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Abstract. Every collection of t > 2n? triangles with a total of n vertices in R* has
Q(t*/n®) crossing pairs. This implies that one of their edges meets Q(t3/n®) of the
triangles. From this it follows that n points in R?® have only O(n®?3) halving planes.

1. Introduction

Consider a set S of n points in three-dimensional Euclidean space, R3, and a
collection of ¢ triangles with vertices in S. Clearly, if ¢ is not too large it could be
that any two triangles intersect only in common vertices or edges, if at all. Indeed,
this is possible for ¢ almost as large as n?. Once t exceeds n?, some of the triangles
start having common interior points, no matter how the points of S are placed in
space. If t > 3n? we start to see crossing pairs, that is, pairs of vertex disjoint
triangles with common interior points. This basic fact can be used to show that
for t > 2n? the number of crossing pairs is at least some positive constant times
t*/n®. This extends a result of [1] that for n points and ¢t > 4n edges in R? there
are at least some positive constant times t3/n? crossing edge pairs.

Why is this interesting? A consequence of the lower bound for crossing triangle
pairs is that n points in R® have at most some positive constant times n®?> k-sets,
for any fixed k, 0 <k <n. A k-set of S is a subset S'=Sn H, where H is a
half-space and |S’| = k. For three-dimensional k-sets the first nontrivial bound of

* The research of H. Edelsbrunner was supported by the National Science Foundation under Grant
CCR-8921421 and under an Alan T. Waterman award, Grant CCR-9118874. Any opinions, findings
and conclusions or recommendations expressed in this publication are those of the authors and do
not necessarily reflect the view of the National Science Foundation.

+ Current address: Department of Computer Science and Engineering, Indian Institute of Tech-
nology, Kharagpur, India 721302.



282 T. K. Dey and H. Edelsbrunner

O(n®~1°*%) was reported in [4]. This was improved to O(n®? log®? n) and later
to O(n®*log**n) in [3] and [6]. This paper removes the remaining poly-
logarithmic factor from the upper bound. While the improvement is not dramatic,
we feel the main contribution is the introduction of a new and more direct
approach to proving bounds on k-sets.

2. Crossing Triangles
Definitions and Results

A set V of three noncollinear points in R* defines a triangle o, = conv(V). We -
say that two triangles have a nontrivial intersection if their intersection is neither
empty nor a vertex or edge of both. Two triangles, ¢, and oy, can form three
different types of nontrivial intersections, as illustrated in Fig. 2.1. If 6, N 0y, # &
and Un V = J, then we say that o, and ¢, cross. We also say that an edge
crosses a triangle if it intersects the triangle without sharing a vertex with it. A
finite point set is in general position if any k of the points, 1 < k < 4, are affinely
independent. A set S of n points in general position in R? defines a collection of

b
(:) triangles, denoted (3) For any

()

we write x(8, T) for the number of crossing triangle pairs in T. Furthermore,

x(n, ty= min  x(S, T).
|S|=n|T|=1

Similarly, we write (S, T) for the maximum number of triangles in T crossed by
a single edge of a triangle in T, and we set

Y(ﬂ, t) - min y(S, T).

IS|=n|T|=t

The results of this section are summarized in the following theorem.

\ [ ]

Fig. 2.1.  The left two triangles have a nontrivial intersection but they do not cross, The triangles in
the middle and to the right are vertex disjoint and cross.
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(2.1) Theorem. There are positive constants c,, ¢,, C3, C4 S0 that

t* £
(i) 61—6<JC(?’!, f){(,‘z—s
n n
and
. £3 t2
(ll) C3 . < y(n, f) < Cy -3
n n

for

Proof of the Lower Bounds

We begin with a trivial but most useful observation.

(2.2) If triangles ¢ and ¢’ have a nontrivial intersection, then there is an edge of
one triangle that crosses the other triangle, and if 6 and ¢’ cross, then there are two
such edges.

Notice that because of (2.2) the lower bound for x(n, t) implies the lower bound
for y(n, ). To see this, count a crossing between two triangles once for each edge
crossing the other triangle. Give one unit of credit to each such edge. There are
two credits per crossing and at most 3¢ edges. Assume the lower bound for x(n, t)
and use the pigeonhole principle to get an edge with more than c;(¢*/n°) credits,
where ¢ = 2¢,/3.

hY
(2.3) Let S be a set of n points in general position in R* and T < (3)

(i) |T| < n? if no two triangles in T have a nontrivial intersection.
(ii) | T| < 3n? if no two triangles in T cross.

Proof. Consider a point p; € S and all incident triangles in T. Let J; be the number
of edges with endpoint p;. Clearly, §, < n — 1 because there are only n — 1 other
endpoints. Intersect these triangles with a sphere around p; that is small enough
so that each incident triangle intersects the sphere in a connected great-circle arc.
Assuming the triangles form no nontrivial intersection, these arcs form a planar
graph with §; vertices and hence fewer than 39, arcs. It follows that p; is incident
to fewer than 34; triangles. Since each triangle is counted three times we have in
total fewer than {3, .s 36; < n” triangles.
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To prove (ii) assume that no two triangles in T cross. An edge that crosses a
triangle ¢ can only belong to triangles that share a vertex with o. There are at
most three such triangles incident to that edge. Remove this edge together with
the at most three triangles. Let k be the number of such edges that need to be
removed until no nontrivial intersection remains. We lose at most 3k triangles
and decrease the total vertex degree to Y, s §; — 2k or less. It follows that

IT| < 3k+(3‘; y 35i—2k)=k+ y 5,.4(")+2(") < n?
pieS pieS 2 2

is an upper bound on the number of crossing-free triangles. O

The rest of the argument for the lower bound on x(n, t) is inductive and is
inspired by the proof of a similar result for line segments in [1]. Specifically, we
prove the following inequality.

(24) There is a positive constant ¢ so that

4

x(n, t) > c(z) (;—)4 for M<t< (’;)
3

Proof. Notice that we have n > 15 because

2 n
2n srg(s).

To cover the base case of the induction consider the range 2% < t < $n2. Because
of (2.3(ii)), the number of crossing pairs is at least t — 3n2. Furthermore,

A" F {5_""3!4_6_ n® {625_9’153_ ) nz{t 4.
6 (n)4 B 1P 16 5 148 B sy St
3

as long as ¢ < (16-5-14%)/(2-625-9- 15%).

The inductive step assumes ¢ > 3n? and x(S, T) = X(n, t). For a point p; e S, let
L= T contain all triangles not incident to p;, and define ¢, = | T;|. For each
crossing pair in T count the vertices not incident to either triangle. The sum, over
all crossing pairs, is (n — 6) - x(S, T). Alternatively, we can think of this sum as
counting the crossing pairs in T;, for each p, e S. Therefore,

=6 x(n)=mn—6-xS,T)=Y x(S—{p}, H= Y x(n—1,1,).

peS pieS
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. - n I
Since p; 1s incident to at most ( ) triangles, we have

-1
r,.>§n2—(" ) )>2(n— 12,

so we can apply the induction hypothesis to S — {p;} and T;. This yields
(e)

6
— Y tt
& 8

3

Observe that Y, .st; = (n — 3)t, and that this implies Y , .5 tf = n((n — 3)t/n)*.
Therefore,

(n—6)-x(nt)>c

Recall that (2.4) holds for ¢ < (16-5-14%)/(2-625-9-15%). So ¢, needs to be
chosen so that

t* (n) t* - 3! tt - 9 153 ¢*
[ AT S N

(n)“‘ 6! mn— 12 5 14° nb
3

Hence, the lower bounds of Theorem 2.1 hold for ¢, = g5 < 16/(2-625) and
Ca = 24:1/3 = 1_5_0'

Proof of the Upper Bounds

The upper bound for y(n, £) in (ii) of Theorem (2.1) implies the upper bound for
x(n, t) in (i). To see this assume no edge crosses ¢,(t%/n®) or more triangles. Since
there are at most 3t edges the total credit accumulated is less than 3c,(t*/n?). Each
crossing pair of triangles generates two credits which implies that there are fewer
than ¢,(t3/n®) such pairs, where ¢, = 3¢,/2.

To prove the upper bound on y(n, t) we choose the points of S on the moment
curve M(t) = (1, 7%, 1) defined for all e R. For two points a = M(r,) and
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b = M(z,) we write a < b if 1, < 7,. It is easy to establish that M intersects any
plane in at most three points.

(25) Let a<b<cand p< q be five different points on the moment curve in R3.
The edge pq crosses the triangle abc iff a<p<b< g <c.

Proof. We first show that if the five points do not lie in the sequence
a<p<b<gq=<c, then pg does not cross abc. Assume without loss of generality
that neither p nor g lie between a and b and suppose pq crosses abe. Move b
continuously on M toward a. At some moment before abc shrinks to a line
segment, pq intersects an edge of abc. At this moment, the four endpoints of the
two edges are coplanar, which contradicts the fact that M intersects every plane
in at most three points.

Next, we prove that if a <p<b< g <c, then pq crosses abe. By Randon’s
theorem [8] the set U = {q, b, ¢, p, q} can be partitioned into U = ¥ U W so that
conv(¥) N conv(W) # . Since all five points are vertices of conv(U), the partition
must be into two and three points. All cases other than V = {p, g} and W = {a, b, ¢}
are excluded by the above argument. O

Consider the set § = {p; = M(i)|1 < i < n}, with n > 15. Define the width of a
triangle ¢ = p;p;p,, with i < j <k, equal to min{j — i, k — j}. For an integer w,
let T,, be the collection of triangles of width w or less. The number of triangles in
T,, can be counted by taking all index pairs i, j, with j — i < w, and joining them
with an arbitrary third index. Each triplet is counted at most three times. Therefore,

n—1
T, >3n—2) Z £
f=n—w
n—

6 - (2nw — w(w + 1)).

Weuse n>w+ 1 and (n — 2)/n > {3, and then w > (w + 1)/2 to get

13
|T,| > nw
6-15

> fgn’(w + 1).

The triangle ¢ = p;p;p, crosses a fixed edge p, p,,, with £ < m, iffi < ¢ <j<m<k
The number of such triangles o € T}, is less than

2(;)31 < w?n.
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For a given ¢, choose wso that | T,,_,| <t < |T,,| and let T = T,, be arbitrary with
|T| =t Then

0 SRR 1 T _ 2 tZ
y(m,x]gy(S,’1")<w21r1=(141'1 “;) <196| “’31| % 196 —.-
1osl! n n

This establishes the upper bounds of Theorem (2.1) with ¢, = 196 and ¢, = 294.

Remark. Let us compare the upper bound in (i) of Theorem (2.1) with the
corresponding lower bound. Both bounds are valid for

mP<t< (n)
3

For t =|T;| = (n — 2)* we can find n points and ¢ triangles, namely, the set T}, so
that no two triangles have a nontrivial intersection. Hence, x(n, (n — 2)?) =0
although x(n, 2n%) > ¢,((2n?)*/n®) > £n*. So as t increases from (n — 2)? to 2n?, the
minimum number of crossing pairs goes up from 0 to quadratic in n. The upper
bound for t = 2n? is ¢,((2n?)*/n®) = 2352n3. This suggests the possibility that x(n, t)
is indeed cubic in n for this choice of ¢. Suppose this is indeed the case. Using the
same induction as in the proof of (2.4), we could then prove that x(n,t) is
proportional to t3/n3, for all
s n
n" <t < ( 3)‘

As explained in Section 3, this would imply that n points in R* have only O(n*'?)
halving planes.

3. Halving Planes

Let S be a set of n points in R*. Assume that n is odd and that no four points are
coplanar. For three points a, b, c € S let ¢ = abe be the corresponding triangle and
let k be the plane that contains a, b, c. We call h a halving plane, and ¢ a halving
triangle, if there are (n — 3)/2 points on each side of h. The following extension of
the two-dimensional Lovasz lemma [7] has been used in [3] and [4]. We say a
line crosses a triangle if it intersects the triangle but not any of its edges.

(3.1) A line crosses less than n*/8 halving triangles.
Proof. Consider a plane that contains no point of S, and let [, and [, be two

parallel lines in this plane so that I; N conv(S) = &J. For each 0 < 7 < 1 define
l.=1ly + (1 — 1)l;. As 1 increases from 0 to 1, [, translates from I; to ;. The
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number of halving triangles crossed by I, changes only when I, translates through

an edge,
abe (S)
2

A simple rotation argument shows that the number increases or decreases by at
most one. Given [, we can choose I, so that I, translates through fewer than in?
edges as follows. Choose the plane through [, so that there are (n — 1)/2 and
(n + 1)/2 points on the two sides. There are (n> — 1)/4 edges ab that cross the plane
and thus there is one side of [, with fewer than n?/8 edges. It follows that [, crosses
at most n*/8 halving triangles. 0

We prove an upper bound on the number of halving planes by selecting a line
that crosses many triangles. Suppose there are ¢ halving triangles. Condition (ii) of
Theorem (2.1) implies that there is a line that crosses more than c5(t3/n°) of them,
with ¢; = 135. Because of (3.1), ¢5(t3/n®) < n?/8 which implies the main result of
this section.

(3.2) Theorem. The number of halving planes defined by n points in R? is less
than csn®?3,

The constant, cs, can be chosen equal to 1/(8¢c;)"/® = 153 < 3.

Remarks. A subset S’ of Sis a k-set if |S'| = kand S’ = S n H for some half-space
H. The number of halving planes is closely related to the number of k-sets of S.
Indeed, the number of k-sets, for k = (n — 1)/2, does not exceed three times the
number of halving planes, see [5]. For other values of k consider the planes
spanned by three points of S so that k — 1 points lie on one and n — k — 2 points
lie on the other side. Again, the number of such planes is proportional to the
number of k-sets. Furthermore, the same arguments imply the same upper bound
as in Theorem (3.2) for any fixed k.

The bound in Theorem (3.2) slightly improves the ones in [3] and [6]. Besides
this improvement, the main contribution of the new proof is the uncovering of
the close relationship between k-sets and the combinatorics of crossings between
edges and triangles in R3,

4. Discussion

Maybe the most interesting extension of the methods in this paper is to four and
higher dimensions. It is possible to generalize all results of Section 2 to crossing
pairs of (d — 1)-simplices in R%. Specifically, we can show that t > cn~! (d — 1)-
simplices defined by n points in R’ form at least ¢'(t**!/n%@~Y) crossing pairs.
However, to prove a nontrivial upper bound on the number of halving hyper-
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planes, we need a nontrivial lower bound on the number of (d — 1)-tuples of
(d — 1)-simplices that have a common point in their interiors. While the main part
of the induction in (2.4) generalizes to this situation, we have no good extensions
of the base case in (2.3).

We should be more accurate. Recent results obtained with methods from
algebraic topology [9] do imply a nontrivial base case, and induction can be used
to get nontrivial bounds for (d — I)-tuples of (d — 1)-simplices and for halving
hyperplanes. These bounds come out very similar to those derived in [2] and are
therefore omitted. An interesting question is whether the elementary methods of
this paper suffice to derive such nontrivial bounds.
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