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Abstract

A homeomorphism from R? to itself distorts metric quantities, such as distance and area. We describe an
algorithm that constructs homeomorphisms with prescribed area distortion. Such homeomorphisms can be used
to generate cartograms, which are geographic maps purposely distorted so their area distributions reflects a
variable different from area, as for example population density. The algorithm generates the homeomorphism
through a sequence of local piecewise linear homeomorphic changes. Sample results produced by the preliminary
implementation of the method are included. @ 1997 Elsevier Science B.V.

Keywords: Combinatorial topology; Algorithms; Simplicial maps; Homeomorphisms; Singular value
decomposition; Arrays; Trees; Range search

1. Introduction
Cartograms and homeomorphisms

The starting point for the research reported in this paper is a problem in cartography that has to do
with deformations of geographic maps [2]. A cartogram is a geographic map that is purposely distorted
50 its spatial properties represent quantities not directly associated with position on the globe [3]. Of
particular interest are distortions that do not sacrifice continuity, that is, cartograms generated by
applying a homeomorphism to the plane carrying the original geographic map.

A more general and more mathematical view of the problem studied in this paper is the generation
of a homeomorphism R* — R? whose effect on area distortion can be prescribed.

Continuous versus combinatorial methodology

Previous approaches to producing cartograms are based on continuous methods dealing with force
fields and differential equations. The algorithmic ideas are usually limited to iterations approximating
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a continuous solution [3,10]. The approach in this paper is different and based on combinatorial
methods in geometry [6], topology [8] and algorithms [1]. We use simplicial complexes tiling R? in
the construction of piecewise linear homeomorphisms. The final deformation is the composition of
a sequence of local homeomorphic deformations. Each local deformation maintains area except in a
small region specified within the tiling.

We also study the question of quality of the homeomorphism expressed in terms of local distance
distortions. The assessment of quality opens the way to an objective comparison of different homeo-
morphisms or cartograms. Possibly more importantly, it can be used to improve quality through area
invariant deformations.

The approach to constructing homeomorphic deformations described in this paper has been im-
plemented. Applications of the resulting software to a specific problem instance can be found in
Section 7. We describe two data structures representing the homeomorphism, one based on arrays and
the other on trees. They differ in storage and time requirements. The final picture, the image under
the homeomorphism, is constructed by searching through either one of these data structures.

Outline of the paper

Section 2 presents definitions of the topology and geometry concepts needed for our method. Sec-
tion 3 describes the main steps of the homeomorphism construction. Section 4 develops a data structure
for constructing and evaluating a homeomorphism based on arrays. Section 5 studies an alternative
data structure based on trees. Section 6 discusses the assessment of quality of the thus constructed
homeomorphisms. Section 7 mentions a few applications and exhibits sample results produced with
out software. Finally, Section 8 offers a few concluding remarks.

2. Definitions and concepts

We use periodic tilings to impose a discrete structure on the real plane, R?. Finite portions of these
infinite tilings are algorithmically manipulated. It is convenient to tile with triangles so barycentric
coordinates can be used to extend vertex maps to continuous piecewise linear maps in an unambiguous
manner. For most of the definitions we follow the notation in [8], but see also [4,9]. Some of the
definitions are more general than required for the technical discussions in this paper. We hope the
generality motivates the reader to imagine generalizations of our method, for example to dimensions
beyond 2 and to continuous maps that are not homeomorphisms.

Simplicial complexes

A k-simplex, o, is the convex hull of k£ + 1 affinely independent points. The dimension of ¢ is
dime = k. In R2, at most 3 points can be affinely independent, so we have only 0-simplices (points
or vertices), 1-simplices (line segments or edges) and 2-simplices (triangles). Each subset of the
k + 1 points defines also a simplex called a face of 0. The face is proper if the subset is proper.
It is convenient to call the empty set a (—1)-simplex and to consider it an (improper) face of every
simplex.
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For a vector e, the simplex 0 +e = {p+ e | p € o} is a translate of &, and for a scalar X,
Ao = {p | p € o} is a scaled copy of 0. An edge with endpoints u and v is usually denoted uv. The
cone of u over A, ud = UaEA ua, is defined if ua Nub = u for all a # b in A. For example, if u is
a point not in the affine hull of a k-simplex o then uc is a (k + 1)-simplex. By convention, ufl = w.

A simplicial complex is a collection K of simplices for which ¢ € K and T a face of ¢ implies
7 € K, and 01,07 € K implies oy N o, is a face of both. We allow countably infinite collections
but require each vertex belong to only finitely many simplices. A simplicial complex L C K is a
subcomplex of K. Not every subset M C K is also a subcomplex, but its closure, Cl M = {reK|r
a face of o € M} is a subcomplex of K. The open star of 7 € K is StT = {0 € K | T a face of ¢}.
In contrast to the closed star, C1StT, the open star St is in general not a subcomplex of K.

The vertex set of K is vert K = {0 € K | dim o = 0}. The underlying space of K is | K| = User @
It is often cumbersome to distinguish a complex from its underlying space, and occasionally we will
prefer ambiguous over awkward language. A triangulation of |K| is a simplicial complex L with
|L| = |K|. A subdivision of K is a triangulation L of |K| so each simplex of L is contained in a
simplex of K. A subdivision of K can be generated by starring from a new vertex, u, added to K:
each simplex o € K that contains u is replaced by cones of u over all faces of ¢ disjoint from wu.
A stellar subdivision is the result of repeated starring.

Simplicial maps and homeomorphisms

Each point 2 € |K| belongs to the (relative) interior of exactly one simplex ¢ € K. If o is the

convex hull of vertices ag,ay, ..., ak, then there are unique positive real numbers ag, a1, .. . , o with
k k
Zcxiaizw and Zai = 1.
i=0 i=0

The barycentric coordinate of x with respect to a vertex v of K is ¢, (z) = o; if u = a; and g,(z) =0
if u is not a vertex of o. It is important to note that ¢, : |[K| — [0,1] is continuous for each u, and
that g, is nonzero only for points = contained in simplices of the open star, St u. We remark that
barycentric coordinates have been used before in cartography to construct so-called rubber-sheet maps
solving a problem different from the construction of cartograms [11].

Let K and L be two simplicial complexes. A vertex map f:vert K — vert L has the property that
the vertices of a simplex in K are mapped to (not necessarily distinct) vertices of a simplex in L. The
map f can be extended in an unambiguous way to a simplicial map g:|K| — |L| defined by

9@ = Y @) f(.

uevert K

g is continuous because each g,, is continuous. Furthermore, if f is a bijection, then g is a homeomor-
phism, that is, g is bijective and g and g—! are both continuous. In this case, we call g a simplicial
homeomorphism. K and L are isomorphic if such a homeomorphism exists.

The composition of two simplicial maps is again a simplicial map, and the composition of two
homeomorphisms is again 2 homeomorphism. We will make extensive use of this composition prop-
erty and generate homeomorphisms from possibly many components, each a simple piecewise linear
homeomorphism.
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Tilings

A simplicial complex K tiles R? if | K| = R2. In the specialized literature, K would be referred to
as a simplicial face-to-face tiling [9], but since we consider only this type we call K simply a tiling. A
symmetry of K is an Euclidean motion (translation, rotation, reflection) that maps each simplex of K
to a simplex of K. A symmetry is a particularly simple homeomorphism from |K]| to itself. The set of
all symmetries forms the symmetry group. The set of translations in this group forms the translation
subgroup. K is periodic if the translation subgroup contains translations in 2 linearly independent
directions.

As an example, consider a tiling T’ of R? consisting of equilateral triangles and their faces, see
Fig. 1. T' is unique up to similarity, and for specificity we define T so its vertices have coordinates
(i —35/2,5V/3/2), i,j € Z. There is a one-to-one correspondence between the symmetries of T and
the injective maps from the 3 vertices of a particular triangle to the vertices of any triangle in T. The
symmetry group is therefore isomorphic to S3 x Z x Z, where S; is the group of permutations of
3 elements. The translation subgroup is isomorphic to Z x Z, so T is periodic.

3. Construction

Homeomorphisms in this paper are composed of instances of simple units. The most important such
units are the inflations and their inverses, the deflations. They can be defined using closed stars, domes
and corridors, which are subcomplexes of the periodic tiling T defined above. Stellar subdivisions are
used in the creation of inflations. We begin by defining and discussing inflations on the lowest level
of resolution.

Domes and corridors

The closed stars of any two vertices in T are isomorphic; each is defined by 6 triangles, see Fig. 1.
A dome is the closure of a set of 4 triangles in contiguous positions in a star Stu. u is the center
vertex of the dome. The middle 2 triangles form the diamond of the dome. A closed star contains
6 different domes. The boundary of a closed star and a dome are isomorphic, each being a cycle of
6 edges and vertices. This will be important for our construction, which maps the interior of a dome
to the interior of a star.

A dome has one of 6 orientations specified by the 2 rows of triangles that need to be altered when
the dome expands to a star. To formalize this observation, consider a dome D with center vertex u,

NANNNNN/
JAVAY = VAVAVAN
\VAVA. /  AVAVAVY
/NN NNNNN

Fig. 1. Every vertex in T belongs to 6 triangles defining its star.
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Fig. 2. The corridor of a dome is an infinite subcomplex of T'. It shares 2 edges and 3 vertices with the dome.

and let uv be the edge decomposing D into 2 triangles on each side. v is the start vertex, e = u — v
the direction vector, and C = {o +ie | 0 € D, i > 1} is the corridor of D, see Fig. 2.

Inflations and deflations

Let D C T be a dome, u the center vertex, and C the corridor. We construct 2 stellar subdivisions
T" and T" of T' and a simplicial homeomorphism ¢ : |T"| — |T”| equal to the identity except inside D
and C. The 2 subdivisions are obtained through sequences of starring operations inside D and C,
see Figs. 3 and 4. Observe that 7" and 7" are isomorphic, so there is a unique bijective vertex
map f:vertT' — vertT” equal to the identity everywhere except inside D and C. Its extension
¢:|T'| = |T"| is a simplicial homeomorphism. Since |T”| = |T"| = |T| = R?, the homeomorphism
¢:|T| — |T| is piecewise linear albeit not defined by a vertex map for 7.

We call ¢ an inflation; its inverse, § = (', is called a deflation. 1 is completely determined by the
choice of the dome, D. Intuitively, it moves every vertex in the interior of D U C by one position
along e. The first vertex in this sequence is freed up and used to expand the dome to a star. The
triangles in C are deformed but area remains the same. Triangles outside D and C' are left untouched.
¢ increases area only inside D. More precisely, the diamond of D is increased to twice the area, and
the area of the 2 end triangles remains unchanged. The corresponding deflation halves the area of the

(TESINEXEX
NAARARA

Fig. 3. To obtain T” from T subdivide the 4 triangles of the dome D into 10 triangles using starring operations adding the
midpoints of the 3 interior edges of D. The corridor is decomposed into convex quadrilaterals. Each quadrilateral consists
of 2 triangles and is further subdivided by a starring operation adding the midpoint of the dividing edge.

BB

Fig. 4. To obtain T from T subdivide the 6 triangles of St » into 10 triangles using starring operations adding the midpoints
of 2 interior edges. The part of the corridor outside the star is decomposed into convex quadrilaterals similar to but different
from before. Each quadrilateral consists of 2 triangles and is further subdivided by a starring operation adding the midpoint
of the dividing edge.
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quadrilateral inside St v whose image is the diamond of D. The center vertex, u, is removed by the
deflation.

Composition

The stellar subdivision 7" of T is really the superposition of T and the preimage of T under ¢.
Similarly, 7" is the superposition of T' and the image of T under ¢. It is interesting to look at the
preimage and image of T' under the composition of several inflations. Let us consider an example of 3
inflations which distribute the impact of local growth in 3 different directions. Fig. 5 shows the 3 domes
that define the inflations ¢, ¢, t3 with center vertices 1, 2, 3. We execute the inflations in this sequence
and thus consider h = 3 0 13 0 ¢;. The expansion effect is strongest for the central triangle shared
by all 3 domes, see Fig. 5. Composition is not commutative, which can be seen from the asymmetry
of the image. Fig. 6 shows the hexagon decomposed by triangles of T and their preimages under h.
Symmetrically, Figs. 5 and 6 show the preimage and image of the homeomorphism &; 08, 0 d3 = h™!
composed of 3 deflations.

Instead of defining h as the composition of 3 inflations, we can also design our own image of the
7 triangles decomposing the union of domes. For example, the central region in the right part of Fig. 5
could be drawn with straight edges thus producing a uniform expansion to 7 times the original area.
There are indeed plenty of possibilities resulting in different homeomorphic deformations. Similarly,
we can create other operations, or aggregates, for special deformation tasks.

k(1)

h(2)
Fig. 5. The 3 inflations are defined by overlapping domes covering 7 triangles of the tiling. Any 2 domes overlap in 2

triangles, and all 3 domes overlap in 1 triangle. The image of the union of domes is a hexagon decomposed into 7 regions
each corresponding to one of the 7 triangles.

h(3)

h(2)

Fig. 6. In T', the image of the union of 3 domes is decomposed into 13 = 7 4+ 3 -2 triangles. The preimages of the 13
triangles form a pattern of 13 regions inside the union of domes.
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Fig. 7. The knee bends the corridor of an inflation by 60 de-  Fig. 8. The fork diverts the impact of an inflation into 2
grees. directions.

Knees and forks

Two particular aggregates are now described. They can be used to redirect the directional effect of
an inflation or a deflation. The knee bends a corridor by an angle of 60 degrees, see Fig. 7. A knee, k,
is similar to a deflation, 4, followed by an inflation, ¢, with dome inside the corridor of & and direction
vector 60 degrees different from that of 4. The difference between & and ¢ 0§ is the local deformation
in the knee area, which is less for .

The fork is shown in Fig. 8. It splits a corridor into two. If applied together with an inflation, it
halts the deformation along the corridor and propagates half the amount to each of the new corridors.
A fork, ¢, is similar to a deflation, d, followed by two half inflations, ¢ and ¢;. Half inflations will
be defined in the next paragraph considering coarse resolution levels. The local deformation in the
forking region is again less for ¢ than it is for ¢; o 49 o §. The part of the tiling affected by a knee or
a fork can be described as the union of 2 or 3 corridors. This is important in the discussion of data
structures used in the construction of homeomorphisms.

Coarse resolution levels

For ¢ € R define ¢T = {po | 0 € T}, where go = {gp | p € o} is a scaled copy of o. Clearly,
IT =T, and ¢T' = (—g)T because central reflection through the origin belongs to the symmetry
group of T'. For every positive integer k, T is a subdivision of ¥T". Consider some fixed k > 2 and an
inflation ¢ defined within kT, see Fig. 9. ¢ doubles the area of 2k? triangles in 7', which is the same
amount of growth as achieved by k? inflations within 7. The number of rows in the corridor of ¢ is 2k,

ANNSANNAVA
ANAVANNV AN
ANVANNVASNNN
NV ~N
B4 ~7
N N %

L7
L2

WAVAVLY,
WA

Fig. 9. An inflation in 47", The triangles in the diamond of the dome are expanded uniformly.
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which is considerably less than the total of 2k rows in the corridors of the k2 inflations on the lowest
level of resolution. This suggests a hierarchical approach to constructing homeomorphisms as the
composition of simple deformations on different levels of resolution. This idea is further developed in
Section 4 where only powers of 2 are allowed as values of k. In a sense, we write the homeomorphism
in binary notation.

A possibility suggested by revisiting inflations on a coarse resolution level is the idea of a fractional
inflation: the center vertex, u, is moved by less than one position in the direction e = u — v. Indeed,
in kT there are k — 1 vertices of T strictly between © and u + e. Any one of these can be chosen
as the image of u. The effect of a fractional inflation is a milder expansion of the diamond region
and a milder shift along the corridor. Of course, in principle the image of u can be chosen anywhere
along the axis of the inflation and does not even have to be a vertex of 7. The only limitation to the
freedom of design is the increase in complexity and difficulty of an efficient algorithmic realization.

4. Array-based data structure

We describe a hierarchical data structure keeping track of the homeomorphism as it evolves. Each
level of the hierarchy is a 2-dimensional array representing T = kT, with k = 2¢ and £ a non-negative
integer. The array also represents the inflations defined within Tj. See also Section 5 where trees are
used to represent the hierarchy. Levels are indexed from bottom up, so the lowest level is Ty = 7.
We begin by describing a single level and then discuss how levels are connected.

Array of queues

The data structure for the tiling T} is a 2-dimensional array Ay, j], i,j € Z. For now we assume
T, and A, are infinite in both directions. Each element Az, j] is a vertex of Ty, and the neighboring
vertices are given by index pairs [i — 1,5 — 1], [i — 1,5], [i,7 — 1], [5,5 + 1], i + 1,4), i + 1,5 + 1],
see Fig. 10. The coordinates of the vertex Ay[i, j] in T} are

26 =kl i
(6 %) (). »
It is convenient to implicitly assume the transformation and to call ¢ and j the coordinates of the
vertex.
An inflation, ¢, is specified by a dome, D, determined by its center vertex, u, and its direction

vector, e = e,. There are only 6 possibilities for e, namely (—1,—1), (=1,0), (0,~1), (0,1), (1,0
and (1,1). To record the changes caused by ¢, each vertex uy = u+ Ae, A > 0 and A € Z, stores e to

AN
dy Ydvdvd
17

Fig. 10. The regular tiling with squares decomposed into 2 triangles each by mutually parallel diagonals is isomorphic to T
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indicate its motion under ¢. We have ¢(uy) = uyy for all A > 0 and ¢! (uy) = up_; for all A > 1.
The preimage of ug is ug — %e, which is not a vertex in A,. To indicate that ¢ creates ug we mark the
label e that is stored at ug.

In the general situation we deal with a sequence of inflations on level £. Let h = 1, 0-+- 013011 be
their composition, and call the index the fime stamp. A single vertex v = Ay[i, j] may be affected by
several of these inflations, and it stores them in chronological order in a queue of its own, Q,. The
entry e; = e,, in Q, indicates the image and preimage of v under ¢;. The most common operation is
determining the image of a point by tracing the point through the sequence of simple homeomorphisms.
To speed up this operation, we equip e; with a next-pointer, Ny ¢, to the entry ey in Q. (v)» With minimal
t' > t. The next-pointer is undefined if there is no such ¢. Similarly, we equip e; with a previous-
pointer, p,¢, to the entry e in QLt—l(U) with maximal t” < ¢. The previous-pointer is undefined if

there is no such ¢” or ¢;'(v) is not a vertex in A,. In the latter case, e, is marked indicating v is
created by ¢;.

Tracing points

The image of a point is computed by tracing the path it takes under the sequence of inflations.
The queue entries provide sufficient information to trace out this path. The image of a line segment
is computed by tracing its endpoints and cutting the line segment into smaller pieces if an inflation
affects different parts of the line segment differently. Consider first a vertex v in A,. The path leading
from v to its image under h can be traced by following next-pointers. The path starts with the first
entry in Q, and ends when n is not defined. Similarly, the path from v to its preimage under h can
be traced by following previous-pointers. The path starts with the last entry in Q, and ends when p is
undefined.

Every point z € R? can be specified by its nonzero barycentric coordinates with respect to vertices
of T,. In all cases, the image of z is obtained with the same coordinates from the images of the
vertices: if £ = q,u + g,v + g, w then

i) = qut(u) + gut(v) + wa'(w)'

In many cases, the triangle in T} that contains ¢(z) is ¢(uvw). Otherwise, it is one of at most 3 triangles
overlapping ¢(uvw). Similarly,

@) = qut T (1) + gt (V) + qut T (W),

except in cases where the preimage of uvw is not a geometric triangle. For each inflation there are 4
such triangles, namely the ones that partially overlap the image of the dome diamond, see Fig. 4. Such
a triangle is cut into half by adding the midpoint of an edge. After computing the new barycentric
coordinates of x, considering this midpoint a new vertex, we can find ™! (z) as before.

Only minor modifications are necessary to adapt the data structure and path tracing strategy to
handle deflations and aggregates. We need pointers along all corridors making up an aggregate. The
other changes have to do with the fact that deflations and aggregates do not necessarily map vertices
to vertices. This is the case for one vertex in a deflation and can be the case for most of the vertices
affected by an aggregate. As a result, an undefined next-pointer for v does not imply that no deformation
applies to v, but merely suggests that v needs to be treated like an arbitrary point of R? from then on. To
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distinguish these two possibilities we add a field to the queue entries that identifies the corresponding
deformations.

Hierarchy of tilings and arrays

We call the infinite sequence Ty, T1, ... a tiling hierarchy and we use the corresponding sequence
of arrays Ag,Aj,... to represent the homeomorphism defined by inflations within the T;. T, is a
subdivision of Tj.;. More precisely, each triangle in Ty, is subdivided into 4 triangles in Tj. It
follows the vertex Ay, 1[i, j] is the same as A,[2i,27]. Only vertices with even coordinates in A, exist
in Ag+1.

By simple index manipulation (multiplication and division by 2) we can go from one array to
the next. This does not mean it is easy to compose inflations on different levels in any arbitrary
sequence. Indeed, we need to avoid pointers from lower to higher levels. An inflation on a high level
can otherwise require a pointer each from a large number of triangle on lower levels. The effort to
establish these pointers would defeat the whole purpose of using inflations on high levels to speed up
the computations. For this reason we require that the inflations on level £ + 1 precede the inflations
on level £, for all £. The gain in efficiency seems to justify the associated loss in flexibility. After all,
it is natural to first get the rough features of the homeomorphism right before working on its details.

5. Tree-based data structure

As an alternative to arrays, we can base the representation of the tiling hierarchy on trees. The
storage improves to constant per inflation, but tracing a path slows down and is no longer constant
time per step. The basic idea is to store corridors with a constant number of descriptors. It is thus
suitable for inflations, deflations, knees and forks alike.

Two-key search

Suppose we are given a sequence of integer items, ¢y, ¢s,...,d,. We seek a data structure for
the @; so the following kind of query can be answered quickly: given a pair of integers (¢,z), find
the smallest ¢ > ¢ with ¢; < z, see Fig. 11. We store the items in the leaves of a binary tree T [1,
Chapter IIT]. T is balanced and the leaves are sorted by item index from left to right. Each interior

i

Fig. 11. Plot each item ¢; as a point with coordinates (i, ;) and convert the query into the open orthant below and to the
right of the point (t, ). The answer is the leftmost point (4, ¢;) inside the orthant.
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node v € T stores the range of indices in its subtree, [a,,b,], and the index, m(v) € [ay,b,)], of the
smallest item.

To answer a query (t, ), traverse T starting at its root. At an interior node v we distinguish several
cases:

Case 1. ¢ry(,) = x. Return the empty answer.
Case 2. ¢ < .
Case 2.1. b, < t. Return the empty answer.
Case 2.2. t < b,. Compute the answer for the left subtree and return it if non-empty. Otherwise,
compute and return the answer for the right subtree.

The time required to find the answer is proportional to the height of the tree. To see this note that
there are 3 types of nodes v characterized by a,, < b, < t,a, <t < b, and t < a, < b,. The nodes
of second type lie on a single path traversed in Case 2.2 of the algorithm. A node of first type takes
only constant time, Case 2.1, and is visited only if it is the root or the child of a node of second
type. A node of third type either takes only constant time for one test, Case 1, or it for sure returns a
non-empty answer. Also, it is visited only if it is the right child of a node whose left child returns the
empty answer. After the first time a node of third type returns a non-empty answer, this case cannot
happen any more. If follows that a query is answered by traversing at most 2 paths in T.

Storing corridors

Consider an inflation, ¢, on the finest level of resolution, in the tiling T' = Ty. There are 6 possible
direction vectors, and we have a data structure for each possibility. The axis of ¢ is the oriented line
l:x =u+ Xe, A € R, determined by the center vertex, u, and the direction vector, e. Observe the axis
splits the dome and its corridor along the middle. The two-key item associated with ¢ consists of its
time stamp or index, ¢, and the position ¢; of the start vertex, v = u — e, along . All inflations with
the same axis [ are stored in a tree T; as described above. Similarly, all other deformation types are
represented by corridors, and the ones with axis [ are stored in T, together with the inflation corridors.

For a vertex z € T on [ and a time ¢, the next deformation affecting  can be computed by searching
T; as explained. Since x belongs to 6 axes, one per direction vector, we need to search 6 trees and
take the earliest deformation among the 6 answers.

For each direction vector, there is a countably infinite sequence of parallel axes. Only finitely many
are associated with deformations performed by the algorithm, and these are stored in a dictionary,
which can be represented as a sorted tree [1]. Each entry in the dictionary corresponds to an oriented
line, [, and stores the corresponding tree T;. To find the next deformation for a vertex z € T' we thus
search all 6 dictionaries and one tree inside each dictionary.

The same idea also works for tilings 7y on higher levels of resolution. Note, however, that an axis
l in T} affects vertices on 2¢ — 1 lines in T parallel to I. Only the middle line, [ itself, also belongs
to 7}. If a vertex v lies on a line in T but not in T}, we need to search 2 axes for this direction vector,
namely the 2 axes in Ty next to v on both sides.

The tree-based data structure consists of 6 dictionaries per level of the tiling hierarchy. Each entry
stores a non-empty tree T. Each deformation is stored in a leaf each of 6 trees T. The total amount of
storage is therefore proportional to n, the number of unit deformations. The cost per step in tracing a
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path is O(log n) time per level of resolution. There are at most 1 + log,(N + 1) levels if N > 2 is an
upper bound on the absolute size of the coordinates of all relevant vertices in 7.

Intervals of axes

It is interesting to observe that in the tree-based data structure deformations on different levels of
resolution can be mixed freely. Indeed, with a minor modification of the data structure it is possible
to perform deformations in tilings k7" for any positive integer k. The modification substitutes two
segment trees [7] for the list of dictionaries per direction vector. They are used to discriminate between
deformations affecting an axis in 7" and deformations that have no effect on this axis. More specifically,
the two segment trees store two intervals (of parallel axes) for each corridor. If the deformation is
defined in kT, the two intervals consist of the £ — 1 lines on one side of the axis and the k lines on
the other side, including the axis itself. The reason the 2k — 1 lines are stored in two intervals, rather
than one, is that the starting points at which the deformation affects a line are aligned differently on
the two sides of the axis.

A vertex z € T determines an axis and the two segment trees are used to identify the set of
intervals containing this axis. This set is given as the disjoint union of roughly 2 log, n smaller sets,
each represented by a tree T as described above. To answer a query we first search the two segment
trees and then search logarithmically many trees T, which in total takes time O(log®>n). The entire
data structure consists of 12 segment trees, two per direction vector, and the amount of storage it
requires is O(nlogn).

6. Measuring quality

The homeomorphism solving a cartogram problem is by no means unique. It is therefore essential
to develop a computable notion of quality that permits the comparison of different homeomorphisms.
We consider two such notions: the worst and the average distance distortion. The discussion focuses
on inflations, and all results can be extended to include other types of deformations.

Linear pieces

An inflation consists of 5 linear (or rather affine) pieces. To describe them, let ¢ be an inflation with
dome D, center vertex u, direction vector e, and corridor C. The diamond of D consists of 2 triangles,
o¢ and oy, to the left and right of the axis [:z = u + Ae. The two sides of C (together with the 2
non-diamond triangles of D) to the left and the right of [ are denoted Cy and C,.. Outside DU C, ¢ is
the identity map. Inside D U C it consists of a linear map each for oy, o,, Cy and C,. In each case,
the map is of the form ¢(z) = Az + b, and A and b are readily computed from the vertex coordinates
of a single triangle and its image. For example, assuming e = (1, 1), the 4 matrices A for oy, o, Cy,
C, are

G0) Ga) (07) (43): ®

the corresponding translation vectors b are not important for the discussion in this section. The growth
factor for area is the determinant of A, and indeed it is 2 for oy and o, and 1 for C; and C,.
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Singular values

In the above example, A captures the distortion of a piece in the triangulated square tiling. We
are interested in the distortion of the plane represented by the regular triangle tiling, so we need to
consider BA, where B is the matrix in (1). To simplify the discussion we ignore this important detail.

The effect of A on distance between points is measured by the two Lipschitz numbers,

Ly =max{”A—x” O#mERZ} and f‘,e‘zmin{M OséacERz},
[l ]
where ||y|| = |y0| is the Euclidean distance of y from the origin 0 € R2. The distance distortion can
be studied by considering the image of the unit circle, S' = {z € R? | ||z|| = 1}. A(S!) is an ellipse
determined by the singular value decomposition of A, see [5, Chapter 2.5]. This is a decomposition
of the form

A:U-(SOI 0).v, 3)

52

where U and V are orthonormal matrices (rotations in R?). The diagonal entries, s; > s, are the
singular values of A. s| and s, are the lengths of the ellipse axes, see Fig. 12. It follows that L4 = s;
and £4 = sp. To compute singular values we can use their relationship with the eigenvalues of ATA.
Specifically, the singular values are square-roots of the roots of the characteristic polynomial

(a1 (3 2))

see [5, Chapter 8.5]. As an example, consider the characteristic polynomial for the first matrix A
in (2), which is

(5-N(1=2X)+1.

Its roots are A\ = 3 + +/5, and the Lipschitz numbers are L4 = s; = 3++/5 ~ 2.288 and
C4 = 82 = V3 — /5 ~ 0.874. Note, however, that this only measures the distortion in the decomposed

)
NP

Fig. 12. The matrix expanding the upper triangle of a diamond maps the unit circle to the ellipse with axes of length
approximately 2.288 and 0.874.
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i O O @]

i+1 O O

Fig. 13. A row of triangles in T at time ¢ and i + 1. The shaded node corresponds to the triangle in the dome diamond of ;.
It expands to twice its original area and it is the only triangle whose image overlaps 3 triangles in T'.

square tiling, and the distortion in the corresponding regular tiling 7" is less. It is given by the Lipschitz
numbers

/ — /78
Lo= S—Z@zz.ms and fo = %m}.%o

of C = B-A-B™!, where B is the matrix in (1).
Dag of matrices

In general, we study a piecewise linear homeomorphism h = 1, 0 -+ 045 0 ¢;. The deformation of
each linear piece is given by a product of matrices as in (2). To determine the singular values of such a
product there is little else we can do than first compute the product matrix and then its singular values.
All matrix entries are small integers, —2,—1,0,1,2, so we can compute products exactly. We can
improve the overall running time by exploiting that the matrix chains overlap in possibly large portions.

Specifically, we define a directed acyclic graph, G, whose nodes are triangles in 7 with time stamps
in {0,1,...,n}. The source nodes are triangles with time stamp 0 and the sink nodes have time
stamp n. There is an edge from (o, 1) to (0’,i+ 1) if ¢;(¢) and o’ overlap. Each edge is labeled with
the corresponding matrix, A. Paths from source to sink nodes are chains of matrices. Most edges are
labeled with the identity matrix, and we may choose to ignore them by identifying their 2 triangles,
which are the same anyway only with different time stamps. By definition of inflation, each node has
at most 2 incoming and at most 3 outgoing edges, see Figs. 13 and 3. The dag G is implicit in the
data structures described in Sections 4 and 5, which provide images of triangles indirectly through
the images of their vertices. The composition of the n inflations can be computed by traversing the
entire G from sources to sinks. A breadth-first traversal avoids recomputing products of partial matrix
chains [1, Chapter V1.23]. A triangle (o, 1) is the last node of a number of initial matrix chains, each
associated with a piece of o. The pieces subdivide . If (0,%) has 2 (or 3) outgoing edges then this
does not imply each of its pieces is split into 2 (or 3). Indeed, many paths do not correspond to any
non-empty linear piece of h. Computing matrix products along such paths can be avoided by keeping
track of the pieces subdividing each o.

Distance distortion

The extreme distance distortions are captured by the Lipschitz numbers Ly, and £, which are the
maximum and minimum of

|h(m)h(y)] 2
{ |zy] z#£yER }
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Both can be computed from the matrix products at the sink nodes of G. Another relevant quality
measure is the condition number,

L
Cy, =ma:ic{—L|C - 1},
¢ Ulni

defined over all maximal regions ¢ C R? so h|¢, the restriction of h to ¢, is linear. Large ratios occur
In transition regions between small and large area distortions. Small condition numbers indicate good

quality homeomorphisms. More tolerant to large condition numbers in small regions than C, is the
average condition number,

ﬁh = Z area(C) - Chi('
¢

By definition, the condition number Chjc vanishes in undeformed regions of R, so their contribution
to C}, is zero.

7. Implementation and results

The performance of our approach in terms of quality of generated cartograms is illustrated with
examples redrawing the states of the USA. The cartogram problem asks for deforming each state so
its area represents the number of electoral votes in the 1992 presidential election.

Our current implementation is based on trees representing the tiling hierarchy. We show the images
of two homeomorphisms. The first is produced by our implementation of a matching strategy. The
current implementation is less than perfect and tends to produce homeomorphisms of inferior quality.
We believe the implementation can be improved to achieve good quality over a broad range of
cartogram problems. The second homeomorphism is produced with a more conventional iteration
scheme. While the latter approach gives a pleasant and accurate homeomorphism in this specific
cartogram problem, this cannot be said for some other problems we tried.

Matching strategy

One idea for finding simple deformations that compose to a desired homeomorphism is to transport
area from regions of surplus to regions of need. An inflation-deflation pair with matching corridors
transports area from the deflation to the inflation diamond. If no common corridor is available, we use
knees and forks to design more complicated transportation channels.

The way surplus regions are matched with regions of need has a profound influence on the quality
of the generated homeomorphisms and the running time of the algorithm. At the same time, this is
currently the least developed part of our method, that is, the matching algorithm we use is heuristic.
We plan noncrossing transportation channels, if possible. To limit the number of crossings among the
channels, we first pick a direction and choose all initial inflation-deflation pairs with corridors along
this direction. Channels containing knees and forks transport the remaining surplus to regions of need.
With this strategy, it is possibly to inflate or deflate different portions of the same district or state in
a uniform manner.
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To simplify the matching problem, we replace the deflation operation described in Section 3 by a
similar but different aggregate. It restricts the area reduced by the deformation to within a diamond
of two triangles, just as in the case of an inflation. We use deflation factors ranging from 0.5 through
I —1/(o+ 1) and inflation factors ranging from 1 + 1/p through 2.0 on resolution level o > 1.
The use of fractional inflations and deflations has a positive effect on the quality of the resulting
homeomorphism.

It was found that visually unpleasant side effects of deformations decrease with finer tilings. Expe-
rience seems to suggest that the triangle edges should be shorter than the “smallest feature size™ of
the geographic map by a factor between 10 and 20. Finer tilings do not necessarily imply an increase
in the number of inflations and deflations because many operations are executed on coarse resolution
levels.

Sample deformations

Fig. 14 shows the geographically accurate decomposition of the USA into states, not including
Alaska and Hawaii. The homeomorphisms shown in Figs. 15 and 16 deform the continental USA so
the area of the states reflects the number of electoral votes in the 1992 presidential elections. Shading
in Fig. 16 indicates states with a majority of votes for the elected president, Bill Clinton. Fig. 15
shows the deformation of the USA at an intermediate stage of the matching algorithm, with average
cartographic error of about 50%. In [3], the error for a district or state ¢ is defined as

where a(() is the actual area (after deformation) and ¢(¢) is the targeted area in the cartogram. We
use the same definition of error to allow for direct comparisons with results in [3].

The cartogram in Fig. 16 has average cartographic error of less than 1% and the maximum error for
any state is 2.33%. In the computation leading to this cartogram we use a heuristic built on top of the
methods described in earlier sections of this paper. The heuristic iterates and changes the area of each
state by some small amount towards the desired area. In each step, a set of inflations or deflations are
applied to the diamonds inside the state to achieve the desired change.

Fig. 14. The states of the USA approximating actual Fig. 15. The deformed United States at an intermediate
shape and size. stage of the computations.
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Fig. 17. The image of a regular square grid under the Fig. 18. The preimage of a regular square grid under
homeomorphism of Fig. 16. the homeomorphism of Fig, 16.

The deformation resulting from the application of a homeomorphism is intuitively visualized through
the image and the preimage of the regular square grid, see Figs. 17 and 18.

8. Remarks

This paper describes a combinatorial approach to homeomorphisms generating cartograms. Even
though combinatorial methods are introduced to describe homeomorphisms and to manipulate them,
the algorithm which takes advantage of the discretization of the problem still needs improvement
to produce accurate as well as visually pleasing cartograms. In addition there is hope that a post-
processing step based on quality measurement mechanisms suggested in Section 6 can eliminate some
of the unpleasant effects introduced by the matching strategy.

It is premature to judge the direct practical relevance of the algorithm described in this paper.
Besides the quality issue, the applicability of the algorithm will largely depend on the number of
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basic operations used in the construction, since experience shows that a truthful mapping of region
boundaries can result in a very large number of line segments.
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