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Measuring space filling diagrams and voids

L.1 Introduction. A molecule is often modeled as the union of balls in three-dimensional Euclidean space, R®.
Each ball represents an atom and its size is determined by the van der Waals radius of the atom. Such a model is
known as the space filling diagram of the molecule, introduced by Lee and Richards [9], see also [12, 13]. This paper
presents and documents software consisting of more than 100 functions, written in the C programming language
[11], that can be used to measure a space filling diagram. The software makes no use of the fact that the union of
balls is defined by atoms of a molecule. It is therefore more generally applicable to problems about balls in R3.

~ - The problem of measuring space filling diagramshas received- a fair amount of attention in computational biotogy

and chemistry, and software implementing numerical and analytic approaches are available, see e.g. [3, 4, 10]. Our
software belongs to the category of analytic approaches. Our work differs from earlier work within this category in
at least two respects: it is based on the dual complex of the space filling diagram, see [7], and on inclusion-exclusion
formulas with terms for intersections of at most four balls at a time, see [6]. In spite of the shallow terms, the
formulas are correct (non-approximative) even if there are points covered by many more than four balls. The dual
complex is part of the larger Delaunay or weighted Delaunay simplicial complex. This has the advantage that the
unoccupied space, in the sense used in [1], is properly represented by the simplices not in the dual complex. Our
software uses this representation to compute and measure all voids formed by a space filling diagram.

In IL.2 and II.3 we specify the input to the software, and we describe the various metric properties it computes.
These are the volume, surface area, total arc length, and number of corners of the space filling diagram and its voids,
which are the bounded components of the diagram’s complement. The dual complexes and their relationship to
space filling diagrams are briefly explained in I11.4. The interested reader is urged to consult [6] for a more detailed
description of the relationship. The formulas for measuring a space filling diagram and its voids are expressed in
algorithmic language in II1.5 and IIL.6. Section IIL.7 briefly considers the envelope of the balls, that is, the region of
space inaccessible from the outside. Equivalently, it is the space filling diagram union its voids. Section IIL.8 gives
a formula for measuring the so-called outside fringe of the space filling diagram. Section IIL.9 discusses how the
contributions of individual balls to the surface area can be computed. This applies to the surface area of the space
filling diagram, its collection of voids, a single void, and the outside fringe. There are linear relations between the
various measurements which can be used to test their correctness.

Before we can translate the formulas in II1.5 through II1.9 into measurements, we need to identify the voids of
the space filling diagram. To do this, we use their one-to-one correspondence with the voids of the dual complex.
Each such void is represented as the union of tetrahedra. By the nature of being voids, these tetrahedra do not
belong to the dual complex. This is described in IV.10, and IV.11 shows how a union-find data structure is employed

to compute all voids. Lower level operations, such as deciding the status of a vertex, edge, and triangle, or finding
the tetrahedra incident to a triangle, are described in IV.12.

The main part of this paper consists of V.13 through V.19, which specify the primitive metric functions of
the software. They form a network of some 54 functions ¢omputing and measuring a variety of basic geometric
objects. Since this paper also serves as a documentation of the software, we do not hesitate to give more details
than seemingly necessary. The software is available via anonymous ftp at ftp.ncsa.uiuc.edu or 141.142.20.50. The
connection between this document and the software is given by explicit references to the function names and by
back-references from the functions to the sections of this paper.

I1.2 The data. Each ball is specified by the three coordinates of its center, z,y, z € R, together with its radius,
w € R. The collection of balls is stored in a linear array, B:

type Ball type = record z, y, z, w: Vol real end;
var B: array (l..n] of Ball_type.

Here, Vol real is the same as double and thus represents the data type of double-precision floating-point numbers.
The inner workings of the software are based on the notion of the weight of a point or ball, and a real parameter,
a. The parameter globally modifies all radii. For applications where radii do not change, o can be set to zero and
henceforth be ignored. However, part of the versatility and efficiency of this software stems from the availability of
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this parameter, and it is instructive to understand how it interacts with the weight. For a ball with initial radius
w, the specification of & changes it to the actual radius, which is

vwlsgn(w) + a?sgn(a).

We refer to a situation where all initial radii are zero to the unweighted case. In such a case, all radii are equal
to . In general, it is possible and admissible that w?sgn(w) 4+ a?sgn(a) is negative. The corresponding radius is
imaginary and the ball is-ignored for-all measurements: n most computations, it is possible to-pass indices of B
as parameters rather than individual coordinates and weights. Typically we use i, j, k, £ to denote such indices. An
index is either referred to as a ball or a point or vertex. Another internal data type is

type Vector = record z, y, z: Vol real end;

By convention, we denote variables of type Vector by p, s,t, u, v, with or without sub- or super-scripts. A frequently
used operation is function vector, which creates a vector representing the center of a ball i in B.

IL.3 The output. We consider four problems, namely measuring the union of the balls (the space filling diagram,
U B), measuring the voids of | ] B, measuring the envelope (the union of ball together with the voids), and measuring
the outside fringe (explained later). The main program can be executed interactively or in batch mode. Selections
among the options are then done either in function switch_computation or with command_line specifications. After
finishing computations, all memory is freed by function volbl_clean. We discuss the options in the above sequence.

The union of balls, | B, is represented by.its dual complex, X, which is a collection of vertices, edges, triangles,
and tetrahedra, see IIL4. The following metric information about | J B is computed:

the volume, Vs = V(| B),

the surface area, A = A(|J B),

the total arc length, Ly = L(|J B),

and the number of corners, Cst = C(UJ B).

A void, V, is represented by the collection of tetrahedra whose union is the corresponding void in K. We denote
by V the void as a geometric object (a bounded component of R® — | B) as well as a combinatorial object (the set
of tetrahedra that belong to the corresponding void in K.) The one-to-one correspondence between the two types
of voids is established in [6]. The following metric information about V is computed:

the volume, V, = V(V),

the surface area, A, = A(V),

the total arc length, L, = L(V),

and the number of corners, C, = C(V).

Besides individual voids, we compute the total measure of all voids:

V= D V(V), Aw= 3 AWV), Lw= 3, L), Cu= 5. COV).

voids ¥V voids ¥V voids ¥V voids V

The measurements of the envelope of | J B, | ) B union its voids, are
Ve= Vs + Vt\r, Ae = Ast‘ —~ Ay, Le= Lsf - Ltw Ce = Cuf - Ctv<

Finally, we measure the outside fringe. This is the part of |J B that reaches into the unbounded component of
the complement of the dual complex. Its measurements, Vur, Aor, Lot, Cof, are computed using similar formulas as



Measuring space filling diagrams and voids

for | J B and the voids. The main reason for measuring the outside fringe is for software verification purposes. In
particular, the following relations for the measurements can be used to double-check correctness.

Ve +Viv— Vv —Van—Vor = 0,
A — Ay — Ao = 0,
Leg — Ley — Lot 0,
Cop=Crop=Cop =0,

where Viiy is the total volume of the voids in the dual complex, and Vg is the volume of the dual shape, as computed
in shape_volume. Both are sums of tetrahedron volumes, namely those representing voids, and those representing
the dual shape. This check is implemented in volbl_checking, and velbl_print can be used to print any of the above
results. In order to relativize the unavoidable floating-point imprecision, the check-sums are reported as multiples
of the volume, area, and radius of the largest ball in B. The latter is computed by largest_ball, and its measurements
are reported by print_sizes.

By convention, all metric measurements (volume, area, and length) are taken in multiples of the natural unit
implied by the point coordinates. All angles are measured in revolution, so that 0 is the empty angle and 1 the
full angle. In our pseudo-code notation we use semicolons (;) if the order of the separated parameters is important,
and commas (,) if it is irrelevant.

ITL.4 Geometric background. The software described in this paper assumes the availability of the dual complex,
denoted K, as a subcomplex of the regular simplicial complex, R, of the balls. R is sometimes called the weighted
Delaunay simplicial complex or triangulation. In the case where all radii are the same, R is the Delaunay simplicial
complex of the ball centers. These concepts are described in appropriate detail in [6]. We just mention that the
boundary of K is dual to the boundary of the space filling diagram, | J B. This is illustrated in figure 1. The dual

Figure 1: In the plane, the space filling diagram is the union of finitely many disks. The dual complex is a collection of
vertices, edges, and triangles contained in the union of disks.

complex K of | B is a subcomplex of R. Indeed, the balls can be grown by increasing o so that K contains more
and more simplices of R until K = R when the balls are sufficiently large. The dual complex is constructed using
the programs regtri, mkalf, and alvis available via anonymous ftp at ftp.ncsa.uiuc.edu. The third program, alvis,
also visualizes £ and can be used to select interesting ball sizes for the given set of centers. The next five sections
show how to use K and R to measure a space filling diagram, its voids, their union, the outside fringe, and how to

separate contributions to the surface area made by different balls. The corresponding formulas are developed and
proved in [6].

II1.5 Space filling diagrams. The straight inclusion-exclusion formulas measuring || B, see [6, section 6], are
implemented in function space_filling_measurements. They are evaluated in a single loop over the simplices of K.
All output parameters are initialized to zero:
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Vat 1= Agr 1= Ler := Cy¢ :=0.

The main loop considers all simplices of X and computes intersections of one, two, three, or four balls. It is
convenient to denote a simplex by the list of vertices.

for each o0 € K do if o = then Vi := Vi + ball_volume(s);
. st dPsaini s
endif;
it 0 = ij then Vi := V¢ — ball2_volume(, 7);
Agt 1= Ag — ball2_area(i, j);
Lgs := Lyt + ball2_length(£,j)
endif; o '
if ¢ = ijk then Vir := V¢ + ball3_volume(i, j, k);
Ast 1= Ags + ball3_area(s, 7, k);
Lgt := Lgr — ball3_length(d, 4, k);
Cat i1= Ces + 2
endif;
if o = ijk{ then Vi := Vi — ball4_volume(i, j, k, £);
Ayt 1= Agr — balld_area(, j, k, £);
Lyt := Ly + ball4_length(s, 4, k, £);
C :=Cs—4
endif
endfor.

The area computations are slightly more involved than indicated above because they also determine the contribution
to Agr of each individual ball, see III.9. As it turns out, the implementation of the straight inclusion-exclusion
formulas, as described above, is considerably slower than the computations following the decomposable formula,
see below. It is therefore possible to obtain the measurements of a space filling diagram more efficiently using the
linear relations in IIL.3. This is indeed done in function space_filling_measurements_2.

ITI.6 Voids. The space filling diagram in figure 1 has a single void also shown in figure 2. This void of | B is
contained in a corresponding void in K. Its volume is measured by subtracting the pieces of the spheres reaching
into the void of K. The corresponding theory is expressed by the decomposable inclusion-exclusion formulas in [6,

Figure 2: The left drawing highlights the void of the space filling diagram in figure 1. It is contained in the corresponding
void of the dual complex. To the right, we see the outside fringe of the same space filling diagram.

section 8]. In contrast to the straight inclusion-exclusion formulas in II.5, the decomposable formulas have terms
weighted by angles. These formulas are implemented in function measure_a_void, which measures a single void V of
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(JB. To avoid repetitive code, parts of the computations are done in the auxiliary functions do_void_tetrahedron,
do_tetra_vertex, do_tetra_edge, and do_tetra.triangle. By accumulating single void measurements, we get the total
size of all voids in voids_.measurements. To measure a single void V, we initialize the volume to the sum of volumes
of the representing tetrahedra; the area, length, and number of corners is initially zero.

Vo imlrs e =0;
for each tetrahedron o = ijkf € V do V; =V, + tetrahedron_volume(i, j, k, £) endfor.

The main loop considers all tetrahedra in V and their faces, if they are in K. For each such tetrahedron-face pair,
it measures a sector, wedge, or a pawn (half the intersection of three balls).

for each ¢ = ijkf €V do if i € K then V, := V, — sector_volume(i; j, k, £);
Ay := A, + sector_area(; 7, k, £)
endif; do the same for j, k, and ¢;
it ij € K then V; := V, + wedge.volume(i, j; k, £);
Ay = A, — wedge_area(, 3; k, £);
Ly := Ly + wedge_length(4, j; k, £)
endif; do the same for ik, i, jk, j£, and k¥;
if ijk € K then V; := Vi — pawn_volume(i, 7, k);
Ay = Ay + pawn_area(, 7, k);
Ly := Ly — pawn_length(3, j, k);
Cy=Ci+1
endif; do the same for ij¢, ikf, and jk?
endfor.

The area computations are slightly more involved than shown, for the same reasons mentioned in IIL5.

II1.7 Envelopes. As mentioned in II1.3, the measurements related to the impact of | J B on its environment are
sometimes of interest. This is for example the case in the study of nano-crystals, where the volume is defined so
it reflects the number of water molecules that would otherwise occupy their space. These water molecules have
no way to access the voids of | J B. We therefore measure the union of balls union the voids. The volume of the
envelope is the sum of the volume of | J B and its voids, whereas the area, length, and the number of corners are
obtained as differences of measurements. This is implemented in function envelope_measurements.

III.8 Outside fringe. The outside fringe is the part of [ B that lies outside the dual complex, see figure 2. The
situation is similar to the one in II.6, only that we now talk about the unbounded component, Co, of R ~ | JK.
Co contains the unbounded component, Do, of R® — |JB. Formally, Co — D, is the outside fringe. The
following approach to compute its volume, area, length, and the number of corners is implemented in different
ways by functions fringe_measurements_cx and fringe_measurements_ov. For each vertex, edge, and triangle of the
dual complex, the terms of the decomposable inclusion-exclusion formulas that locally lie outside K and outside
the voids of K are computed. Repetitive code is avoided by doing part of the computations in auxiliary functions,
including do_complex_tetrahedron. Initially, we set

Vot 1= Aot := Lag 1= Cot := 0.

To avoid the complications deriving from the fact that the outside fringe is covered only partially by tetrahedra of
R, we compute the angles at vertices and edges and use them as weights in the inclusion-exclusion formulas. Let
o denote the angle in Co at 0. We first show how to use it and later discuss how to compute it.
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for each o € K do if o = i then Vor := Vir + ¢, * ball_volume(i);
Aot 1= Aot + o * ball_area(i)
endif;
if ¢ = ij then Vor := Vor — @, * ball2_volume(i, 7);
Aot 1= Aot — o * ball2_area(i, j);
Lot := Lot + @, * ball2_length(i, 7)
¥ T S
if 0 = ijk then Vor := Vor + @, * ball3_volume(i, j, k);
Aot := Aot + @ * ball3_area(i, j, k);
Lot = Lot = o * ball3_length(i, j, k);
Cor = Cor + 2% Po
endif
endfor.

The implementations differ from this simplifying scheme in two respects. For a vertex, edge, or triangle ¢ in the
interior of K, we have ¢, = 0, and ¢ is discarded without computing any angle. Second, the area computations
include a separate accumulation of contributions by individual balls, see IIL.9.

The main difference between the two implementations, fringe.measurements_cx and fringe_measurements_ov, is
the way they go about computing the angles ;. Recall that g, is the angle at ¢ outside UK. For atriangle s € K
this means that ¢, is 0, %, or 1, depending on whether two, one, or zero incident tetrahedra belong to K or to a
void of K. Function fringe_measurements_cx computes an angle indirectly, by subtracting angles inside tetrahedra of
K or voids from the full angle. To avoid storing ¢,, we adjust the measurements for each partial angle directly. So
in the end, the function is a loop through all vertices, edges, triangles, and tetrahedra of K. For each non-interior
vertex, edge, and triangle, the contribution with full angle @, = 1 is recorded; interior vertices, edges, and triangles
are ignored. For each tetrahedron in K, the contributions of its non-interior vertices, edges, and triangles inside the
tetrahedron are subtracted from the corresponding initial contributions. Finally, the measurements are adjusted
by subtracting the measurements of all voids.

While fringe.measurements_cx computes angles from the inside, fringe_measurements_ov computes angles from
the outside, using tetrahedra that lie outside K and all voids of K. These tetrahedra are collected and processed
in the same way as described for voids in III.6. This method is made complicated by the fact that only a small
part of Cy, is covered by tetrahedra, namely the part inside the convex hull of all points, which is the same as
UR. To account for the rest, the convex hull vertices, edges, and triangles are traversed in depth-first order using
function traverse_ch. The traversal requires auxiliary functions for a marking mechanism (mark_triangle, mark_vertex,
is_triangle_marked, is_vertex_marked) and for accessing the neighboring convex hull triangle (ch_neighbor). The marks
are stored in arrays allocated parallel to the vertex and the triangle arrays.

The contributions to measurements are computed by another three auxiliary functions, do_ch_vertex, do_ch_edge,
and do_ch_triangle. For these contributions, it is necessary to compute the angle at a vertex, edge, or triangle outside
the convex hull. Note, however, that this needs to be done only for convex hull vertices, edges, and triangles that
belong to K. For a triangle, the angle is % For an edge, the angle is the full angle, 1, minus the dihedral angle
at the edge inside the convex hull. For a vertex, i, the angle is % — Sdegree(i) + 1 T ¢ij, where ¢;; is the outside
angle at the convex hull edge ij, and the sum extends over all degree(i) convex hull edges incident to i. This follows
from Descartes’ formula for solid angles, normalized to angles of revolution. Instead of computing the angle at a
vertex, we distribute its contribution over the vertex itself (the 3 part) and all incident convex hull edges (39ii — %
per edge ij). All these computations are made somewhat more cumbersome by separate accumulations of area
contributions due to individual balls.

There are two reasons for implementing both ways to measure the outside fringe. The first is that one tends to
be fast when the other is slow; naturally, fringe_measurements_cx is slow when K contains many tetrahedra and fast
when K contains few tetrahedra, and the opposite is true for fringe_measurements_ov. The second reason is that

we can compare the results and if they match consider this as evidence that the computations are done correctly.
These comparisons are done in volbl_checking_of.
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IIL.9 Surface area contributions. The surface of the space filling diagram [ J B consists of patches of spheres,
each being part of the boundary of a ball in B. A single ball may contribute an arbitrary number of such patches,
and its area contribution is the total area of all its patches. Each term in the inclusion-exclusion formula belongs
to a group of 1, 2, 3, or 4 balls, and can be split into the same number of terms, each attributed to a single ball.
The total contribution of a single ball is then a partial sum in the inclusion-exclusion formula. When the surface
area of | | B is computed, we distribute the terms to the individual balls and keep track of partial sums in the array
Acge[l..n]; its ith element accumulates the contributions of ball i. The same thing can be done for voids and for
the outside fringe; the corresponding partial sums are-accumulated in arrays Acgy{1:.n] and Acs[1..n}. The results
are saved on a file by save_contributions, and an initialization to 0 of all contributions in all three arrays is done in
initialize_contributions.

Similar to other measurements, we can cross-check the contributions of individual balls to gain confidence in
the computed numbers. This is done in function velbl_checking and in volbl_checking_of. The former function tests
the following relations:

Jax {abs(Acst[i] — Acee[i] — Acot[i])} = 0,

A,g{—iACgf{i] = 0

i=1

n
A=) Aewli] = 0,
i=1
n
Aof—EAcof[i] = 0.
i=1

In volbl_checking.of, the individual area contributions as computed by fringe_measurements_cx are compared with
those computed by fringe_measurements_ov.

It is possible, in principle, to compute individual area contributions of balls per void, and also individual volume
contributions, or individual length contributions of circles. All these measures seem to be of little interest though,
and are thus not implemented.

IV.10 Finding voids. The voids of K are constructed using a union-find data structure for tetrahedra. We take
advantage of a linear array, called ML for master-list, which stores the simplices of R in sorted order. It is part of
the representation of R generated by mkalf. Given an index m, all tetrahedra up to position m in ML belong to
the corresponding dual complex, K, and all tetrahedra after position m belong to R — K. Similarly, for triangles,
edges, and vertices, although there is a complication because they can stored up to three times in ML. The first
occurrence marks the transition from not in K to singular in K, the second is the transition from singular to regular
in K, and the third occurrence is the transition from regular to interior in K, see [7]. Some of these occurrences
might coincide depending on the local surrounding of the simplex. For computing voids, we are interested in first

occurrences of triangles. Let n be the last index of ML and m the index corresponding to K. The voids are
computed in function find_voids as follows.

for i :=n downto m + 1 do let ¢ be the simplex stored in ML[i];
if o is a tetrahedron then uf_add(c)
elseif o is a triangle then if alf_mlis_first(c) then
find incident tetrahedra m, mo;
uf_union(ty, 13)
endif
endif
endfor.

After computing all voids, a priority queue is created for convenience. Each element of the queue has two fields: a
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pointer to the root of the corresponding void (set) in the union-find data structure, and the initial volume of the
void, which is the sum of volumes of its tetrahedra computed in function initialize_volume. The priority queue is
implemented as a linear array. The sorting is done by the functions sort_by_volume and heapify based on the heapsort

algorithm, see [2]. Basic operations in the sorting algorithm, such as exchanging two elements, are conveniently
defined as macros.

-IV.11 Union-find. As explained in IV.10, the voids of the dual complex are determined using a union-find data
structure for the tetrahedra in R — K. Since union-find data structures are fairly well understood and part of every
standard algorithms text, see e.g. [2], we will be brief.

The basic data structure is a linear array. Each element represents a tetrahedron or it is blank. The tetrahedra
are organized in sets. To represent a set, each of its elements has a pointer to its first element, the root, and a
pointer to the next element. Initially, an array of blank elements is created by uf_create. A tetrahedron is added
as a set by itself using uf_add. It initializes the root- and next-pointers. Given the array index of a tetrahedron,
uf_find returns the root-pointer, which can be considered the name of the set that contains the tetrahedron. In our
implementation, adding and finding takes constant time each.

Two sets are merged by uf_union. In general, this is done by changing the root-pointers of the elements in
the smaller set to point to the root of the larger set. An exception is the set of tetrahedra that belong to the
unbounded component of the complement. Its root is the array element with index 0, which does not represent any
tetrahedron but rather the space outside R. Whenever another set is merged with the outside set the root-pointers
of the former set are changed to 0.

uf_union(, 5);
i = uf_find(z); j:= uffind(j);
if i # j then if set 7 is smaller than set j or j = 0 then switch ¢ and j endif;
change the root-pointers of all elements in set j to i;

adjust next-pointers of the root of 7 and the last element of set j
endif.

An effective way to store the size of a set is to use the root-pointer of its root, which is otherwise unused. Note
that the root-pointer of each element is changed at most 1 + log, n times, where n is the number of tetrahedra.
This is because each change either moves the element to a set at least twice as large as the old set, or it moves it
to set 0, which happens only once. The total running time is therefore in O(nlogn). Although faster union-find
structures are described in [2], the above method is used because of it is simple, it provides convenient access to
the elements of a set.

IV.12 Library functions. Most of the computations described above need access to the data structures provided

by programs regtri and mkalf of the alpha shape software. We list and briefly describe the functions that facilitate
this access.

Function alf.is_in_complex decides whether or not a vertex, edge, triangle, or tetrahedron ¢ € R belongs to
K. A similar test is function is_tetra_in_voids, which decides whether or not a tetrahedron ¢ belongs to a void of
K. As indicated by the missing alf prefix, the latter function is not yet part of the alpha shape library because
it accesses the union-find data structure constructed solely for measuring purposes. A vertex, edge, or triangle
of K can be part of the boundary or lie inside |JK. These two cases are distinguished by function alf_is_interior.
A vertex, edge, or triangle can have up to three occurrences in the master-list, ML. The function alf.mlis first
distinguishes the first occurrence from the others. The alpha shape software ignores duplicate and redundant input
points without eliminating them physically. Function alf_is_redundant can be used to distinguish points that have
been ignored in the construction of R from others. The function alf is_on_hull can be used to distinguish vertices
and edges that lie on the boundary of the convex hull, | JR, from others. The library also provides two functions
that find incident simplices: alf_tetra_index returns the tetrahedron on the positive side of a triangle or edge-facet,
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and alf_tetra_vertices returns the vertices of a tetrahedron. For some computations it is necessary to test whether
or not a vertex is hidden by an edge or an edge is hidden by a triangle. Technically, this means the hidden face
appears in the complex not before the simplex that hides it. This is related to the definition of attachedness, see
(5, 7], namely a face is attached if it is hidden by at least one simplex. These tests are done by functions is_hidden0,
is-hiddenl, and is_hidden2. Finally, there are two functions that translate between the two ways of specifying K; for
a given rank, alf_interval returns the interval of corresponding alpha values, and for a given alpha value, alf_rank
returns the corresponding rank.

V.13 Metric functions. The terms of the sums in III.5 through III.9 are translated into metric sizes by means
of a network of 54 functions. These functions are clustered in six groups presented in V.14 through V.19. The
first two groups collect functions representing terms of the sums. To give an overview of the network, we begin by
listing the groups and functions. The parenthesized number behind each function is its height within the network.
The acyclicity of this network can be checked by verifying that the parenthesized numbers decrease from a function
to all functions it calls.

14 Functions that correspond to terms of the straight inclusion-exclusion formulas.
ball_volume (2), -_area (1), -_radius (0); ball2_volume (7), -_area (4), -_length (5); ball3_volume (8), -_area (5),
-_length (6); ball4_volume (8), -.area (5), -_length (6).

15 Functions that correspond to terms of the decomposable formulas.
sector_volume (4), -_area (4); wedge_volume (8), -_area (5), -_length (5); pawn_volume (9), -_area (6), -_length
(7); tetrahedron_volume (1).

16 Functions that measure three-dimensional objects, such as caps and intersections of caps.
cap.volume (6), -_area (3), -_height (2); cap2_volume (7), -_area (4); cap3_volume (7), -_area (4).

17 Functions that measure two-dimensional objects, such as disk, segments, and intersections of segments.
disk_area (5), -_length (4), -_radius (3); segment_area (6), -_angle(3), -length (5), -_height (4); segment2_area
(6). --angle(3), -_tength (5).

18 Functions that compute orthogonal centers.
center4 (1), center3 (1), center2 (1); triangle_dual (2).

19 Functions for three-dimensional vector computations.
angle_solid (3), -_dihedral (2); vector_diff (0), -_sum (0), - scaling (0); distance (1), scalar_product (0), cross_product
(1): cew (1); det4 (0), det3 (0), det2 (0).

All computations are done in double-precision floating-point, which is globally controlled by defining Vol real
equal to the type double. Precision errors are an inescapable evil that comes with the imperfect floating-point
representation of real numbers. We use functions volbl_warning and volbl_correct to alert the user about incidences
where the result is dangerously close to a limiting value, and to pull it back if it exceeds the limit. The warning
messages are saved in a .warn file in the data directory.

V.14 Balls and intersections of balls. In this section we discuss functions that correspond to terms of the
straight inclusion-exclusion formulas presented in II1.5. They measure the intersection of one, two, three, and four
balls.

V.14.1 Balls. A ball is given by its center, i, and its radius. These parameters uniquely determine its volume, and
its surface area. The formulas require a real number, , that is approximately 3.1415 92653 58979 32384 62643.

ball_volume(i) : Vol.real; return } = ball_radius(i) * ball_area(i).

ball_area(i) : Vol real; return 4+ ball_radius® ().
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In the unweighted case, the radius of a ball is a. In the weighted case, we use the more complicated formula
that computes the radius as discussed in II.2. By choice of the complex, K, all expressions under the root are
(supposedly) automatically non-negative.

ball_radius(i) : Vol real; return \/Bl[i].w2sgn(B[i].w) + a?sgn(a).
V.14.2 Intersection of two balls. The intersection of two balls is-decomposed into two pieces; called caps, by
the plane containing the circle where the bounding spheres intersect, see figure 3. By the length of the intersection
we mean the length of this circle.

ball2_volume(i, j) : Vol real; return cap_volume(i;j) + cap_volume(j; ).

ball2.area(i, j) : Vol.real; return cap.area(i;j) + cap.area(j;i).

ball2_length(%, §) : Vol real,; return disk_length(z, 7).

V.14.3 Intersection of three balls. The intersection of three balls is decomposed into three pieces, each being
the intersection of two caps that belong to a common ball, see figure 3. By a segment we mean the part of a
two-dimensional disk cut off by a line; its length is the length of the bounding circle arc.

ball3_volume(s, j, k) : Vol real;
return cap2.volume(i; j, k) + cap2.volume(j; i, k) + cap2_volume(k; 1, 7).

ball3_area(i, j, k) : Vol real;
return cap2_area(; j, k) + cap2_area(J; i, k) + cap2_area(k; 1, ).

ball3_length(z, 7, k) : Vol real;
return segment_length(s, j; k) + segment_length(4, k; j) + segment_length(j, k; 7).

Figure 3: The intersection of one, two, three, and four balls in three dimensions.

V.14.4 Intersection of four balls. The intersection of four balls is decomposed into four pieces, each being the
intersection of three caps that belong to a common ball, see figure 3.

ball4_volume(s, j, k, £) : Vol real;
return cap3_volume(s; j, k, £) + cap3_volume(j;i,k,£)
+cap3_volume(k; 1, j, £) + cap3_volume(4; 1, j, k).

ball4_area(1, j, k, £) : Vol real;
return cap3.area(i; j, k,£) + cap3_area(j;i, k, £)
+cap3_area(k; 1, j, £) + cap3_area(£; 1, j, k).
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The total length of the six circle arcs can be computed by considering the disks in the six planes used to decompose
the intersection of four balls. Each disk carries two segments, and we need the length of the arc bounding their
intersection.

ball4_length(%, j, k, £) : Vol real;
return segment2_length(s, j; k, £) 4+ segment2_length(i, k; £, j)
+segment2_length(z, £; j, k) + segment2_length(j, k; 1, £)
+segment2_length(j, £; k, 7) + segment2_length(k, £; 1, j).

V.15 Pieces of balls and of intersections of balls. Except for the volume of a tetrahedron, all top level

functions needed for the decomposable formulas in IT1.6 measure angular pieces of the intersection of one, two, and
three balls.

V.15.1 Sectors. A sector is the intersection of a ball with a triangular cone with apex at the center of the ball, see
figure 4. It is given by four points, i, j, k, £, where i is the center of the ball and the half-lines starting at i through
J, k, and £ are the edges of the cone. The volume of the sector and its area (the spherical part not including the
cone sides) are the fractions determined by the solid angle at i of the volume and area of the ball.

sector_volume(%; j, k, £) : Vol real;
return angle_solid(¢; j, k, £) * ball_volume(z).

sector_area(i; 7, k, £) : Vol real;
return angle_solid(3; j, k, £) x ball_area(3).

V.15.2 Wedges. A wedge is the intersection of two balls and two half-spaces, see figure 4. The planes bounding
the half-spaces meet in a line through the centers of the two balls. The centers are ¢ and j, and the planes are
spanned by the triangles ijk and ij£. The points i, j, k, £ are converted to vectors s,t, u, v.

kE=uy
4
i=t f=y
k V% 9 i "
£ =¥y 7 ,‘=, v

Figure 4: A sector, a wedge, and a pawn.

>

wedge_volume(i, j; k, £) : Vol real;
s := vector(7); t := vector(j); u := vector(k); v := vector(£);
return angle_dihedral(s,t; u, v) % ball2_volume(i, j).

wedge_area(i, j; k, £) : Vol real;
§ := vector(i); t := vector(j); u := vector(k); v := vector(f);
return angle_dihedral(s,t; u, v) * ball2_area(s, j).

wedge_length(i, j; k,4) : Vol real;
s 1= vector(i); t := vector(j); u := vector(k); v := vector(£);
return angle_dihedral(s,t; u, v) * disk_length(z, 7).
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V.15.3 Pawns. A pawn is half of the intersection of three balls, i, j, k, see figure 4. The half is on one side of the
plane through ¢, j, k.

pawn_volume(i, 7, k) : Vol real; return -é— * ball3_volume(i, j, k).

pawn_area(4, j, k) : Volreal; return % * ball3_area(i, 7, k).
pawn_length(, j, k) : Vol.real; return % * ball3_length(%, j, k).

V.15.4 Tetrahedra. A tetrahedron is given by four vertices, i, j, k,£. Its volume can be computed using the
determinant of the point coordinates. Specifically, the volume is one sixth the absolute value of the four-by-four
determinant whose row entries are the three coordinates and 1. This function uses floating-point arithmetic and is
not to be used for any positional tests related to constructing R and K.

tetrahedron_volume(s, j, k, £) : Vol real;
g[i]': g[‘joy g[‘]-z
return abs(} det B[ng BE-;]]-; B&%i
Blfl= B[y B[z

pd ket et
p—

V.16 Caps and intersections of caps. The objects computed in this group are intersections of one, two, and
three caps that belong to a common ball. ‘

V.16.1 Caps. A cap is defined by two balls, i and j. It is the part of the intersection of the two balls that lies on

i’s side of the plane through the intersection of the two bounding spheres. The volume of the cap is obtained by
subtracting the cone from the sector.

cap_volume(s; §) : Vol.real,;
Gi= % * ball_radius(¢) * cap_area(i; j);
C := 3 * [ball_radius(i) — cap_height(i; j)] * disk_area(, 5);
return S — C.

For the cap area there is a neat formula that says it is the area of the entire sphere times the cap height over the
diameter of the ball, see [8]. This simplifies to

cap-area(i; j) : Vol.real; return 2 7 x ball_radius(i) * cap_height(s; 5).

The height of the cap is either the radius of ball i minus the distance between its center and the orthogonal center
of 7 and j, or it is the radius plus the distance. The former case occurs when 7 is not hidden by j, and the other
case occurs when i is hidden by j. See V.18 for a description of orthogonal centers.

cap_height(i; j) : Vol real,;
s 1= vector(1); Y := center2(i, j);
if alf.is_hidden0(i; j) then return ball_radius(i) + distance(s, Y)
else ball_radius(i) — distance(s,Y)
endif.

V.16.2 Intersection of two caps. The two caps are part of the same ball, i, and are determined by i, j and by
i,k, see figure 5. We compute the volume by subtracting fractions of two cones from the intersection of the two

sectors. The volume of the sector intersection is one third of the ball radius times its area. The fraction of one
cone is defined by the area of the base segment.
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cap2_volume(i; §, k) : Vol real,;
52 := 1 * ball_radius(i) * cap2.area(i; , k);
Cj = 3 * [ball_radius(i) — cap.height(i; j)] * segment_area(i, j; k);
Ci := 3 * [ball_radius() — cap_height(i; k)] * segment_area(i, k; j);
return S2 - C; - C;.

We compute the area of the intersection of two caps step by step. The implicit formula can be proved using a limit

- process approximating the intersection by a spherical polygon, see appendix A. The formula has also been used in
(3]. We compute points p;x and pi;j so that pjx sees (i, j, k) in a counterclockwise (ccw) order, and Dkj sees (i,k,j)
in a ccw order, see figure 5. Recall that the dihedral angle between two triangles sharing an edge is the smaller of
the two possible angles.

Figure 5: The intersection of two caps.

cap2.area(; j, k) : Vol real;
pjx := triangle_dual(4; j; k); pej := triangle_dual(i; k; 5);
l; := segment_angle(i, j; k); Ix := segment_angle(i, k; 5);
8 := vector(i); ¢ := vector(j); u := vector(k);
Pk =1 - angle_dihedral(s, pji;t, u); @rj =3 - angle_dihedral(s, pg;; u,t);
Ay = 1 xballarea(i) * (pjx + 5);
Az := 2« 7 + ball_radius(i) * I; * [ball_radius(i) — cap_height(s; §)];
As := 2% 7 x ball_radius(i) * ;. * [ball_radius(i) — cap_height(s; k)];
return A; — A, — Aj.

Note that in the absence of round-off errors we have @;r = ;.

V.16.3 Intersection of three caps. We consider intersections of three caps common to a ball 4, see figure 6.
The cone is the intersection of three half-spaces defined by ¢, and i, k and t,£. It is assumed that the apex of the
thus defined triangular cone lies inside i. That this is indeed always the case is a property of the dual complex of
(U B. The volume is the difference of the intersection of three sectors and pieces of three cones.

Figure 6: The intersection of three caps.
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cap3_volume(i; j, k, £) : Vol real;
S3 := % * ball_radius(i) * cap3.area(i; , k, £);
Cj := 5 « [ball_radius(i) — cap_height(i; j)] * segment2_area(i, j; k, £);
Cy = % * [ball_radius(i) — cap_height(i; k)] * segment2_area(i, k; , £);
Cy := 3 * [ball_radius(i) — cap_height(i; £)] * segment2_area(i, £; j, k);
return S3 — Cj s C.i; - Cy.

The formula for the area is a minor generalization of the one for the intersection of two caps, see appendix A. We
first make sure that point i sees (5, k,£) is a ccw order.

cap3.area(i; j, k, £) : Vol real;
if not ccw(i; j; k;£) then exchange k and £ endif;
Pij = triangle_dual(%; k; j); per := triangle_dual(i; £; k);
pje = triangle_dual(s; j; £);
l; := segment2.angle(i, j; k, £); I := segment2_angle(i, k; £, );
lg := segment2_angle(i, £; j, k);
5 1= vector(i); t := vector(j); u := vector(k); v := vector(£);
Pkj 1= % — angle_dihedral(s, pxj; u,t); @k := 5 — angle_dihedral(s, pe; v, u);
pje = 5 — angle_dihedral(s, pjs; ¢, v);
Ap = -12- * ball_area (i) * (@rj + ou + it — 3);
Az i= 2 * 7 % ball_radius(4) * l; * [ball_radius(3) — cap_height(i; 7)];
Ag := 2 * 7 * ball_radius(%) * l; * [ball_radius(i) — cap_height(i; k)];
Ay := 2« m * ball_radius(f) * [; * [ball_radius(i) — cap_height(3; £)];
return A; — Ay — Az — A4,

V.17 Disks, segments, and intersections of segments. We now discuss a group of functions that measure
two-dimensional objects, such as a disk and a segment of a disk.

V.17.1 Disks. A disk is given by two balls, 7 and j. It is the intersection of the two balls with the plane that
contains the circle where the bounding spheres intersect.

disk-area(i, j) : Vol.real; return % * disk_radius(i, j) * disk_length(i, j).
disk_length(%, j) : Volreal; return 2 # 7  disk_radius(z, ).

The radius of the disk can be computed from the two ball radii and the distance between the centers. Specifically,
the disk radius forms a right angled triangle with one ball radius and the same ball radius minus the cap height.
This leads to the following formula.

disk_radius(%, j) : Vol real,
return /cap_height(i; j) * (2 * ball_radius(z) — cap_height(i; 7)].

V.17.2 Segments. A segment is the intersection of a disk with a half-plane. Given 1, j, k in this order, the segment
is the part of the disk defined by i and j cut off by the line through the intersection of the bounding circle with
the sphere bounding k. The area is computed as the difference between a disk sector and a triangle.
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segment_area(s, j; k) : Vol.real;
S := & * disk_radius(i, j) * segment_length(i, j; k);
pjk = triangle_dual(3; j; k); prj := triangle_dual(¢; k; j);
H := disk_radius(i, j) — segment_height(i, j; k);
T := 3 * H = distance(pji, Pr;);
return S—T.

' The length of the arc bounding the segment is computed by taking the appropriate fraction of the circle, This is
done in two steps, first computing the normalized length and then the actual length of the segment.

segment_angle(z, j; k) : Vol real;
pji := triangle_dual(i; j; k); pej := triangle_dual(4; k; 7);
s := vector(i); t := vector(j); u := vector(k);
return angle.dihedral(s,t; 4, pji) + angle.dihedral(s, t; u, pi;).

segment_length(s, j; k) : Vol real;
return segment_angle(i, j; k) * disk_length(i, 7).

The height of the segment is computed from the radius of the disk defined by i and j and the distance of the
orthogonal center of ijk from the line through ¢ and j. This is the same as the distance to the orthogonal center
of 4j. The cases where the segment covers more or less than half the disk are distinguished by checking whether or
not ij is attached to ijk, see figure 7. This test, alf_is_hidden, is also used in the construction of K; it is based on
integer arithmetic.

Figure 7: The segment covering less and more than half of the disk.

segment_height(¢, j; k) : Vol real;
Y3 := center3(i, 5, k); Y3 := center2(i, j);
if alf.is_hiddenl(i, j; k) then return disk_radius(i, j) + distance(Ys, Ya)

else return diskradius(i, j) — distance(Y3, Y3)
endif.

The height of the segment is necessarily between 0 and twice the disk radius.

V.17.3 Intersection of two segments. We consider two segments, both part of the disk defined by i and j.
One is defined by k and one by £. The intersection is computed as the difference between the disk sector and two

triangles. The bases of the two triangles connect dual points of the triangles ijk and ij¢ with the orthogonal center
of 1, j, k, £. First we make sure that point ¢ sees (j, k, £) is a ccw order.

segment2_area(i, j; k, £) : Vol real,;
if not cew(i; j; k;£) then exchange k and £ endif;
pjk := triangle_dual(s; j; k); pej := triangle_dual(i; k; 5);
pje := triangle_dual(i; j; £); pe; := triangle_dual(i; £; 5);
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Y := centerd(i, j, k, £);

hi 1= segment_height(i, j; k); h¢ := segment_height(, j; £);
Py = dlsk_radms(: EE

S = - * rij * segment2_length(i, j; k, £);

Ty := 3 * (rij — hi) * distance(p;, Y); Ty := - * (rij — hg) * distance(pje, Y);
retum S-T.-T,.

For computmg the length of the mtersect.lon of two segments deﬁned by i, 9, k £, we assume that. the t.wo segments
intersect but are not nested. By the choice of 1, j, k, £, as guided by the dual complex of | J B, this is indeed always
the case. The length is obtained by subtracting the overlap from the sum of the two half-segments. This is done
in two steps, first computing the normalized and then the actual length.

segment2_angle(i, j; k, £) : Vol real,;
pj¢ := triangle_dual(i; j; £); pr; := triangle_dual(i; k; 7);
s 1= vector(f); t := vector(j); u := vector(k); v := vector(£);
return angle.dihedral(s,t; u, pi;) + angle_dihedral(s, t; v, p;;) — angle_dihedral(s, t; u, ).

segment2_length(i, j; &, £) : Vol real;
return segment2_angle(s, j; k, £)  disk_length(, 7).

V.18 Orthogonal centers. Two balls are orthogonal if the square of the distance between their centers equals
the sum of their weights. The orthogonal center of a collection of balls is the center of the smallest ball orthogonal
to all balls in the collection. In the special case where all balls in the collection have radius zero, the orthogonal

center is the center of the smallest sphere through the points. We need orthogonal centers of four, three, and two
balls.

V.18.1 Orthogonal center of four balls. In the case of four balls, i, j, k, £, there is a unique ball orthogonal
to all four balls; its center, Y, is the orthogonal center of #,j,k,£. Y is computed from the following system of
four linear equations. Each equation constrains the variable ball be orthogonal to one of the original balls. We use
indices 1 through 4 for coordinates z,y, z,w and define lo = }(3sgn(ls) — 1# — 8 = 12), for | = 2,4, j, k, £.

ioxy + 22 + d3T3 + T = -—ip
JoT1 + Jaz2 + jaza + o = —jo
koz1 + kozo + kazs + zo = -ko
boz; + Lyzy + fazz + zo = -4

The solutions for z;, z3, 23 are computed using Cramer’s rule. The solution for zq is not needed.

center4(t J k,£) : Vector.
ip 1= ?(B[z] W sgn(B[i] w) Bl[i]. 32 Bli].y* = B[i].2%);

jo = g(B[J] -w’sgn(B[j].w) - B[j].2* — B[j].* - B[5].2%);
ko := ?(B[ ].wsgn(B[k]. w) Blk].z? — B[k].y* - B[k].2%);
& := 3(B[l].w’sgn(B[l].w) — B[f].2* — B[f].y* - B[f].2?);

T Y
.z 4 z 1 - : 1y
Do:=det| pit” By B. 1 ' D==det| T Biiy Bl

B¢}z B[y Bz 1 -t B[y B4z

Blil.z —io B[]z 1 Blilz Blily —io
Dy := det Bljlz —jo Bl i ;"D = det Bljlz Blily —jo
1

=

Blk).z —ko Blk).z B(kl.z B[kly —ko

Blfl.z —& B[]z Blg.z Blfly -&
Y= %ﬁ; Yoy = -gf; Y= %:;
return Y.

[ T Y



Measuring space filling diagrams and voids

V.18.2 Orthogonal center of three balls. In the case of three balls, i, j, k, the orthogonal center, Y, of i,7,k
1s the center of the smallest ball orthogonal to 4, j, and k. Again, it is computed from a system of four linear
equations. We reuse the first three equations from V.18.1 and replace the fourth by the constraint that ¥ be
coplanar with ¢, j, k:

Ayzy + Aszo + Azzs = Ay,

2 i3 1 i3 4 1
Aj=det | 72 73 1 |, Ay =det s o 1 |,
ks ksl ks k1 1

2 1 11 i i3
As=det | 51 ja 1 |, Ag=det | 51 5o s |,

where

center3(i, j, k) : Vector.
Blfly B[]z 1 B[sl.z B[]z 1
Ay = det( Bljly B[]z 1 ); Ag = det( B[jl.z B[j]lz 1 );
BKly B[K.z 1 B{Kl.z Blk.z 1
Bfil.z B[]y 1 Blil.z Blily B[i].z
Az = det ( Bljlz B[jly 1 ); Ay = det ( Bljlz Bljly B[]z );
Blkl.z Blkly 1 B[¥lz B[kl.y Blk].z
ig := 3(Bli].w’sgn(Bli].w) - Bli].z2 - B[i].y> - Bli].2?);
= 3(Blil-w?sgn(B[j].w) - B[j].2* - B[j].y* - B[j].s*);
3(B[k].w?sgn(B[k).w) — B[k].z* — B[k].y? — B[k].2%);
s e
; 1= .z 1 — ] .z
Do:=det | pv7 iy Bile 1 |; Dec=det| TF Blily Bils 1
A Az Az 0 As Az As 0
FEE: X
L — Z T . -
Dy:=det| par. ko Blils )? De:=det| pite Bily -k 1 )
Yz:= %:; Yy:= %:'—; Yira= %;—;

O b et

V.18.3 Orthogonal center of two balls. In the unweighted case this is just the midpoint of the two centers. In

the weighted case we set Y = Ai +(1 — )7 and solve the linear relation obtained by setting the power distances to
i and j equal:

This implies A = § - yrit=is.

center2(4, j) : Vector;
s 1= vector(i); t := vector(j);
auz := scalar_product(s — ¢, 5 — t);
i4 := Bli].w?sgn(B[i].w);
Ja = Blj].w’sgn(B[j].w);
kit k.

return A#s+ (1 —A) ¢,

[Yi|]? - iy = |Yj|? = ja.

V.18.4 The dual point of a triangle. The dual point, X, is the intersection point of the three spheres bounding
i,j,k that lies on the ccw side. of the oriented triangle, ijk, see the pawn in figure 4. First, we compute the
orthogonal center of i, j, k. Second, we compute a normal to the plane spanned by the points i, j, k that points into
the ccw side of the oriented triangle. Finally, we get X by solving a polynomial of degree 2.
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Let Y € R® be the orthogonal center of 7,k and let N be the required normal vector. We compute X by

intersecting the half-line Y + &N, € > 0, with the sphere bounding i. Let r be the radius and s the center of i. The
condition that ¥ + £N lie on the sphere gives

(Y +EN)—5,(Y +EN) —s) = E¥(N,N) + 2%(Y — s, N) + (Y —5,Y —5) = r2.

By definition of X, we need the positive root of this polynomial, which is

(Y =, N)+ /T =5, N =¥ =5, =) [N, M) + (. )

&= ™, M)

triangle_dual(i, 7, k) : Vector;
Y := center3(i, j, k);
8 := vector(i); t:= vector(j); u := vector(k);
N := cross_product(t — s, u - s);
Sy := scalar_product(Y — s, N); S := scalar_product(N, N);
S3 := scalar_product(Y — 5,Y — s);
r := ball_radius(i);
6 - -S14 Sf—33t53+r’-3:;

return Y + ¢ *QN.

By construction, £ is necessarily positive.

V.19 Vector computations. In this group we collect functions that compute angles, distances, the orientation
of four points in R?, and other things.

V.19.1 Angles. The solid angle at a vertex ¢ within a tetrahedron ijk£ can be reduced to computing dihedral
angles. Recall that we measure angles in revolution, that is, they are scaled between 0 and 1.

angle_solid(i; 5, k,£) : Vol real;
s = vector(i); t:= vector(j); u := vector(k); v := vector(£);
1 := angle_dihedral(s,t; v, u); @y := angle_dihedral(s, u; 1, v);
@y := angle_dihedral(s, v; u,t);
return 3+ (¢r + pu +¢0) - §-

The dihedral angle between two triangles meeting at an edge st is the smaller of the two angles. It is computed by
constructing unit normal vectors of the two triangles, both on the ccw or both on the e¢w side. The scalar product
of the two vectors is the cosine of the angle.

angle_dihedral(s,t; u, v) : Vol real;
My = cross_product(u — s,u —t); Ny :=

U

1
x/scalar-prc;duct(M.,M.)

M, = cross_product(v — s,v —t); N, := T T (TR
L & arccos[scalar_product(Ny, Ny)].

vs

return

V.19.2 Trivial vector manipulations. The difference or sum of two vectors and the product of a scalar with a
vector are trivial operations that nonetheless need to be computed. We do this using the following three functions.
Calls to these functions are not explicitly marked.

vector_diff(s,t) : Vector;
uz:=szc—tz; vy '=sy—ty, u.z:=s52z-—1t.z
reaturn u.
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vector_sum(s, t) : Vector;
uz:=sr+tr; vy =sy+ty; uvz:=sz4t.z;
return u.

vector_scaling(f, s) : Vector;
uz:= fxs.z; uy:= f*s5y uz:=f*s2z
return u.

V.19.3 Distance and prbducts. The distance between two points (vectors) is reduced to the scalar product of
their difference vector with itself.

distance(s,t) : Vol real; return +/scalar_product(s —t,s —t).
The scalar product is defined for two vectors. It is the sum of the component-wise products.
scalar_product(u, v) : Vol.real; return u.r*v.r + u.y*v.y+ u.z%v.2.

Given two vectors, u and v, their cross product is another vector, V, normal to both. We design the function so
that (u,v, V) is a right-handed system, that is, the endpoint of V sees a,b,c is a ccw order, where u = b — a and
v = ¢ — a. The coordinates of V are computed using two-by-two determinants.

cross_product(u, v) : Vector;
V.= det( < s ); Viy :=det ( e ); Vizi= det( e );
vy v.z 'U'.Zb v.T v.z v.y
return V.

V.19.4 Ccw. Given four points in R3, we test whether or not the first point, i, sees the sequence of other points,
(4, k,£), in a counterclockwise (ccw) order. The decision is based on computing a four-by-four determinant as shown
below. In actual fact, the ccw test is done in integer arithmetic and it uses a simulated perturbation in cases where

the determinant evaluates to zero. This is done by calling sos_positive3 in the SoS-package used to construct R and
K.

cew(i; 7 k; £) : boolean;
i

return det | por? pETY Bkl
B{f.z B[y B[{.

i

[ I =

V.19.5 Determinants. We need determinants of two-by-two, three-by-three, and four-by-four matrices. In all
cases, the elements of the matrix are of type Vol.real. Since determinants are evaluated at the bottom of the
computation graph, they consume the biggest fraction of the running time. For this reason the three matrix sizes
are covered by three separate functions and all arithmetic is done without any loop construction.

det2(A) : Vol real;
return Aol — Ajodo.

det3(A) : Vol real;
return Aoo(A11422 = A21412) = Aro(Ao1 A2z — Az1402) + Azo( Ao Arz — A1y Aca).



Measuring space filling diagrams and voids 21

det4(A) : Vol real;
to := Aoo[A11(A22A433 — AazAz3) — As1(A12433 — As2A1s) + Aai(A12423 — Az A1s)];
ty := Aso[Aor(A22Ass — AszAsa) — Az1(AozAss — AszAos) + Asi(AozAas — AzzAgs));
ty := Azo[Ao1(A12433 — AszA13) — A11(AozAss — AszAos) + Asi(AozArs — A124ea)];
t3 := Ago[Ao1(A12423 — A23413) — A11(AozAzs — Az2Avs) + A21(Ao2A13 — A12403)];
return fg — t; + {9 — 3.
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Appendix A. This appendix presents a proof of the formula for the area of the intersection of two caps used in
V.16.2. The formula readily generalizes to the intersection of three or more caps. Indeed, the version that deals
with the intersection of three caps is used in V.16.3. Similar formulas have also been used by Connolly [3].
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We begin by recalling that pj; and pi; are the intersection points of the two circles on the bounding sphere of i.
These circles are the intersections of this sphere with the bounding spheres of j and k. We write I; for the fraction
of the circle for j that bounds the intersection of caps, and symmetrically we write [ for the corresponding fraction
of the circle for k.

We approximate the sphere part of the intersection of caps by a spherical m-gon. For A; = ball_area(i), the
area of this m-gon is 4:(3°7_, ¢» — 252), where ¢ is the angle at the Ath vertex. This is because a triangulation
produces m — 2 spherical triangles each contributing -A.-(%(-qbi A+ g+ hg) — }T} to the area, where 1y, 19,13 are
the angles of the generic spherical triangle. We approximate each of the two circles by a regular spherical n-gon.
The points are placed slightly outside the circle so that the enclosed areas coincide. Assuming that /; and I;
are rationals, we can find n so that the two n-gons share two vertices approximately at p;; and p;. We get
m = ljn+lpn. The angles at the two shared vertices approximate @;; and g; at pjr and pj. Furthermore, there
are ljn — 1 vertices with angle ; and lgn — 1 vertices with angle ;. Next we compute ¢; and p;.

Consider the cap defined by the first circle. Its area is 2ar;h;, where r; = ball_radius(z) and h; = cap_height(3; ;).
By construction, the approximating n-gon bounds the same area, which is
Aj n—2
-—2-(n<p_,- — T) = 2‘.‘1’?‘;‘)‘11"
Therefore,

4rrih; =2 L 1 Bl
e wrih; | n . ,/r.

Ain 2n = 2 n n

We plug the values for ; and ¢} into the formula for the area of the intersection of caps. The Ijn — 1 angles of size
©; add up to (ln — 1)(} — & + 24L%). Similarly, the lyn — 1 angles of size ; add up to (lzn — 1)(3 — & 4 2alriy
Furthermore, we have ¢;; and ¢i;. From the sum of angles we subtract 1-“—;—3 = 5%’1:3. This gives

: i~ (1= L) =h(1-=)+(== L)+ (== —).
eik + ok = lj( ,.’_) k(1 ,-,.)+(n rn +(n rin

The last two terms vanish as n goes to infinity. By multiplying this with % we get the final result:

Ai m—2 A;
":,—(E ér = T) —tn—co -5-(99;‘:: + ¢rj) = 2mrili (ri = ki) — 27rili (ri = hy).
A=1

This is the same as the formula used to compute the area in V.16.2.

It is straightforward to generalize this formula so it can be used to compute the area of the intersection of more
than two caps. We have use only for the case of three caps with “triangular” intersection. Let Dkj, Dtk, Djt be
the corners of this “triangle”, and let ¢y;, v, @j¢ be the angles at these vertices. Again with a limiting process
approximating the triangle by a spherical polygon we get the following formula for the area:

Aj 1
-'5—(‘ij + puk + pie — 5) = 27wri[lj(ri — hj) + Le(ri — i) + le(ri = he)].

This is used in V.16.3.



