
lations that satisfy certain criteria, such as all angles be non-obtuse. The only paper
] am aware of that discusses the non-obtuse angle criterion is* where it is shown that

IEdelsbrunner, H. Algorithms in Combinatorial Geomelry. Springer-Verlag, Heidelberg, Ger-
many, 1987,

IFortune, S. A sweepline algorithm for Voronoi diagrams. Algorithmica 2 (1987), 153-174. )

3Matula, D. W. and Sokal, R. R. Properties of Gabriel graphs relevant to geographic variation
research and clustering of points in the plane. Geographical Analysis 12 (1980), 205-222.

4Baker, B. S., Grosse, E. and Rafferty, C. 5. Nonobtuse triangulation of polygons. Discrele

Comput. Geom. 3 (1988), 147-168.
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every simple polygon in the plane can be triangulated so that no angle exceeds 2.
However, the paper does not give bounds on the number of new vertices that have
to be introduced in order to obtain such a triangulation. To my knowledge, related
problems such as minimizing the maximum angle for a given point set, or minimizing
the maximum number of obtuse angles are open. On the other hand, it is known that
the Delaunay triangulation maximizes the minimum angle over all triangulations of
the same point set.

2 Stabbing Triangles

Let S be a set of n triangles in the plane, not necessarily disjoint. For simplicity
we assume non-degenerate position, that is, no three collinear vertices and no two
vertices on a common vertical line. A transversal of S is a line that meets all triangles
in §.

For many sets S there will be no transversal, but if there exists one, how many
other transversals can there be? This, of course, is a silly question because there are
infinitely many other transversals as we assume non-degeneracy of the triangles which
implies that for any transversal there is an entire “neighborhood” of transversals.
Nevertheless, the question makes sense if we are careful about how we state it. Here
is a finite representation of the (possibly infinite) set of transversals of S:

map every line £ : y = Az + A; to the point £* = (A, —A;), and define
T(S), the transversal region of S, as the set of points £* so that £ is a
transversal of §.

Never mind that the map * is not applicable to vertical lines.

How does 7(S5) look like? Is it connected? Is its boundary piecewise linear? The
answer to the third question is affirmative while the answer to the second question is
not. Let us take a look at the case of a single triangle after extending the map * to
points:

a point p = (m, ;) is mapped to the line p* : y = mz — my.

The map preserves order, that is, p lies (vertically) above a line £ if and only if the
point £ lies (vertically) above the line p°.

The three vertices of a triangle ¢, points p, g, and r, are mapped to three lines,
?°, ¢%, and r*, and a line £ intersects ¢ if and only if the point £* does not lie above
all three lines or below all three lines (see Figure 2.2). Call the set of all such points
the transversal region of t, T(t). The boundary of T(t) consists of two polygonal
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Figure 2.2: The shaded region is the set of all points £* so that £ intersects the triangle.

p

paths, both unbounded (ﬁhe “unbounded boundary” ... never mind), monotone iu
z, and consisting of two or three edges each. Call the upper boundary U(t), for uppe
envelope of p°, ¢, r", and the lower boundary L(t), for lower envelope of p~, ¢, r".

So how about a set S that contains more than just one triangle. Well, if § =
{t1,t2,...,ta} then
T(8) = () T(t:)-
i=1

In other words, it is the set of points below every U(t;) and above every L(t;). Now
it should be easy for the reader to construct examples so that 7(S) is not connected.
What is the maximum number of edges 7(S) can have? Here is the somewhat

surprising answer to this question.

Baby theorem. The maximum number of edges in the boundary of 7(S), over all
sets S of n triangles in the plane, is ©(na(n)).

Recall that a(n) is the inverse of the extremely fast growing Ackermann function®.
It is notorious for growing slowly and it is often ridiculed for this property - still, it
goes to infinity, eventually.

Oh well ... where does the upper bound come from? Of course, Davenport-
Schinzel sequences of order 3 can be used®. Take the lower envelope of the collection

of n upper envelopes Z(t;) and read the names of its edges from left to right. An edge
can occur repeatedly, actually quite often sometimes, but there is no not necessarily

contiguous subsequence of the form

a...booa boian

with a # b. A sequence with this property is called a Davenport-Schinzel sequence of
order 3 if, in addition, no two adjacent symbols are equal. The quite sophisticated

5 Ackermann, W. Zum Hilbertschen Aufbau der reellen Zahlen. Math. Ann. 99 (1928), 118-133
§Hart, S. and Sharir, M. Nonlinearity of Davenport-Schinzel sequences and of a generalized path
compression scheme. Combinaforica 6 (1986), 151-177.
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For the time, T'(n), we get T'(n) = 2T(%)+ O(na(n)) = O(na(n)log n). Hershberger®

analysis in® implies that the maximum length of such a sequence with n different _ . : ) lo 1
showed recently how to modify this algorithm so that it runs in time O(nlog n).

symbols is O(na(n)).

The result in this section received brief mention in 7 and is stated as Exertcise
15.7 in 1. It is also mentioned in '° where extensions to three and higher dimensions
are considered. To my knowledge, there is no place in the literature that adequately
describes the result and its place in discrete and computational geometry.

But then, maybe not every Davenport-Schinzel sequence is realizable as the lower
envelope of upper envelopes U(t). Indeed this is a possibility. So why do we claim
(na(n)) as a lower bound? There is a construction of n line segments in the plane”
so that the lower envelope of these line segments consists of na(n)) pieces. We can
use this construction as follows. Let s be a line segment in the construction. Choose
the triangle ¢ so that Z/(t) consists of s plus a very very steep half-line with positive
slope emanating from the right endpoint of s and a very very steep half-line with
negative slope emanating from the left endpoint of s. If we do this for every line
segment in the construction we get a lower envelope of the /(t) which is the same as
the lower envelope of the line segments, except that vertical edges of the latter are
replaced by very very steep edges in the former.

Ok, so we understand the result, but where does it come from and why was it
not adequately published? Some years ago® the problem of counting the edges of the
transversal region of n line segments in the plane has been studied. The maximum
number of edges in this case is O(n) which is a striking though subtle difference to the
case of triangles. It is this subtlety that prevented the authors of this paper to look
for a non-linear lower or upper bound. A few years later, the study of Davenport-
Schinzel sequences was pursued by Hart and Sharir®. Their results imply an O(na(n))
upper bound for the transversal problem, as explained above, but it was not before
the construction in” that it was realized that O(na(n)) is in fact tight. Who would
have guessed that 7 years ago? You ask “and who would have cared”? Well, maybe
O(n) and O(na(n)) are not any different for any practical purpose, but if you try to
prove a linear upper bound on something that grows proportional to na(n) you have
a frustrating time in front of you, and examples that suggest non-linear growth are
difficult to get because they tend to be at least enormous.

All right, so how about an algorithm that construets T(S), or better, the lower
envelope of a set § of n line segments? The most obvious approach is by divide-and-
conquer.

1. Split .S into two about equally large sets S; and S,.

2. Compute the lower envelopes, £; and £, of 51 and S, recursively.

3. Construct the lower envelope of S by scanning £, and £; from left to
right.

"Wiernik, A. and Sharir, M. Planar realizations of non-linear Davenport-Schinzel sequences by

segments. Discrete Comput. Geom. 3 (1988), 15-47.
“Edelsbrunner, ., Maurer, H. A., Preparata, F. P., Rosenberg, R. L., Welal, E. and Wood, D. 9Hershberger, J. Finding the upper envelope of n line segments in O(nlogn) time. Manuscript,

Stabbing line segments. BIT 22 (1982), 274-281. 108
“’I:Zde]sbrunner, H., Guibas, L. J. and Sharir, M. The upper envelope of piecewise linear functions:

algorithms and applications. Discrete Compul. Geom., to appear.




Computational Geometry Research in Japan

Because of the rapid development of computational geometry in Japan I thought it
is a good idea to have a report in this column that gives some information about the
people involved and the problems they are interested in. I am grateful to Hiroshi
Imai® for agreeing to write such a report. Here it is.

Computational geometry is now one of the most active areas within the field of
theoretical computer science in Japan. This can easily be seen from the large number
of papers on computational geometry that have recently been presented at domestic
research meetings. In the following I will list abstracts of some computational geom-
etry papers presented at these meetings and a related conference in 1989 to illustrate
the state-of-the-art of computational geometry research in Japan.

Before describing the abstracts, I explain the domestic and international activities
of Japanese academic societies to encourage researchers in Europe, North America,
and other parts of this world to visit Japan. There are now two organized researcl
groups in theoretical computer science, one is the Special Interest Group on Algo-
Tithms (SIGAL) within the Information Processing Society of Japan and the other
is the Technical Group on Computation (COMP) within the Institute of Electronics,
Information and Communication Engineering of Japan. Each group has 8 to 10 re-
search meetings per year, which are held at main cities all over Japan (Japan is small
enough for researchers to travel frequently). In 1989, SIGAL organized 7 domestic
research meetings and one international workshop, the latter jointly with COMP. At
these seven domestic research meetings, 50 papers were presented 16 of which fall
into the area of computational geometry. At the International Workshop on Dis-
crete Algorithms and Complexity jointly organized by SIGAL and COMP and held
in November 20-22, 1989, there were 36 talks (15 from Japan, 11 from Asia, 7 from
North America, 2 from Europe, and 1 from Australia), and among them 12 were on
topics in computational geometry. There is still a limited number of the proceedings
still available and those who are interested in getting a copy may contact me directly.

Like the international workshop mentioned above, there were two international
conferences organized in 1987 and 1988, each of which included a session consisting of
about 10 papers in computational geometry. This year, 1990, from August 16 through

3]2I 3epartmem, of Computer Science and Communication Engineering, Kyushu University, Fukuoka
, Japan.
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18, there will be the SIGAL International Symposium on Algorithms in Tokyo. This
symposium will be mentioned again at the end of this report.

Now, I list abstracts of some computational geometry papers presented at the do-
mestic research meetings and one presented at some international meeting. Implicitly,
this list provides you with (a non-exhaustive set of) names of Japanese researchers in
computational geometry and some indication of their special interest.

From SIGAL Research Meetings:

SIGAL 5-19

Takeshi Tokuyama (IBM Tokyo Research Laboratory, Tokyo), Takao Asano (Sophia
University, Tokyo), Shuji Tsukiyama (Chuo University, Tokyo): 4 Dynemic Algo-
rithm for. Placing Rectangles without Intersection. :

Construction of the contour of the union of rectangles is an important problem in
computational geometry. In this paper, we define a special class of arrangements of
rectangles, called FIFO arrangements, whose contour is constructed in O(n log logn)
time. Using the result, we solve the following dynamic allocation problem of rectan-
gles efficiently: Given a rectangle and an orthogonal region with n non-intersecting
rectangular holes, find a possible placement of the rectangle in the region and create
a new hole. We present an algorithm that takes O(n loglogn) time and O(n) space;
this algorithm finds not only one but all possible placements.

SIGAL 5-20

Masato Edahiro (NEC C&C Systems Research Laboratories, Kawasaki): An Assign-
ment Algorithm in VLSI Layout Design Using Voronoi Diagram.

This paper presents a new algorithm for the driver-flip-flop reassignment problem after
the placement of the semi-custom layout design. This algorithm, by using the Voronoi
diagram, is quite efficient and gives a better solution than the existing techniques.
The efficiency and quality of the solution are shown in experimental results.

SIGAL 6-3

Xuehou Tan, Tomio Hirata and Yasuyoshi Inagaki (Nagoya University, Nagoya): The
C-Oriented Polygon Intersection Problem.

We examine the problem of reporting all intersecting pairs in a set of c-oriented
polygons in the plane. A set of polygons is called c-oriented if the edges of all polygons
have only a constant number of orientations. The problem arises in many applications
such as the VLSI design rule checking and architecture or furniture databases. We
present an optimal algorithm that runs in O(nlog n +t) time and O(n) space, where
n is the number of polygons and ¢ the number of intersecting pairs.
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SIGAL 7-4

Tetsuo Asano (Osaka Electro-Communication University, Osaka) and Takeshi Tokuyama
(IBM Tokyo Research Laboratory, Tokyo): A Geometric Construction of Optimal
Hash Function,

Given a fixed set S of keys and two arbitrary function h, and k, associated with each
key, we want to find a hash function by linear combination of those functions that is
optimal in some criterion. Various criteria may be considered, such as minimization
of the maximum number of keys to be included in one bucket or minimization of the
number of empty buckets. This paper presents three different efficient algorithms for
finding such a hash function based on dual transform between points and lines in the
plane. They improved the previous best result both in time and space complexities.

SIGAL 8-3

Naoki Katoh (Kobe University of Commerce, Kobe): Finding a Bipartition of Points
in the Plane by Ly-Intraset Metric Criteria.

We consider problems of clustering a set of n points in the plane into two subsets
under three different optimization criteria based on L-intraset metric. The first is to
minimize the square sum of the L intraset metrics of partitioned subsets. The second
is to minimize the sum of the L, intraset metrics of partitioned subsets. The third
is to minimize the maximum of the L; intraset metrics of partitioned subsets. We
present O(n®) algorithms for the first and second problems. Both algorithms make
use of higher order Voronoi diagrams for n points in the plane. A generalization of
these problems to higher dimensions is also discussed. We present a fully polynomial
time approximation scheme for the third problem.

SIGAL 9-4

Keiko Imai (Kyushu Institute of Technology, lizuka): On the Linearization Technique
in Computing Multidimensional Davenport-Schinzel Sequences and Its Applications.

We consider the problem of computing multidimensional Davenport-Schinzel sequences
by using the linearization technique. This problem has strong connection with the

combinatorial complexity of the lower (or upper) envelope of n multivariate func-

tions. In this paper, we present the linearization technique and its applications tu

the dynamic enclosing circle problem of moving points in the plane and the minimax

geometric fitting problem of two corresponding sets of points.

SIGAL 10-5

Hiromi Aonuma, Hiroshi Imai (Kyushu University, Fukuoka) and Takeshi Tokuyama
(IBM Tokyo Research Laboratory, Tokyo): Seme Vorono: Diagrams for Character
Placing Problems in Map Databases.
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In map databases, it is often required to label regions (e.g., states, lakes) of maps
automatically in a clear and unambiguous manner. In this paper, we focus on the
problem of placing character strings approximately at the centers of their regions.
By considering these regions as polygons and strings as rectangles, we may (1) find
a maximum empty square inside a polygon, or (2) find a position of a rectangle such
that the minimum distance between the rectangle and the boundary of the polygon is
maximized. Here, the sides of the square and rectangles are restricted to lie parallel
to a given set of axes. We use the L,-Voronoi diagram of line segments to solve the
first problem and introduce a new Voronoi diagram to solve the second. It is shown
that both problems can be solved in O(nlogn) time.

SIGAL 11-2

Toshiyuki Imai and Kokichi Sugihara (University of Tokyo, Tokyo): A Combinatorial-
Structure Oriented Algorithm for Voronoi Diagrams of Line Segments.

An algorithm to construct Voronoi diagrams whose generators are line segments is
shown. In this algorithm combinatorial structures of the diagrams are considered‘ as
higher priority information than numerical values. If the precision in computation
is enough, this algorithm constructs the correct Voronoi diagrams. Moreover, even
when precision in computation is so poor that conventional algorithms do not WO]t]{
well, this algorithm produces some output that is topologically mnsistent.‘ In this
sense, this algorithm is robust against numerical error. This algorithm is designed on
the assumption that numerical error exists; hence it has not any exceptional rules for
degeneracy but still works for degenerate cases.

Abstract from the First Canadian Conference on Computational Geometry:

Hiroyuki Ebara, Noriyuki Fukuyama, Hideo Nakano and Yoshiro Nakanishi (Osaka
University, Osaka):

The roundness problem is stated as follows: Given n points in the Euclidean plane,
find the center of the concentric circles enclosing all given points between outer and
inner circles and minimizing the difference between radii of the outer and inner circles.
For this problem, we have never known optimal algorithms whose time complexity
is bounded by a polynomial. We present a new optimal roundness algorithm, whose
time complexity is bounded by a polynomial. This algorithm is based on the property
that the optimal solution for the roundness problem exists only on the vertices in the
union of the nearest-point Voronoi diagram and the farthest-point Voronoi diagram.
We show that the time complexity of this algorithm is O(n?).

This list of abstracts gives you some idea about results obtained by computatiopal
geometers in Japan in the last year. In concluding my report, I would like to mention
the international symposium to be held in Japan this summer. The SIGAL Inter-
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national Symposium on Algorithms will be held at the CSK Information Education
Center, Tokyo, Japan in August 16-18, 1990. The symposium is organized by SIGAL.
Computational geometry is one of the main topics of interest of the symposium, and
we would like to have many computational geometry papers again like in the recent
international conferences on theoretical computer science in Japan. Authors are re-
quested to send twelve copies of a detailed abstract of at most ten double-spaced
pages by February 15, 1990, to Tetsuo Asano, Osaka Electro-Communication Uni-
versity, Hatsu-cho, Neyagawa, Osaka 572, Japan; e-mail: asano@iscb.osakac.ac.jp.
Proceedings will possibly be published as Lecture Notes in Computer Science. | hope
to see many of you this summer in Japan. Also, if you have any questions related to
this report, please do not hesitate to contact me.
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Meetings in 1991

The following few pages feature a short and biased review of the two major compu-
tational geometry meetings of this year. In my opinion, these are the Symposium on
Computational Geometry, this year held in Berkeley, California, and the Canadian
Conference on Computational Geometry, organized in Ottawa, Ontario. I hope that
calling these two the “major two meetings” does not offend organizers or attendees
of many other computational geometry meetings, such as the annual Computational
Geometry Workshop that alternates between Switzerland and Germany, the week
long meeting in Dagstuhl, a new conference center for computer science in Germany,
and others. 1 add that computational geometry is typically also well represented in
major computer science conferences, such as STOC and FOCS in America, ICALP
in Europe, and SIGAL in Asia.

Whatever the situation, this column will give a short review of the two meetings
and offer a few personal observations and thoughts to guarantee a proper bias.

On a general level it should be mentioned that the two meetings differ widely in
their characters. The Symposium on Computational Geometry is certainly the more
established forum being organized for the 6th time already. It is also the more serious
of the two meetings, with a tight three-day schedule and a tough selection modus
that guarantees high quality papers. Would it be fair to call it the more elitist of the
two meetings? The Canadian Conference on Computational Geometry, on the other
hand, has been organized only twice so far, last year in Montreal and this year in
Ottawa. I believe it is intentional that the refereeing process for this meeting is kept
to a minimum. In my opinion the two meetings complement each other nicely and
respond to different needs of the community.

Surely it is possible to read trends in the area from the selection of papers presented
at the two meetings. I admit that it is an open question whether I can read them, but
everybody who has some confidence, or maybe merely some interest in my opinion is
invited to continue reading this column. I will talk about the two meeting, the one in
Berkeley first (because it precedes the Ottawa meeting chronologically), and mention
some results that caught my interest.

The Berkeley meeting. Frances Yao as the program chair and Raimund Seidel as
the local organizer are two names that promised an exquisite symposium, and they
delivered. The meeting took place on the Berkeley campus with the local dormitories,
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vacant of students during the summer, serving as convenient residences. The highlight
of the social program was an outdoor party (the banquet) featuring superb food and
sports activities. Thanks to both for the good work.

The technical program was spread over three days, June 6 through 8, with an
invited talk each. On Wednesday, June 6, Shiing-Shin Chern delivered an enjoyable
talk on differential geometry, linking this area to computing by pointing out many
problems where the use of computers promises to lead to new insights. On Thursday,
James Blinn talked about the demands on computational geometry made by image
rendering. Indeed, computer graphics is one of the main areas that provide motivation
for the study of computational problems in geometry. The third invited talk was
delivered on Friday by Dana Scott. He uses the computer for class-room teaching and
shared his experience with the audience by presenting how he implemented projective
geometry via symbolic computation.

Among the technical contributions I would like to mention Jifi Matousek’s paper
on cutting hyperplane arrangements. In this paper he extends his two-dimensional
cutting results to three and higher dimensions. These results are very important in
computational geometry because they are fundamental to many algorithmic and also
combinatorial geometry problems. Roughly, what Matousek shows is that for every
arrangement of n hyperplanes in d dimensions, d a fixed constant, and for everyr <n
there is a decomposition of the d-dimensional space into O(r?) simplices so that each
simplex intersects roughly on the order of 2 hyperplanes. The paper also presents
efficient algorithms for constructing the decompositions.

Another highlight was Bernard Chazelle's outside-the-program presentation of
his brand new linear time triangulation algorithm for simple polygons. Indeed, he
obtained the result well after the deadline for submissions and his talk was appended
to the end of the technical program because of the general interest created by the
announcement of his result. Another triangulation result which the author of this
column humbly believes is worthwhile mentioning is the O(n?logn) time algorithm
for finding a minmax angle triangulation for a set of n points in the plane by Herbert
Edelsbrunner, Tiow-Seng Tan and Roman Waupotitsch. This problem has a long
history in the finite element literature, and their paper gives the first polynomial
time algorithm for the problem.

I also liked the paper by Gert Vegter and Chee Yap on the computational com-
plexity of constructing the fundamental domain, a 2¢-gon, of a closed triangulated
surface and embedding it on the surface. There are still only few papers that study
the computational aspects of topology problems, but it seems clear that this area has
great potential for the future. Maybe it is still not clear what the right questions to
ask are, but it is important that some steps in this direction are done.

I end my contemplation of the Berkeley meeting with a few general remarks.
Judging from the program, and the programs of the previous five meeting in this

47

series, the Symposium on Computational Geometry is very successful in attracting
the best papers in the area. Its proceedings can therefore be strongly recommended
to everyone interested in computational geometry in general or in certain application
problems that fall into this area. What the conference needs though is a supplement
of services for the technology transfer from computational geometry to areas whose
problems it claims to solve.

The Ottawa meeting. Jorge Urrutia was in charge of the program and the local
organization of this meeting which featured four invited talks and more than seventy
contributed talks spread over five days, from August 6 through 10. The talks were
scheduled in two parallel sessions to provide sufficient time for each talk and for the
participants to exchange ideas and work together. The invited talks were of course
exceptions to this rule and were delivered by Selim Akl, Franco Preparata, Godfried
Toussaint and the author of this column. The location of the meeting was in walking
distance from Ottawa downtown on campus of the University of Ottawa. I would like
to thank Jorge Urrutia for making this meeting successful and enjoyable.

1t is interesting to notice the difference in the choice of invited speakers between
the two meetings. At the Symposium the emphasis is on branching out, creating
ties to related areas, in mathematics as well as engineering. In contrast to this, the
Canadian Conference invites experts in the main core of computational geometry, and
throughout they choose to give survey talks on subareas of computational geometry.

Among the technical contributions I liked particularly a paper by Chi-Yuan Lo
and William Steiger which showed that a ham-sandwich cut of two not necessarily
separated sets of points in the plane can be found in time proportional to the number
of points. This solves a problem that was open for a few years.

Vasilis Capoyleas, Giinter Rote and Gerhard Wéginger showed that for n points
in the plane and a fixed integer constant k, an optimal partitioning of the set into
k subsets can be found in polynomial time. The notions of optimality covered by
their result include the sum and the maximum of the diameters of the subsets being
minimal. The degree of the polynomial depends on k.

Some nice combinatorial geometry results about the separability by lines of a set
of n pairwise disjoint convex objects in the plane were presented in a paper by Jurek
Czyzowicz, Eduardo Rivera-Campo, Jorge Urrutia and Joseph Zaks. They show that
in every set of at least 12k such objects there is one that can be separated by a straiglt
line from at least k of the other objects. Such a result is impossible, in general, for

pairs of objects.

Let me finally rephrase a shelling problem that came up in a paper on constructing
triangulations by Isabel Beichl and Francis Sullivan. Suppose you have a Delaunay
triangulation of a finite point set in d dimensions. Now compute a shelling of this
triangulation as follows. Pick an arbitrary initial simplex and extend the set of visited
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simplices by choosing an arbitrary unvisited simplex so that the union of the visited
simplices (plus the one new simplex) is topologically the same as a ball. The question
is whether this algorithm always succeeds. I believe it does succeed in the plane, but
I do not know the answer to this question even in three dimensions. It is important
to know that unlike an arbitrary triangulation the Delaunay triangulation always
admits a shelling, but it is not clear whether a process that extends the shelling fairly
arbitrarily always succeeds to construct one.

Next years meeting. | close this report by urging you to submit your best com-
putational geometry result to the 7th Symposium on Computational Geometry in
North Conway, New Hampshire. The location promises a beautiful environment that
offers the possibility to combine business with pleasure by adding a few vacation days
before or after the spiritual recreation offered at the meeting. Of course, it is less
important to have a paper there than to attend and learn about all the new things
that will have happened by then.
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