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ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS*
HERBERT EDELSBRUNNER!, RAIMUND SEIDEL!, anp MICHA SHARIRS

Abstract. The zone theorem for an arrangement of n hyperplanes in d-dimensional real space says that
the total number of faces bounding the cells intersected by another hyperplane is O(n¢-1). This result is the
basis of a time-optimal incremental algorithm that constructs a hyperplane arrangement and has a host of other
algorithmic and combinatorial applications. Unfortunately, the original proof of the zone theorem, ford > 3,
turned out to contain a serious and irreparable error. This paper presents a new proof of the theorem. The
proof is based on an inductive argument, which also applies in the case of pseudohyperplane arrangements.
The fallacies of the old proof along with some ways of partially saving that approach are briefly discussed.

Key words. discrete and computational geometry, arrangements, hyperplanes, zones, counting faces, in-
duction, sweep
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1. Introduction. A set H of n hyperplanes in d-dimensional space R¢ decomposes
R into open cells of dimension d (also called d-faces) and into relatively open faces of
dimension k between 0 and d — 1. These cells and faces define a cell complex which is
commonly known as the arrangement A(H) of H. We define the complexity of a cell in
A(H) to be the number of faces that are contained in the closure of the cell.

For a hyperplane b (not necessarily in H) the zone of b is defined to be the set of
all cells in .A(H) that intersect b. Define the complexity of a zone to be the sum of the
complexities of the cells in the zone. A fundamental result on hyperplane arrangements
is presented in the following theorem.

ZONE THEOREM. Any zone in any arrangement of n hyperplanes in R has complexity
O(n?-1).

Various algorithmic and combinatorial applications of this theorem appear through-
out the computational and combinatorial geometry literature [6]. For the case d=2a
number of different and fairly straightforward proofs are known, following paradigms
such as induction [5]; sweep [3], [11]; tree construction [8]; and Davenport-Schinzel se-
quences [9]. Only the sweep proof was extended to three and higher dimensions. How-
ever, this generalization turned out to be too sweeping. The authors of this paper dis-
covered an irreparable error in that proof, which left the zone theorem unproven for
dimensions d > 2.

This paper presents a new proof of the general zone theorem. It is based on a rel-
atively straightforward inductive argument whose simplicity fosters confidence that this
time the proof is actually correct. The new proof does not exploit the “straightness” of
hyperplanes and thus it applies also to arrangements of pseudohyperplanes [4]. The va-
lidity of the zone theorem for such arrangements had been considered an open question.
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Section 2 contains the new proof. Explanations of why the old sweep-based proof
fails and of how it can be partially saved are presented in the appendix.

A few bibliographical remarks: After the incorrectness of the old sweep proof of the
zone theorem was announced, we soon learned of two partial proofs of the theorem, one
by Houle [13] dating back to 1987, and the other by Matousek [15]. They showed that
the zone theorem is correct if the complexity of a cell is defined to be just the number of
its facets, i.e., the number of (d — 1)-dimensional faces contained in the cell’s boundary.
In the terminology of the following section, they showed that z;(n,d) = O(n?™'). In-
terestingly, Houle and Matousek’s proofs methods are virtually identical, and in essence
are also the same as the saved version of the sweep proof presented in the appendix.
Attempts to adapt this proof method to the general zone theorem have failed so far.

2. The new proof. For a d-polyhedron P let gi(P) denote the number of faces of P
of codimension k (i.e., dimension d— k). For a hyperplane b and a set of hyperplanes H in
R4, let Zone(b; H) denote the set of cells in the arrangement .A(H) that intersect b, and
for 0 < k < dlet z(b; H) denote Y oe zome(s.ar) 9(C), Where C denotes the topological
closure of C. Finally, for n > 0,d > 0, and 0 < k < d, let 2x(n, d) denote the maximum
of 2 (b; H) over all hyperplanes b and all sets H of n hyperplanes in R<. Our goal is to
prove the following.

THEOREM 2.1. zx(n,d) = O(n?"1) foreach d > 0and 0 < k < d. In particular, for
alln >0,d> 0, and 0 < k < d, we have

2(n,d) < cx (d; 1) (alﬁ 1> +2 ksg_l Gﬂ) (?)

where co = 1, and ¢, = 3(6% + 2%) for k > 0.

As will be explained in §3, the constant can be slightly improved to cx = 26 + $2*.

First note that, for any fixed k, zx(b; H) achieves its maximum when b and H are
in generic position, i.e., every k hyperplanes in H U {b} intersect in a (d — k)-flat, for
1 < k < d+1. This can be proved using a standard perturbation argument: translating b
slightly can only enlarge Zone(b; H) and displacing a hyperplane of H by a small amount
can only increase the complexities of the cells in Zone(b; H) through vertex truncation
or the actions dual to vertex pulling or pushing (see [12, pp. 78-83]).

Next note that Theorem 2.1 does not state an explicit upper bound for the num-
ber of vertices in a zone. However, it is easily seen that in the generic case 24(b; H) <
%zd_l(b; H) holds, since in the generic (i.e., simple) case every vertex of a d-polyhedron
P isincident to d edges, and each edge of P is incident to at most two vertices. Therefore
we obtain from Theorem 2.1 the bound

2 2 n
el d) < Seana(md) < S (")

The most important ingredient for our proof of Theorem 2.1 is the following lemma.
LEMMA 2.2 Foralld > 1,0 < k < d, and n > k we have
(1) a(n,d) < —

— (zk(n—1,d) + 2ze(n— 1,d — 1)) .

]

Proof. Let H be a set of n hyperplanes in R, and let b be some other hyperplane.
Because of the remarks above we assume that the hyperplanes in H U {b} are in generic
position. A face f in A(H) of codimension k now lies in exactly k hyperplanes of H
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and is part of the boundary of 2* cells of A(H). More than one of these cells can lie in
Zone(b; H), and thus the contribution of the face f to z(b; H) can be larger than one.
In order to have entities that contribute at most one to the count 2 (b; H), we define
a border of codimension k to be a pair (f,C), where f is a face of codimension k in
A(H) and C is a cell that has f on its boundary. Thus zx(b; H) counts all borders of
codimension k in Zone(b; H), i.e., borders (f, C) for which C is in Zone(b; H).

Now let h be some hyperplane in H, and let H/h be {j N h|j € H\{h}}. Note that
H/h forms a (d —1)-dimensional arrangement of n—1 “hyperplanes” within h. Consider
the expression

zk(b; H\{h}) + ze(b N h; H/R).

We claim that it is at least as large as the number of borders (f, C) of codimension k in
Zone(b; H), for which f is not contained in h. Note that every such border is equal to
or contained in a border in Zone(b; H\{h}). Our strategy is thus to consider borders in
this latter zone, and analyze what happens to them when h is added back to H. So let
(f,C) be a border of codimension k in Zone(b; H\{h}).

Case 1. h0C = . The border ( f, C) gives rise to exactly one border of codimension
k in Zone(b; H), namely, itself.

Case2. hNC # Obut hN f = 0. Let hy be the (open) halfspace bounded by h that
contains f, and let C' = C N hy. If C’ intersects the base hyperplane b, then (f, C) gives
rise to one border of codimension & in Zone(b; H), namely, (f,C’); otherwise it gives
rise to no border in Zone(b; H).

Case3. hNC # Gand hN f # B. Let A’ and h” be the two open halfspaces bounded
by hand let ' = C Nk and C” = C N h". If only one of C' and C” intersect b
(say, C"), then (f, C) gives rise to one border of codimension k in Zone(b; H), namely,
(fNA,C"). However, if both C’ and C” intersect b, then ( f, C) gives rise to two borders
in Zone(b; H), namely, (f N h’',C’) and (f N k", C"). But in that case C N h is part of
Zone(bN h; H/R) and (f N h,C N h) is a border of codimension k in Zone(bN H; H/h).
(Note that, in generic position, the border (f Nk, CN A) uniquely determines the border
(£,C))

Since all borders ( f, C) of codimension k in Zone(b; H) for which f is not contained
in h must arise as described in the three cases, it follows that the number of such borders
is at most zx (b; H\{h}) + zx (b h; H/h), as claimed. But from this we can conclude that

(n—k)zx(b; H) < D (21(b; H\{h}) + ze(b N h; H/R)) ,
heH

since every border (f, C) of codimension k in Zone(b; H) is counted in the sum n — k
times, once for each hyperplane k that does not contain f. From this last inequality the
statement of the lemma follows immediately. 0

The recurrence of Lemma 2.2 is a bit unwieldy. However, it becomes more manage-
able by putting zx(n,d) = (})wk(n,d), for n > k, which transforms the recurrence (1)
into

wi(n,d) < wg(n —1,d) + we(n - 1,d - 1),

foralld > 1,0 < k < d, and n > k. By iterating this new recurrence on the first
summand one obtains

) wi(n,d) < w(k,d)+ Y we(m,d—1),

k<m<n
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valid again foralld > 1,0 < k < d, andn > k.

Proving the asymptotic version of Theorem 2.1 is now an easy induction on d. The
base case zx(n, 2) = O(n) for k = 0, 1,2 is proved separately using any one of the proofs
offered in [3], [5], [8], [9] (or also in Lemma 2.3).

Now let d > 2 and assume inductively that z;(m,d—1) = O(m?~2), forallk < d—1
(where the constant of proportionality depends on k and d). Then wi(m,d — 1) =
O(m?-27%), and thus by (2)

we(n, d) = we(k,d) + > Om**7%),

k<m<n

which implies wy(n,d) = O(n?~!~*), thereby showing that zx(n,d) = O(n?-1), pro-
vided k < d — 2. When k = d — 1 this approach yields only an O(n?1logn) bound.
However, one can now establish the desired zi(n,d) = O(n*™') for k = d — 1 and
k = d as follows: Euler’s relation states that for any cell C in an arrangement the sum
Y o<r<a(—1)%"*gi(C) evaluates to 0 or 1, depending on whether C is bounded (see 12,

pp- 130-140]). Thus it follows that in R¢ for any set H of n > d hyperplanes and any
hyperplane b in generic position

N ()% *a (b H) 2 0.

0<k<d

Recalling that z4(b; H) < 224_1(b; H), we obtain the relation

(3) (1—§)zd_1(b;H)Szd_l(b;H)—zd(b;H)s > () Fau(b H).
0<k<d-2

But as d > 2 and we have proven already that z(b; H) < zx(n,d) = O(n?1) for 0 <
k < d—2, and since z4(b; H) < %Zd——l (b; H), relation (3) yields that 2 (b;H) = O(n41)
holds for all k. As this is true for any H and b in generic position and since it suffices to
consider only generic position we can conclude that z;(n,d) = O(n? 1) for0 <k <d.
This completes the proof of the asymptotic version of Theorem 2.1.

The proof for the more exact, nonasymptotic version follows the same inductive
scheme, except that we will use a slightly different method for dealing with the case
k > d — 2. First we need a few small lemmas. Recall that when arguing about zx(n, d)
we need only to consider simple arrangements with the zone-producing hyperplane bin
generic position.

LEMMA 2.3. 21(n,2) < 6n.

Proof. Of course this is just the Zone Theorem for arrangements of linesin the plane,
and we could refer to a number of different proofs ([3], [5}, {8], [9}; in fact, [3] gives a
slightly better bound—see §3). For the sake of completeness, however, we include here
yet a different proof.

Let H be a set of n lines in the plane, and let b be some other line. Without loss
of generality we assume that H U {b} is in generic position (no three lines intersect, but
every two do), and we assume that b is “horizontal.” We need to show that the sum of
the edges of the cells in Zone(b; H) is at most 6n.

Since no line in H is parallel to the horizontal line b, it makes sense to talk about

s the left bounding edges and the right bounding edges of a cell. It suffices to show that
the total number of all left bounding edges of the cells in Zone(b; H) is at most 3n.
This is clearly true when H is empty. So let h be the line in H that intersects b fur-
thest to the right. By induction the total number of left bounding edges of the cells in
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Zone(b; H\{h}) is at most 3n — 3. The addition of & to the arrangement formed by
H\{h} can increase this number at most by 3. 0

LEMMA 2.4. For any set H of n hyperplanes and any hyperplane b in generic position in
R with d > 2 we have

w251 () () ()

Proof. Assuming generic position of a set H of n hyperplanes and an additional hy-
perplane b, every 2-face in the (d—1)-dimensional arrangement induced by H in b derives
from a 3-face in A(H) that is in the boundary of 2¢-3 cells of A(H), all of which are in
Zone(b; H). It now suffices to observe that in a simple (d — 1)-dimensional arrangement
of n hyperplanes the number of 2-faces is

3 ()= () ()G

(see [6, p. 7])- O
LEMMA 2.5. Forall d > 2 and for all n > d — 1 we have

(d ;5 1) za-1(n, d) < 3(d—2)2a_s(n, d)~6-2%~3 Kd ; 1) ( . 1) + (d | 2) ( " 2)] .

Proof. Lemma 2.4 implies that it suffices to show the validity of the inequality
(%5 ) am 05 < 30 = 2Dzt ) = 62 ),

for any set H of n hyperplanes in R? and any hyperplane b in generic position (recall
that it suffices to consider only generic position).

Since in a simple arrangement of n > d — 1 hyperplanes in R? every face is pointed
(i.e., has a vertex) it suffices to show that for any pointed simple d-polyhedron P with
d > 2, the inequality (dgl) fL <3(d — 2)f2 — 613 holds, where f; = gq4_; is the number
of i-dimensional faces of P.

Let F3 be the set of three-dimensional faces of P, and for a 3-face ¢ € Fj3 let e(c)
denote the number of edges of ¢ and let s(c) denote the number of 2-faces of ¢. For
J =1,2let I; 3 denote the number of pairs (X,Y’) so that Y is a 3-face of P,and X is a
jfaceof Y.

Because of the simplicity of P every 1-face is contained in (dgl) faces of dimension
3,and thus I; 3 = (dgl) f1. Similarly I3 = (d — 2)f2. On the other hand I; 3 can
also be expressed as ) ., €(c), and I3 as 3 . . s(c). Euler’s relation in any three-
dimensional pointed polyhedron with e edges and s facets implies the inequality e <
3s — 6. Hence,

(dg 1) fi=Y el) <Y (3s(c) ~6) = 3Ir3 — 6fs = 3(d ~ 2) 2~ 63,

ceF3 c€Fs

as asserted. 0

We now have everything ready to give a complete inductive proof of our main The-
orem 2.1, which claims that for each d > 0 the following holds for all » > 0 and for each
0<k<d:
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(4) 2k(n,d) < Zi(n,d) = e (d; 1) (d ﬁ 1> v k<zd 1 (i) (?> ,
<j<d~-

where co = 1, and ¢ = 3(6% + 2F) for k > 0. For k > 1it is easy to check that
Cp = 6(Ck_1 — 2k_2) with ¢; = 6.

We first dispose of a few easy cases. The bound (4) is trivially correct when d = 1. So
assume d > 1 and consider n < k < d. In this case the bound Zi(n, d) in (4) evaluates
to 0, which is correct since there cannot be any face with codimension k£ when there are
fewer than k hyperplanes.

Finally we can dispose of the case n = k < d since in an arrangement of ¥ < d
hyperplanes in generic position there is exactly one face of codimension & and itisin the
boundary of 2* cells, all of which are intersected by the zone hyperplane. Thus 2 (k,d) =
2k < Z,(k,d), as desired. From now on we will thus assume thatd >1andn > k.

Applying the binomial product identity (5) ) = (§) ($=5) to each term on the
right side of (4), and using the substitution zx(n,d) = (})wx(n,d) as before, we can
rewrite (4) equivalently as

wk(n,d)SWk(n,d)Eck(diIﬁk) ok Z (::Z)

k<j<d-1

We can now prove the bounds (4) by induction on d. For the base case d = 2 Lemma
2.3 implies that indeed z;(n,2) < 6n = Z1(n, d); the fact that zo(n,d) < n+1= Zp(n,d)
is trivial.

Now let d > 2 and assume inductively that for 0 < k < d — 1 and for all m >
k the bounds zx(m,d — 1) < Zi(m,d — 1) and therefore also the equivalent bounds
wr(m,d — 1) < Wi(m,d — 1) hold.

Recall that for 0 < k < d, and n > k Lemma 2.2 implies the inequality (2)

wi(n,d) < we(k,d)+ Y we(m,d—1).
k<m<n

Clearly wy(k,d) = 2x(k,d) and hence wg(k,d) = 2. Thus employing our inductive
assumption and exploiting the binomial identities (5) = 1and Yo, 4 (5) = ( s if
B > 0, we obtain -

wi(n,d) <25+ Y Wi(m,d—1)

k<m<n
—k m-—k
g ) 56
k$m<n[ d-2-k k<j<d—2 j—k

—k n—k
=2k+ Ck( n )+2k E ( )
[ d—1—k h<iod_2 j+1-k
n—k & n—k
=Ck(d—1-—k>+2 E (j—k)=Wk(n’d)’

k<j<d—1

as desired.



424 HERBERT EDELSBRUNNER, RAIMUND SEIDEL, AND MICHA SHARIR

Thus we have established for all n > k the desired wi(n, d) < Wi(n, d) and equiva-
lently 2¢(n, d) < Zi(n,d)—however, only for 0 < k < d—1. For k = d— 1 our inductive
assumption does not hold.

To prove the desired bound for k = d — 1 we proceed as follows. We need only
consider the case n > k = d — 1. We just proved that

za-2(n,d) < Za_a(n,d) = ca_a(d — 1)(df 1) +242 (d " 2).

Plugging this in the inequality
d—1
24-1(n,d) < (d 1) [B(d 2)24_2(n,d) —6-2¢- 3( 5 )(dj1>

()

a1, d) < ey [3(d 2)eq-a(d — 1)( i 1) +3(d - 2)2%? (dfz)

(1)) e ran ()

= 6(caz — 2d—3)<di”_ 1) = cd_l(d " 1) = Zg_1(n,d).

This completes the induction on d and the proof of Theorem 2.1.

of Lemma 2.5 yields the desired

3. Remarks. First let us point out that our proof of the zone theorem does not ex-
ploit the “straightness” of hyperplanes per se, but only the restricted kinds of intersection
patterns that are possible amongst hyperplanes. Thus the proof applies equally well to
arrangements of pseudohyperplanes which can be modeled combinatorially by oriented
matroids (see [4]).

For the two-dlmensmnal case Bern et al. {3] prove the slightly stronger bound of
z1(n,2) < Ln, which is tight up to an additive constant in the worst case. Using this
bound as an induction basis in our proof yields a slightly better value for the constants
ck, namely, cx = 26* + 32* for k > 0.

The definition of a zone that we use in this paper is slightly different from definitions
used before. We define Zone(b; H) to be the set of all cells in the arrangement A(H)
that intersect the hyperplane b, and the cells were defined to be open sets. Previously
the zone used to be defined as the set of all cells whose closure intersects b. Let us call this
set Czone(b; H). Note that in degenerate cases Czone(b; H) can be substantially more
extensive than Zone(b, H). Nevertheless the O(n?~1) upper bound also applies to the
sum of the complexities of the cells in Czone(b; H). This can most easily be seen by
observing that Czone(b; H) = Zone(b*; HY U Zone(b™; H), where b* and b~ are two
hyperplanes parallel to b, one on each side of b and sufficiently close to b.

Deriving the exact value of z,(n, d) looks like a fairly challenging problem. For a
start, tight lower bounds on zx(n, 3) are desired.

Finally, we remark that the proof techniques of this paper, in particular Lemma 2.2,
bear some similarity to the so-called combination lemma techniques; see [7], [10], [16].
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It would be interesting to see to what extent it can be generalized and applied to re-
lated discrete geometry problems. Recent successful applications have been achieved
by Aronov et al. 1}, who derive bounds on the sum of squares of cell complexities in a
hyperplane arrangement, by Aronov and Sharir [2], who prove bounds on the complexity
of the zone of a convex or fixed-degree algebraic hypersurface in a hyperplane arrange-
ment, and by Houle and Tokuyama [14], who give bounds on the complexity of the zone
of a flat in a hyperplane arrangement.

4. Appendix: Why the sweep proof fails in the general case and how it can be par-
tially saved. In this appendix we first show what is wrong with the old sweep-based proof
of the zone theorem as presented in [11] or [6], and then we show how the sweep ap-
proach can be used to still prove the zone theorem in the three-dimensional case, and a
weak version of the theorem in the general d-dimensional case, which counts only facets.

Before we get to the details of the old proof let us change the problem slightly:
Firstly we rename the base plane b of the previous sections h, and secondly we could the
number of faces bounding the cells in A(H U {h}) that lie on one side of h and have a
facet in h. In the generic case (which we can again assume without loss of generality),
even if we ignored the faces contained in h, this number, for at least one side of h, would
be at least half the complexity of the zone of h in A(H) as defined in §1.

Choose a coordinate system so that h is the hyperplane z; = 0 and consider the
cells above h (in the half-space z4 > 0) that have a facet in h. Call these cells and their
faces active. As above, when we count the active faces we will count a face once for each
active cell it bounds. We therefore continue to use the notion of borders, and define
24—k k_borders (f,C) for each k-face f, one for each cell C it bounds. Call a k-border
(f,C) active if and only if cell C is active.

4.1. The notion of a chain. The basic idea of the sweep proof is to move a hyper-
plane h; continuously over the active cells. Think of ¢ > 0 as the time and define
h: : 4 = t. So hg = h and h; moves upwards as ¢ increases. At any point in time ¢
the cross section of A = A(H) within h, is an arrangement defined by » hyperplanes in
R4-!, which we denote as A;.

Let us index the vertices of .4 above h as vy, v, . . . , Ur, and define points in time u;
so that v; € h,, forl < i < m. We assume that 0 = up < u3 < up < ... < Uy <
Um4s1 = oo. Unless t = u; for some i, A, is a simple arrangement. If ¢ = wu; then
exactly d of the hyperplanes defining .4, meet in a common point, and otherwise the
hyperplanes are in a generic position. Let t and ¢’ be so that u;_; <t < u; <t <uipa
forsome 1 < i < mand call the transition from A; to Ay an elementary step. Ignoring the
positional differences of the hyperplanes in A, and A, the only combinatorial difference
between the two arrangements is that a (d — 1)-simplex in A, reverses its orientation in
Ay . This is illustrated in Fig. 4.1, which shows three cross sections of an arrangement of
three planes in R3.

Let hy, ha, ..., hq be the hyperplanes (in R?) that intersect at v;. The faces of A
that intersect h; are the same as the faces that intersect hy, except for a group of faces
that have v; as their topmost vertex (they intersect h; but not h; ) and another group of
faces that have v; as their bottommost vertex (they intersect hy but not h;). For each
1 < k < d, we identify a k-face f in the first group with a k-face f’ in the second group if
f and f span the same k-flat. Similarly, we identify the k-borders (f, C) and (f',C") if f
and f' are identified and C and C' lie on the same side of each hyperplane that contains
f and f’. The identification effectively defines equivalence classes of faces and borders.
We call an equivalence class of k-borders a k-chain, for 1 < k < d. For example, a
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L’A

a;"‘“—

b €

1< uy 1= u; t>u

FIG. 4.1. The triangle defined by three lines (the cross sections of three planes) changes orientation as hy
sweeps through the vertex where the three planes meet.

1-chain is a sequence of 1-borders (sided edges) on a line, a 2-chain is a sequence of 2-
borders in a common 2-flat, and so on and so forth. Figure 4.1 shows the cross sections
of four 1-chains (the four-sided versions of a sequence of edges) and of two 2-chains in
a three-dimensional arrangement.

4.2. 2-chains do not necessarily die. The sweep proof of the zone theorem hinges
on the claim that whenever we sweep through an active vertex there is at least one chain
that dies. A chain is said to be dead at time ¢ if it contains no further active borders,
that is, all borders of the chain that intersect some hy with ¢’ > ¢ are inactive. Since
the number of chains is O(n?™1), this claim implies the Zone Theorem. We show below
that, unfortunately, this claim is incorrect starting in dimension d = 3.

For a vertex v call the cell for which v is the topmost vertex the cell below v, and
consider the three types of elementary steps shown in Fig. 4.2. In type 1 the 3-chain
whose first cell is the cell below v dies. Indeed, every 3-chain has only one active cell,
namely, its first cell. In type 2 the 1-chain labeled a dies. This is because all future
1-borders of this 1-chain lie on an edge of a triangular cone disjoint from h and their
associated cells lie inside this cone. We now demonstrate that in type 3 the 2-chain
labeled € does not die, contrary to the claim in [11].

AX

(€
type 1 type 2 type 3

FiG. 4.2. We distinguish three types of elementary steps associated with a vertex v in a three-dimensional
arrangement. For each type the cross section of the active cell is shaded. In type 1 the cell below v is active, in type
2 the cell below v shares an edge with the active cell, and in type 3 the cell below v shares a 2-face with the active
cell. Elementary steps where more than one cell bounded by v are active are decomposed into instances of the three
basic types.

The example that we use consists of four planes, by, ho, h3, hy. We choose hy : 21 =
0, hs : z2 = 0,and hs : z; +x2+23 = 1. Now choose hy4 so that it meets the line AN A3 at
a point with negative zz-coordinate and so that the central triangle (the 2-face that lies
in h3 and in front of h, k1, and hy) lies just slightly behind h4. In Fig. 4.3 only the lines of
intersection of h4 with h and h3 are shown. Of the three shaded 2-borders, which belong
to a 2-chain, the first and the third are active and the middle one is inactive. Indeed, the
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middle 2-border is within the dead cone defined by h,, A2, h3, but the third 2-border is

not. When we sweep through vertex v = h; N hy N h3 we have type 3 as shown in Fig.
4.2, but the 2-chain labeled e does not die.

hs

FIG. 4.3. The shaded 2-borders (they face the observer) belong to a 2-chain. The first and the third 2-borders
are active, the middle one is inactive.

4.3. Fixing the sweep proof in three dimensions. In spite of the fact that in type 3 no
chain dies we can still argue that the zone theorem is correct for d = 3 using the sweep
approach and the type classification illustrated in Fig. 4.2. The reason is that 1-chains
still die and 2-chains are linked to 1-chains in elementary steps of the sweep.

At time t = 0. A is a two-dimensional arrangement defined by n lines. Because
we assume generic position it consists of vy = (}) vertices, ¢, = n? edges, and ¢y =
(3) +n+12-faces (see, e.g., [6, p. 7]). So we have 4 1-borders each starting a 1-chain,
2¢p 2-borders each starting a 2-chain, and ¢g cells each starting a 3-chain. All these
1-borders, 2-borders, and cells are active.

Tjpe 1. Recall that in this case the cell below the vertex v that is swept over is active.
The corresponding 3-chain dies. So type 1 can occur at most ¢, times. Indeed, it occurs
exactly once for each bounded 2-face in A and therefore exactly v, = ¢o —2n = (3) —
n+1times. Each time an elementary step is of type 1 we encounter a new active 0-border,
and, respectively, three active 1-borders and 2-borders no longer intersect h;.

Tjpe 2. Here, the cell below v shares an edge with the active cell. One 1-chain on the
corresponding line dies and a new active 2-border is encountered. Since there are only
41y 1-chains, this type can occur only v < 414 times. Besides the new active 2-border
we also encounter two new active 1-borders and one new 0-border at v.

Type 3. Here, the cell below v shares a 2-face with the active cell. The number of
active 2-borders that intersect h; decreases by one. Type 3 thus occurs v3 < 2¢p + 2 —
37 < 2m? + (g) + 3n — 3 times because there are 2¢g active 2-borders initially, we get
one more at each occurrence of type 2, and 3y, 2-faces disappear in elementary steps of
type 1. Notice that we encounter one new active 1-border and one new active 0-border.
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We count the active borders when they are encountered by k.. Initially, we have 41
0-borders, 2¢¢ 1-borders, and ¢y 2-borders, all active and all in h. We also have 41 1-
chains each starting with an active 1-border, and 2¢, 2-chains each starting with an active
2-border. So we get

dvg+71+v2+7v < 4(3) + (;L) —n+1+4(12l) +2n?+ (g) +3n-3="Tn?4+0(n)

active 0-borders,

21n?
2

€0 + 4vg + 272 +v3 < 2n? +4(72l) +8(T2L) +2n% + (Z) +3n-3= +O(n)

active 1-borders, and

n
2

n

9 2
¢o+2e0+ 72 < ( >+n+1+2n2+4(2) :—;L+O(n)

active 2-borders. This proves the zone theorem for d = 3.

What kind of upper bounds does this yield for zx(n,3)? Note that here we are
counting the borders just on one side of the plane h, but we include the borders con-
tained in h. Thus to get good bounds for zi(n,3) from the above bounds, we need to
subtract the borders contained in h, multiply by two, and subtract the borders that in-
tersect h. Doing this yields the bounds z;(n,3) < 6n2 + O(n), z2(n,3) < 1512 + O(n),
and z3(n,3) < 10n? 4+ O(n). Note that the coefficients of the n? terms agree with the
corresponding coefficients of Theorem 2.1 as proved in §2. Thus, with the improved
coefficients mentioned in §3, we have better bounds than those derived above.

4.4. The sweep proof for facets. The fix of the sweep proof described in §4.3 does
not extend beyond three dimensions. For example, in dimension d = 4 the sweep links
1-chains with 3-chains and 2-chains with other 2-chains. Since 1-chains still die we can
bound the number of active 3-borders, but currently we are not able to bound the r}umber
of active k-borders, k < 2, using the sweep approach. Below we show how to bound the
number of active (d — 1)-borders for arbitrary dimension d.

As before, let H be a set of n hyperplanes in generic position and let b ¢ H be the
hyperplane z4 = 0. There are 3.+, (?) active (d — 1)-borders in h, and initially, there
are2Y°21i(7) (d—1)-chains, each starting with an active (d—1)-border. We encounter
a new active (d — 1)-border at an elementary step if and only if it is of the type that the
cell below the passed vertex shares (only) an edge with the active cell. However, in this
case a 1-chain on the shared edge dies. So this type of elementary step can occur at most
24-1(,",) times, once for each 1-chain. It follows that there are at most

50) o) () -7 ) o

=0

active (d — 1)-borders.
The bound given here implies the bound zy(n,d) < (2¢ + 2d — 2)(,",) + O(n?72),
+ which in terms of its leading coefficient is substantially worse than the bound for 2 (n, d)
given in Theorem 2.1.
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