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Abstract

Any arbitrary polyhedron P C R? can be written as
algebraic sum of simple terms, each an integer multiple
of the intersection of d or fewer half-spaces defined by
facets of P. P can be non-convex and can have holes
of any kind. Among the consequences of this result are
a short boolean formula for P, a fast parallel algorithm
for point classification, and a new proof of the Gram-
Sommerville angle relation.

1 Introduction

Polyhedra model common objects in our everyday life
by piecewise linear approximation. It is important not
to be restricted to convez polyhedra because most use-
ful objects are indeed non-convex. A spoon has a de-
pression, a drawer is hollow if closed, a coffee cup has a
handle, and a pair of chopsticks is not even connected.
No convexwbject can share any of these features, and
they are all functionally essential.

Representations of polyhedra. Within mathemat-
ics, polyhedra are studied in various areas of geome-
try and topology. Computational aspects of polyhedra
are considered in areas of computer science, including
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computational geometry and solid modeling. Particu-
lar attention is paid to the questions of representation
and computational complexity. The former question is
fundamental since the latter can only be addressed un-
der an assumed data structure. As it turns out, the
complexity of a particular task or function can depend
heavily on the available representation. F urthermore,
no single representation is best suited for all functions
of practical relevance, which brings up the issue of con-
version between different data structures. The currently
possibly most popular data structure is the boundary
representalion, that specifies faces and their adjacen-
cies. Apparently the only contender in popularity is
the CSG or constructive solid geomeiry representalion,
that writes a polyhedron as a boolean expression of half-
spaces.

Algebraic decomposition. Boolean expressions can
be generalized by replacing the boolean with other al-
gebraic structures. This paper considers the ring of
integers and expressions of the form

(@) = Yalo )

where the a; are integers and the Q; are open polyhedral
cones. z is any point in RY, and 1q, : R — {0,1} is the
indicalor or characteristic function of Q: C R4, that is,

1 ifzeQ; and
0 ifz¢Q;.

We call ¢ an algebraic decomposition of a polyhedron
P CRYif ((z) = 1p(z) for all z € R,

The main result of this paper is the construction of
an algebraic decomposition of P from the boundary rep-
resentation. In the intuitive and mathematically more
appealing first form of the result, each term a; - lg,
corresponds to a face g; of P, and Q; is the open face
figure of ; reflected though ;. In the computationally
more convenient second form, each open face figure Q;

o) = {



is further decomposed into
1Q-‘(‘x) = Zaj ) lI"Ih",'(:c)l
b

where each H; is a collection of at most d open half-

spaces. By taking integers modulo 2 we obtain the third
form of the result:

P = @

where P is written as a chain of symmetric differences
of convex polyhedral cones.

Related work. The conversion from the boundary
of a polyhedron to a boolean expression of half-spaces
has been considered by Peterson [19], see also [11].
The 2-dimensional case has been solved satisfactorily
in [5], but many questions about the most important
3-dimensional case remain unanswered. Indicator func-
tions for polygons in the plane and polyhedra in space
have been discussed by Franklin [9]. His formulas sum
real weights determined by angles at vertices and are
thus of different type than the integer formulas studied
in this paper. Straightforward algebraic decompositions
into cones of the origin over all faces of a polyhedron
are commonly used in solid modeling [14]. These re-
quire half-spaces not defined by facets of the polyhe-
dron, and robust implementations of algorithms based
on such representations are difficult.

In the mathematics literature, work related to this
paper is abundant and goes back several decades. Note-
worthy is Hadwiger’s extensive study of polyhedra doc-
umented in many papers. Much of this work is also cov-
ered in his text on volume, surface area, and isoperime-
tries [12] and in the recent book by Schneider on the
Brunn-Minkowski theory [24]. Valuations offer a gen-
eral framework for algebraic decompositions. We re-
fer to McMullen [15] for a recent survey article on this
topic. Algebraic decompositions of polyhedra similar
to but different from the ones in this paper have been
described by Chen [3] in connection to various discrete
notions of curvature. Indicator functions for unions of
spherical balls have been studied by Naiman and Wynn
(18] and by the author [7]. Their formulas are derived
from an algebraic decomposition of convez polyhedra,
see also [4], which forms the starting point for the work
reported in this paper.

Outline. Sections 2 and 3 explain and illustrate the
main result of this paper for polygons in R? and for
Polyhedra in R3. Section 4 develops d-dimensional con-
¢epts and notation. Section 5 states the first form of our
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main result. The proof is rather technical and omitted
in the conference version of this paper. Section 6 de-
rives the second and third forms of the result. Section
7 discusses applications of this work.

2 Polygons in the Plane

Indicator functions for non-convex polyhedra are non-
trivial even in 2 dimensions. This section specializes the
main result of this paper to the plane and avoids most of
the technical discussions required in higher dimensions.

Polygons and boundary. Define a convezr polygon
in R? as the common intersection of finitely many closed
half-planes. A polygon, P, is the union of finitely many
convex polygons, see figure 1. The boundary of P con-

Figure 1: A polygon with three components and one hole.
The numbers and signs labeling edges and vertices will be
explained at the end of this section.

sists of edges and vertices. We assume that each vertex
is endpoint of only 2 edges, or more formally that P
is a 2-dimensional manifold with boundary. A vertex
is either convez (labeled ‘+’) or concave (labeled ‘—’
in figure 1). In the former case, it is a vertex of one
of the convex polygons. In the latter case, it is at the
intersection of edges from at least two different convex
polygons.

For an edge, ¢, let aff € be the line that contains ¢, and
let the edge figure be the closed half-plane ff ¢ bounded
by aff € and locally on the same side as P. The vertez
figure of a vertex v which is endpoint of edges ¢; and

Egis
v = {ﬁclnﬂtg

fle,Uffes

if v is convex, and
if v is concave.



Negative face figures. We wish to construct an
algebraic decomposition of P from local information
about edges and vertices. To this end it is more conve-
nient to work with reflections of figures.

The negative edge figure of ¢ is nffe = 2y — intff ¢,
where y is any point of e. Intuitively, nff ¢ is the
reflection of the open edge figure, intffe, through .
Similarly, the negative vertezr figure of v 1s nffr =
2v — intflv. Observe that a point z belongs to a neg-
ative vertex figure, nff v, iff the ray from z towards v
enters the interior of P as it passes through »v. A sim-
ilar and more obvious interpretation holds for negative
edge figures. The indicator function of a negative edge

or vertex figure is denoted by 1,4. With this notation,
we specify

Tp(z) = x(P) =) Lure(2)+ Y lanu(z), (1)

where x(P) is the number of components of P minus
the number of holes. By the main theorem, I'p = 1p,
and I'p is therefore an algebraic decomposition of P.

Half-planes and angles. The formula in (1) can be
transformed so each term checks inclusion of z in a
single half-plane or the intersection of 2 half-planes.
Rewrite the indicator function for every concave ver-
tex v with edges ¢, and ¢, as

lnﬂ'v = lnﬂ‘n + lnﬂ't«, - lnﬂq s lnﬂ(:'

In effect, this cancels the original contributions of €; and
€2 and changes the contribution of v from a positive
union to a negative intersection of 2 half-planes. In
the resulting formula the contribution of an edge, ¢, is
=1, 0, or +1 times lnq,, depending on whether both
endpoints are convex, one is convex and the other is
concave, or both are concave. The contribution of a
vertex, v, with edges ¢; and ¢, is +1 or —1 times losre,
Infre,, depending on whether v is convex or concave.

For an example consider figure 1, where edges and
vertices are labeled with their respective coefficients.
To improve readability, the vertex labels are abbrevi-
ated to + and —. The coefficient of P is 2, namely 3
components minus 1 hole.

3 Polyhedra in Space

This section extends the informal discussion of al gebraic
decompositions from 2 to 3 dimensions. Polyhedra in R®
are sufficiently more intricate than polygons in R2, and
they provide opportunity to illustrate subtleties com-
plicating the general d-dimensional study.
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Polyhedra and boundary. In analogy to the 2-
dimensional case, we define a conver polyhedron in R®
as the common intersection of finitely many closed half-
spaces, and a polyhedron, P, as the union of finitely
many convex polyhedra. The boundary of P consists
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Figure 2: “Rectangular frame" or “box with tunnel”.
There are 10 facets, 8 rectangular and the front and the
back facets with a hole each. The labels indicate the co-
efficients in the formula with half-space, wedge, and cone
terms, as explained at the end of this section. The Fu-
ler characteristic of the box with tunnel is 0, namely 1
component minus 1 tunnel plus 0 voids.

Figure 3: “Cube with cubical void". There are 12 square
facets, 6 on the inside and 6 on the outside. The labels
carry the same meaning as in figure 2. The Euler charac-
teristic of the cube with void is 2, namely 1 component
minus 0 tunnels plus 1 void.

of vertices, edges, and (2-dimensional) facets. We as-
sume P is a 3-dimensional manifold with boundary, and
each facet is a 2-dimensional manifold with boundary.
Intuitively, this means P is not pinched and neither is
any of its facets. The formal definition is given in sec-
tion 4. Examples of such polyhedra are shown in figures
2 and 3.



Possible ambiguities in the decomposition of the
boundary into faces will be formally resolved in sec-
tion 4. The notion of face adopted in this paper is
sufficiently general to allow facets with holes. Even dis-
connected facets are admitted, although it is a matter
of taste whether two facets in a common plane should
be considered different facets or different components
of one facet. The same indicator function will work un-
der both interpretations. The most important property
to keep in mind in decomposing the boundary is that
the collection of vertices, edges, and facets form a com-
plex. Specifically, the intersection of two faces is the
union of other faces (possibly the empty union) and the
boundary of every face is the union of other faces.

Face figures. Vertez, edge, and facet figures are de-
fined as in the planar case. For a facet ¢, ff ¢ is always
a closed half-space, and for an edge ¢, fi ¢ is the inter-
section or union of 2 closed half-spaces. In the former
case € is convez, and in the latter case it is concave. For
vertices the situation is more complicated, and simple
cases are discussed shortly.

The negative face figure of a face ¢ is nffp = 2y —
int ff p, where y is any point in . This definition ap-
plies to vertices, edges, and facets. The indicator func-

tion of a negative face figure is denoted 1,4 . With this
notation, we specify

Tp(z) x(P)

ZX(¢) - laa¢(2)
¢ .

Z x(€) - Lnre(z)

Sox(v) - Lot ().

The Euler characteristic of every vertex is x(v) =
1. Similarly, the Euler characteristic of every edge is
x(€) = 1, unless edges with disconnected components
are allowed. In the latter case, each component must
belong to the same two facets, see section 4. The Euler
characteristic of ¢ is the number of components minus
the number of holes. The Euler characteristic of P it-
self is the number of components minus the number of
tunnels (as in figure 2) plus the number of voids (as in
figure 3). By the main theorem, [p = 1p and Tp is
therefore an algebraic decomposition of P.

Simple vertex figures. A vertex figure in R? can
be fairly complicated, and it is desirable to further de-
compose it into simpler terms. These terms would be
half-spaces, wedges (intersections of 2 half-spaces), and
triangular cones (intersections of 3 half-spaces). This is
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exemplified under the simplifying assumption the vertex
belongs to only 3 planes spanned by facets of P. There
are 6 types illustrated in figure 4; the corresponding
cases in figure 5 are (a), the complement of (a), (e), the
complement of (e), (i), and (j). To describe the alge-
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Figure 4: The vertex v in (a) is either convex or concave,
depending on whether the polyhedron lies behind, (al), or
in front, (a2), the surface. Similarly in (¢), v is endpoint of
either 1 convex and 2 concave edges, (el), or of 1 concave
and 2 convex edges, (e2). In (i), v is endpoint of 3 convex
and 3 concave edges. In (j), v is endpoint of 2 convex and
2 concave edges.

braic decomposition in each of the 6 cases, we let 1
refer to the indicator function of the open half-space in
front the plane labeled x. 15 refers to the indicator func-
tion of the open half-space behind this plane. Similar
conventions apply to ly, lg, 1z, and 13.

(a1) lag, = Ixlylz.
(32) Loy = Iz +15+ 15— 1zly— 131z — 1515 + Iz1g15.
(1) lagy = 1x+ 1ylz — Ixlyl.
(¢2) Loy = Izly + 131z — 1151z
() lags = Ixly + 1xlz + 1ylz — 2 1xlylz.
() lamy = Ixly + Ixlz + lylz — Ixlyls — Ixly1;.

For an illustration consider figures 2 and 3, where ver-
tices, edges, and facets are labeled with the coeffi-
cients obtained after transforming negative edge and



vertex figures. To improve readability, the coefhi-
cients —1,0,+1 of edges and vertices are abbreviated
to —,0,+. In figure 2, all facets start out with —1, ex-
cept the front and the back facets labeled 0. The edges
have initial coefficients +1. The decomposition of edge
figures flips the signs of the 4 concave edges and incre-
ments the containing facets by 1 for each concave edge.
The vertices have initial coefficients —1. There are 8
vertices of type (e2), and the decomposition of their
vertex figures flips their sign and decrements the con-
taining convex edges by 1 for each type (e2) vertex. In
figure 3, the decomposition of the figures of 12 concave
edges and 8 type (a2) vertices have cancelling effects.

4 Concepts in Dimension d

The algebraic decompositions discussed in sections 2
and 3 are special cases of the d-dimensional theorem
stated in section 5. This section introduces the neces-
sary concepts and notation, along with results relevant
to the theorem and its proof.

Basic definitions. The affine hull of S is aff § =
{z=3tipi | st = 1}. S is affinely independent if
aff §' # aff S for every proper S' C S. A k-flat is the
affine hull of an affinely independent collection of k+ 1
points. A hyperplane is a (d — 1)-flat. The convez hull
of SisconvS = {z =3 ;tipi | 2;ti = 1,8; 2 0}. A
k-simplez is the convex hull of an affinely independent
collection of k + 1 points. The notions of affine and
convex hulls are extended to infinite sets S by taking
sums over finite subsets.

For two points z,y € RY, |zy]| is the Euclidean dis-
tance between them, and [|z|| is the Euclidean distance
of z from the origin of R%. The unit open ball is
b= {z € R? | ||yll < 1}. The open ball with radius
¢ > 0 and center y is y + ob.

The topological concepts of interior and boundary
of a set are consistently used in a relative sense. The
interior of P C RY relative to its affine hull, aff P, is the
set int P of points y € P for which there is a sufficiently
small ¢ > 0 with PN (y + ob) = aff PN (y + ob). The
boundary isbd P= P —~int P. P is open if P = int P,
and it is closed if the complement, aff P — P, is open.
The closure of P is ¢l P = aff P — int (aff P — P).

Two sets M, N C R? are homeomorphic if there is
a continuous bijection f : M — N with continuous
inverse, f~1. Define

H¢ {z=(61,62,-.-,6) ER | & > 0}

M is an £-manifold with boundary if for every y € M
there is a sufficiently small g > 0 so MN(y+gb) is home-
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omorphic to either R or H!. The points with neighbor-
hood homeomorphic to H¢ form the boundary of M.

Convex polyhedra. A conver polyhedron in RY is
the common intersection of finitely many closed half-
spaces, [|H. Its dimension is one less than the max-
imum number of affinely independent points it con-
tains and is denoted by dim(H. Its co-dimension is
codim(\H = d —dim(H. If £ = dim[)H, we re-
fer to [\ H as a convez k-polyhedron. A hyperplane,
bd g, bounding a closed half-space, g, supports [ H if
(1H C gand NHNbdg # 0. A proper face is the
intersection of (| H with a supporting but not contain-
ing hyperplane, n = (JH Nbdg # [(H. nitself is a
convex polyhedron and all faces of n are also faces of
(VH. We consider (| H as its only improper face and
write &y = ®([) H) for the set of all faces, proper and
improper.

We are mostly interested in the full-dimensional case,
when dim[| H = d. For a face 0, define H, = {h € H |
n C bdh}. The affine hull is aff n = [} H}, where H
{bdh | h € H,}. The face figure of n is ff =  Hy,
and the negative face figure is nff n = (| H,, where H, =
{h =R%—h|he€ H,}. Note that nff 7 is the reflection
of intfin through aff 7. These definitions also apply
to the improper face, n = (| H. In this case, H, =
H, =0 and affp = fin = nfig = R% Recall 1pgy is
the indicator function of the negative face figure, nff 5.
Using the Euler-Poincaré formula for convex polyhedra
one can prove that

Tou(z) = E ()47 - 1ngq(2)

NE®H

(2)

is an algebraic decomposition of (] H. This result can
also be proved directly, see [7], and we state it for later
reference.

ProposiTION 4.1 Let (JH C R? be a convex d-
polyhedron. Then I'ng = lng.

Simplicial complexes. An abstract simplicial com-
plez, A, is a finite system of setsso X € Aand Y C X
implies Y € A. X € A is referred to as an absiract
simplez and its dimension is dim X = card X — 1. The
vertez set is Vert A = |JA. The Euler characteristic of

Ais
z (_1)dim.\"

9£XcA

x(A)

A has a geometric interpretation obtained by mapping
elements of Vert A to points in some Euclidean space.
Specifically, let

€:Vert A—+R"®



soconve(X)Nconve(Y)=conve(X NY)forall X,Y €
A. Such a map ¢ always exists provided e is sufficiently
large. The k +1 = dim X + 1 points in ¢(X) are neces-
sarily affinely independent, which implies conv e(X) is
a k-simplex. The resulting set of simplices,

K

{conve(X) | X € A},

is a (geometric) simplicial complez. The Euler charac-
teristic is x(K) = x(A), and the polyhedron defined by
Kis |Kl=UK.

A most useful property of the Euler characteristic is
its invariance over all simplicial complexes, £, defin-
ing the same polyhedron, P = || = |K|. Hence,
x(P) = x(K) is well defined. This follows from the
stronger result that the alternating sum of simplex
numbers equals the alternating sum of betti numbers.
This is known as the Euler-Poincaré formula, originally
proved in [20, 21], see also [17] or [23]. We state the
result restricted to polyhedra for later reference.

PROPOSITION 4.2 Let P be the polyhedron defined by
a simplicial complex in R¢. Then

d=1

x(P) = ) (-1)-Bi(P).

i=0

The numbers f; = f;(P) are called the betti numbers
of P. They can be defined independent of any decom-
position of P. However, a full-fledged formal definition
is difficult to fit into this paper and not necessary. In
short, f; is the rank of the i-th homology group. Intu-
itively, Bo is the number of components, and for i >1,
Fi is the number of (non-homologous and independent)
i-dimensional cycles in P that do not bound.

Covers and nerves. The Euler characteristic of P
can also be computed from a system of sets covering P.
A closed convez cover of P is a finite collection, C, of
closed convex sets with P = |JC. For example, every
simplicial complex with polyhedron P is such a cover.
The nerve of C is the system of subsets with non-empty
common intersections,

Nrv(C

{xccl|)x#0}.

Note that Nrv C is an abstract simplicial complex, The
nerve lemma, first proved by Leray [13] but see also [2],
implies the betti numbers of Nrv C are the same as the
betti numbers of P. Together with the Euler-Poincaré
formula, this implies the following result used in' the
proof of our main theorem.

ProrosiTION 4.3 Let C be a closed convex cover of a
polyhedron P in R9. Then x(P) = x(Nrv ().
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We will also need the Euler characteristic of the inte-
rior of a polyhedron, which is in general not a polyhe-
dron. It is still possible to find a closed convex cover C
of int P; the sets in C are closed with respect to int P
albeit not necessarily with respect to aff P. We define
x(int P) = x(Nrv C). The nerve lemmaimplies x(int P)
1s well defined and equal to the alternating sum of betti

numbers, just as in the closed case considered in propo-
sition 4.3.

Non-convex polyhedra. In many situations the fol-
lowing definition of a polyhedron is more convenient
than the one given above based on simplicial complexes.
If restricted to the bounded case the two definitions are
equivalent. A polyhedron in R? is the union of finitely
many convex polyhedra,

P = |JNA:

LeA

P is a k-polyhedron if dim(H, = k for all £ € A. We
are mostly interested in the full-dimensional case, when
k = d. We restrict ourselves to bounded polyhedra.
While not essential, this restriction is convenient and
simplifies some of the arguments.

The concepts of face and face figure are extended
from the convex to the non-convex case by consider-
ing neighborhoods of points. The (d — 1)-sphere is
5 =891 = {z € R?| ||z|]| = 1}, and the sphere with ra-
dius ¢ > 0 and center y € R¢ is y + ps. Below a certain
positive threshold for g, all intersections PN (y+ gs) are
homothetic. Assume g is below this threshold, and let
Q. = (P —1y)Nps be the translation of the intersection
to the origin. The point figure of y is

pfy v+ Jt Qo

1>0

For example, pfy = R? if y € int P, and pfy = 0 if
y € P. If Pis a convex d-polyhedron and y € bd P
then pfy is the face figure of the face ¢ with z € int .

The point figures can be used to classify the points
of P into interiors of faces. Specifically, the face con-
taining a point y in its interior is

¢ c{z e RY|pfz = pfy},

and the dimension of ¢ is dimp = dimaff ¢. The face
figure of ¢ is ff p = pfy, and the negative face figure is
the reflection of the interior, nffp = 2y — intpfy. We
say a polyhedron P has the manifold property if P is a
manifold with boundary and so is each face of P.



5 Main Theorem

Let P be a d-polyhedron with face set ® = ®(P). As
usual, 1,4, 18 the indicator function of the negative face
figure of ¢ € ®. In analogy to the convex case we define

Tp(z) = Y ()%™ x(p)  lago(z)- (3)

wed

The only difference to (2) is the Euler characteristic of
- faces, which naturally enters the formula. The main
result of this paper says that with the above general-
ization of definitions, proposition 4.1 also holds in the
non-convex manifold case.

MAIN THEOREM Let P be a d-polyhedron with mani-
fold property in RY. Then I'p = 1p.

PROOF. The argument consists of five steps. First,
P is covered with convex polyhedra. Second, straight-
forward inclusion-exclusion over the nerve of this cover
leads to an algebraic decomposition of P, which is then
refined using proposition 4.1. Third, the decomposition
is reduced by removing convex polyhedra of dimension
less than d. Fourth and fifth, the remaining terms are
rearranged leading to cancellations and eventually to
the claimed identity. Details are omitted in the confer-
ence version of this paper.

Without manifold property. The proof makes use
of the manifold property only in the third step, where
cells (| X of dimension k < d are removed. These cells
can possibly affect the value of the indicator function
only for points y € bd P. Without the manifold prop-
erty, the Euler characteristics of a face and its interior
are no longer necessarily the same. If we substitute
x(int ) for x(y) in (3), the formula still correctly indi-
cates membership in P for points y € int P and y ¢ P,
even without the manifold property. This will be ex-
ploited in section 7. At the expense of a more compli-
cated formula, it is possible to get an indicator function
that is correct for all points, also for points on the non-
manifold boundary. Details are omitted.

6 Face Figure Decomposition

Except in d = 2 dimensions, negative face figures can
be arbitrarily complicated, and it is desirable to further
decompose them into simpler components. We will dis-
cuss the equivalent problem of decomposing (positive)
face figures. This section demonstrates an algebraic de-
composition into intersections of at most d half-spaces
per term. It suffices to consider face figures of vertices.

254

Simple vertex figures. We begin with the non-
degenerate case when v is simple, that is, it belongs
to only d hyperplanes spanned by facets of P. The hy-
perplanes cut R4 into 2¢ (closed) orthants, represented
by the vertex set, V, of a d-dimensional cube, 19. Two
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Figure 5: There are twenty cases for choosing a proper
subset of the vertices of I>. The seven cases of picking 1,
2, or 3 vertices have a complementary case each, and the
six cases of picking 4 vertices are each symmetric to the
complement. The manifold property implies the chosen
vertices form a connected induced subcomplex of the cube.
This is violated in cases (c), (d), (f). (g). (k). (1), and
(m). From the remaining cases drop (b) and (h) because
they do not generate a vertex. The cases left are (a), the
complement of (a), (e), the complement of (e), (i), and
(j). see also figure 4.

orthants are adjacent across a hyperplane iff the corre-
sponding two vertices are connected by an edge. More
generally, a k-face of 14 is a k-dimensional cube and cor-
responds to 2* orthants surrounding a common (d — k)-
flat. The union of these 2* orthants is the intersection
of d — k half-spaces.

The vertex figure of v is the union of a subset of the
orthants, represented by a subset of the vertices, V;, C
V. For example, if v is convex then ff v is equal to one
orthant and card V, = 1. We write V, as the union of
(not necessarily disjoint) maximal subsets determined
by faces of 19:

Ve FIUF'zU..‘UF,‘.

A k-face of 14 corresponds to a set F; of cardinality
2% It also corresponds to a set H; of d — k half-
spaces so (| H; is the union of the orthants correspond-
ing to vertices in F;. The algebraic decomposition
of the vertex figure of v is derived from the nerve of



Fy = {Fl,Fg,..

1g ,(:)

L F}

2

0£XeNrv F,

(-1)*"X 14 x(2),

where ff X is the intersection of half-spaces that corre-
gponds to [ X. More formally, ff X = (| Hx, where
Hx is the union of all H; with F; € X.

Figure 5 illustrates the decomposition by enumer-
ating all different subsets of the 8 vertices of the
3-dimensional cube, I°. An interesting case is (i)
with F, = {Fl,Fg,Fa} and F {000,001}, Fy
{000,010}, F3 = {000, 100}. The pairwise intersections
are the same as the triple intersection, () F, = {000}.
Hence, {000} is counted —3 + 1 = —2 times, which ex-
plains the factor —2 in the decomposition formula (i) in
section 3.

Perturbation. In the general and possibly degener-
ate case, a vertex v of P belongs to an arbitrary number
of hyperplanes spanned by facets. These hyperplanes
decompose RY into a finite number of d-dimensional
convex polyhedra or chambers. Each chamber is a cone
with apex at v. The vertex figure of v is the union of a
subset of these chambers.

We can reduce the general case to many simple cases
by perturbing the hyperplanes into non-degenerate po-
sition. The perturbed hyperplanes decompose R? into
a new collection of chambers. Assume the perturbation
is sufficiently small so all non-degenerate features are
retained. To explain this in more detail we consider
the arrangement, A = A(H), defined by the set, H, of
original hyperplanes. The k-dimensional faces of the
chambers are the k-cells of A. A k-cell is simple if it
belongs to exactly d—k hyperplanes in H. All chambers
are simple.

Let H' be the set of perturbed hyperplanes defining
another arrangement, A' = A(H'). All cells of A’ are
simple. Each cell & of A corresponds to a collection of
cells in A’. To see this consider a continuous motion
of the hyperplanes in H' to their positions in H. The
motion changes A’ to A. The cells in A’ that correspond
to a € A are the ones that belong to a neighborhood
of a before they collapse and they do not belong to
any small neighborhood of any face of a. To “retain
non-degenerate features” means each simple cell of A
correspond to a single face of A’. Each original chamber
thus corresponds to a unique perturbed chamber.

The perturbed vertex figure is the union of a subset
of the chambers in A’, namely the ones corresponding
to the chambers and cells of A contained in ff v. This
union is of course no longer a vertex figure in the strict
sense. The original vertex, v, corresponds to a collec-
tion of faces of the perturbed vertex figure. Each face
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in this collection has a simple face figure, which has a
simple algebraic decomposition as described above. The
algebraic decomposition of ff v is the alternating sum of
these simple decompositions, each transferred back to
the unperturbed state.

Boolean expressions. The second form of the main
result is an algebraic decomposition of P into open
cones, each the intersection of d or fewer half-spaces:

E a; - lag,(z).

LeA

Cp(z)

This form is obtained with or without the method
of perturbation, depending on whether there are non-
simple k-faces. In any case, I'p(z) € {0,1} for all
z € R4.

Consider taking terms modulo 2. Let A’ C A contain
all indices with a; = 1 (mod 2). Then

> lan,(z) (mod 2).

£eA!

Lp(z)

In words, z € P iff it belongs to an odd number of
cones (| H,, £ € A’. This can be expressed by taking
symmetric differences of the cones:

P = @nﬂg.

LeN

(4)

Relation (4) is what we call the third form of the main
result. If all faces of P are simple, the length of the
expression in (4) is at most proportional to the number
of faces. The constant of proportionality is less than
34, In the non-simple case, the perturbation can signif-
icantly increase the number of terms if the polyhedron
is highly degenerate.

7 Applications

The main theorem is relevant to various computa-
tional and geometric questions about polyhedra. Via
limit considerations it leads to statements about non-
polyhedral objects. This section briefly discusses some
of its applications.

Point classification. A common algorithmic prob-
lem in solid modeling is the classification of a query
point, z, relative to a given polyhedron, P C R3, see
e.g. [16, chapter 9]. Assume P has the manifold prop-
erty. The boundary representation of P is readily trans-
lated into the algebraic decomposition given in (3). In
case of degeneracies, a perturbation can be simulated



[8] and vertex figures can be further decomposed by lo-
cal plane arrangement constructions [6]. This results
in an algebraic decomposition where each terms is the
intersection of 1, 2, or 3 half-spaces. All half-spaces are
bounded by facet planes.

For a facet ¢ of P let h(¢) be the closed half-space
locally on the same side of the plane aff¢ as P. It
suffices to decide, for each facet ¢ of P, whether or not
z € h(¢). If there are n facets we get n bits, 0 for z €
h(¢) and 1 for = ¢€ h(4). The algebraic decomposition
specifies the way they are combined to give the global
answer. As explained above, it suffices to work with the
parity and to reduce algebraic to boolean operations.
Specifically, logical and replaces multiplication and xor
replaces addition. Since all operations are independent,
the formula lends itself to the construction of a parallel
circuit with n input gates, logarithmic depth, and one
output gate.

Volume by integration. The d-dimensional volume
of P can be computed by integrating I p over a bounded
domain, e.g. a d-cube enclosing the polyhedron. I'p is
a finite sum of simple terms, and the order of summa-
tion and integration can be reversed. The result is an
inclusion-exclusion formula for the volume:

volP = .["Pp(::)dz
= Y (=14 x(p) - f log o (z)dz.
pE® [

The same technique can be used to compute the cen-
troid or any other polynomial over P, see [1]. As men-
tioned at the end of section 5, the algebraic decom-
position in (3) gives correct indication for all points
z ¢ bd P, even without the manifold property, pro-
vided x(int ¢) is substituted for x(y). With this change
the above volume formula applies also to non-manifold
polyhedra since bd P has measure zero and does not
affect the result of the integration.

Spherical balls. A reasonably popular method in
computer graphics models 3-dimensional bodies as the
union and intersection of spherical balls, see e.g. [22].
Let

s = UNB-e (5)
¢

be such a body in R®. We construct a polyhedron P C

R?* s0 S is the stereographic projection of $* N P.

$3 is the set of points at unit distance from the origin
of R*. Identify R® with the hyperplane {4 = —1 and

define N = (0,0,0,1). Stereographic projection is the
map

r:8 - (N} -R?
defined so N, z € $3—{N}, and n(z) are collinear. = is
bijective and 7~ exists. For each ball b C R3 let h; be
the half-space in R* so h, NS® = n~1(4). Now replace
each ball b in (5) by hs. The result is a polyhedron

P = UNH

in R%. Clearly, S = n(S*N P) and we can generalize the
three forms of the main theorem, the method for point
classification, and the formula for volume computation
from polyhedra to bodies S. The thus obtained volume
formula generalizes the results in [7, 18] for measuring
proteins modeled as unions of balls.

Angle formulas. The angle, angyp, at a face ¢ of
P is the fraction of a sufficiently small sphere centered
at a point z € inty that lies inside P. The classical
Gram-Sommerville relation for a convex polyhedron is

Z(_l)codimqp cangy = 0,

pED
see e.g. [10]. The relation is sometimes named after
Schlafli whose observation preceded the work of Gram
and of Sommerville. A generalization to non-convex
polyhedra can be found in Chen [3]. For polyhedra P
with manifold property, the generalized relation is

3 (-1)dme . x(p) -angp = 0,
wER

(6)

The similarity of this form with the definition of I'p in
(3) is not coincidental. (6) can be obtained by integrat-
ing T'p over the unit sphere, $4=. If we let P shrink to-
wards the origin, the term [g._, lofo(2)dz approaches
the angle at p. The entire integral vanishes because all
points of $9-1 lie outside P. Relation (6) is the limit of
the integral relation.

Observe the above argument is not affected if P does
not have the manifold property. In this case, x(inty)
is to be substituted for x(g), just as in the paragraph
about volume. The argument also goes through if the
indicator function is multiplied with any reasonable
density distribution over $¢~*. It follows (6) holds in
these more general cases.
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