Geometry for Modeling Biomolecules

Herbert Edelsbrunner, University of Illinois, Urbana, Illinois, USA

Space filling diagrams are geometric models of molec-
ular conformations in three-dimensional space. Each
atom s a location is space and a quantitative expres-
ston of influence on the immediate surrounding. This
paper surveys the basic types of space filling diagrams
with a focus on the dual alpha shape. Properties of
those diagrams that relate to questions of connectivity,

size, shape and symmetry, and metamorphosis are dis-
cussed.

1 Introduction

The concept of a molecule seems to be an essential
and stable ingredient in scientific studies of microscopic
events. Still, people’s understanding and image of what
molecules are has changed with time. Even today the
question whether there are atoms can still be asked,
Bader [3]. We rephrase and ask whether it is useful
to postulate the existence of atoms, and if yes, what
model of an atom is most productive. This is the util-
itarian viewpoint which is adopted in this paper, but
the question is directed towards molecules. Since even
the utilitarian goal is rather ambitious, we claim with-
out justification that some of the most useful models
are geometric. We then go ahead and survey a class of
geometric models known as space filling diagrams.

Geometry in biology. There is in fact a large
body of evidence in favor of the thesis that geome-
try plays an important role in life on the microscopic
level. One of the most striking insights generated by
decades of research is that geometric shape decides how
biomolecules function. We quote Rose [39]: “What role
a protein takes in the grand biological opera depends
on exactly one thing: its shape. For a protein molecule,

function follows form.” It thus seems imperative to de-
sign and fabricate refined tools that permit focussed
probes into the geometry of this opera. It is likely that
such tools will find use in the design of drugs, in the
classification of molecular components, in simulating
docking and folding processes, etc.

Purpose and scope. The goal of this paper is a
biased survey of space filling diagrams used to model
large molecules. The bias follows the author’s back-
ground and is directed towards topological, geomet-
ric, and algorithmic properties of these models. Even
within this narrow scope, the reader will find a bias
towards the author’s own work, for which the author
apologizes.

The methods used and discussed in this paper come
primarily from combinatorial disciplines within topol-
ogy, geometry, and algorithms. Among the many text-
books in these areas we recommend the following: the
short monograph by Alexandrov [2] for an easy and in-
tuitive introduction to topology, the text by Guillemin
and Pollack [24] for an introduction to differential ideas
in topology, the two-volume handbook edited by Gru-
ber and Wills [23] for a broad coverage of discrete ge-
ometry, and the text by Cormen, Leiserson and Rivest
[9] for a comprehensive introduction to combinatorial
algorithms.

Outline. Section 2 describes four types of space fill-
ing diagrams. Section 3 introduces the alpha shape,
which is dual to these diagrams. Section 4 focuses
on holes in molecules. Section 5 studies formulas for
measuring the geometric size of a molecule. Section 6
considers questions of shape and symmetry. Section 7
discusses the phenomena of change under growth and
motion. Section 8 concludes the paper.
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2 Space Filling Models

The step from molecule to geometric shape is facili-
tated by space filling diagrams. This section introduces
four types: the Van der Waals model, the solvent ac-
cessible model, the molecular surface model, and the
molecular skin model.

Van der Waals model. A molecule is a collection
of atoms. Each atom, 4;, is specified by its type and a
location in space: z; € R3. The Van der Waals radius
maps A; to a positive real r; that is the same for all
atoms of the same type. The Van der Waals model of
the molecule is a union of balls:

VW = {$ER3|32':”1'—3£“ST£}:

see Figure 1. The Van der Waals radius is assigned

Figure 1: Van der Waals model: each disk represents an
atom specified by iis center and radius.

80 atoms in non-binding position do not overlap, see
Creighton [10]. Since overlap depends on two atoms
and not on one, we can imagine a certain amount of
ambiguity in the assignment of radii and it seems in-
deed common that different research schools in molec-
ular biology use slightly different maps.

Solvent accessible model. Interaction between the
Van der Waals model and a solvent represented as an
omnipresent sphere of radius g is studied by increasing
the radius of every atom ball by p. A solvent sphere is
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disjoint from VW iff its center lies outside the solvent
accessible model define by Lee and Richards [30, 38] as
the union of enlarged balls:

SA = {rxeR|3i:|z -z <r+o}

see Figure 2. The overlap free positions of the solvent

Figure 2: Solvent accessible model: the radius of each disk
in Figure I is increased by a constant, which is the radius
of the solvent.

are exactly the centers in the complement of SA. It fol-
low that a solvent particle can move between locations
z,y € R® without touching VW iff z and y belong to
the same component of the complement of SA.

Molecular surface model. A model that resembles
in size the Van der Waals and in connectivity the sol-
vent accessible model is the molecular surface model.
It consists of all points z € R® that lie outside all sol-
vent spheres disjoint from VW:

MS = {zeR®|VygSA: lz -yl > o},

see Figure 3. According to Michael Connolly, the
molecular surface model was originally introduced by
Greer and Richards. The first computer program for
constructing its surface is due to Connolly [7]. The sur-
face is generated by a sphere of radius o rolling about
VW.  The envelope of this motion is a surface that
bounds MS. Tt consists of sphere and torus patches
connected in a tangent continuous manner. Because of
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Figure 3: Molecular surface model: a circle representing
the solvent rolls about the Van der Waals model.

occasional self-intersections, this surface is in general
different from the boundary of MS. Two consequences
are that the boundary is not everywhere tangent con-
tinuous, and that MS and SA do not necessarily have
the same homotopy type.

Molecular skin model. Think of the torus patches
of MS as blending surfaces that connect neighboring
spheres in VW. A similar but different blending effect is
achieved by shrinking an infinite family of spheres. The
family, F, is obtained by increasing each radius by a
factor v2 and adding combinations of 2, 3, and 4 balls.
The molecular skin model is the union of the family
after shrinking the radius of every ball by a factor -‘é—E:

SK = {zeR|3r)eF:lc—-2 <

V2-r
2 >
Details of this construction including a precise speci-
fication of F' can be found in section 6. The surface
of SK consists of sphere and hyperboloid patches that
meet in a tangent continuous manner. Similar to MS,
the molecular skin model is not homotopy equivalent
to SA, but it is homotopy equivalent to the union of
atom balls whose radii are increased by a factor of /2.
A property unique to SK is a symmetry between inside

and outside useful in studies of complementarity.
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3 Dual Models

The space filling models have a common dual counter-
part. To construct it we introduce the Voronoi diagram
that decomposes the union of balls into convex pieces.
This union could either be a Van der Waals or a sol-
vent accessible model. The overlap between the pieces
defines what we call the dual complex.

Voronoi cells. The weighted distance of a point = €
R3 from A; is mi(z) = ||z — 2| — r?. For r; = 0 this
is the same as the square of the Euclidean distance.
Weighted distance is defined for any real so possibly
also negative square radius. The corresponding exten-
sion from real to imaginary radii and balls is useful in
sections 6 and 7 when we talk about the complement
and metamorphosis of a molecule. The Voronoi cell of
A; is the region of points whose weighted distance to
A; is at least as small as to any other ball:

Vi = {z€R|Vj:mz) <mi(x)},

see Figure 4. Each Voronoi cell is an intersection of

Figure 4: Voronoi cells: each atom generales a conver
polyhedron.

closed half-spaces and therefore a convex polyhedron.
Any two cells overlap at most along some piece of
their boundary, and together the collection of cells cov-
ers the entire R3. To simplify the exposition we as-
sume throughout this paper that the balls are in non-
degenerate position. With this assumption the com-
mon intersection of k + 1 > 1 Voronoi cells is either
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empty or a common (3—k)-dimensional face. For k > 4
the common intersection is always empty.

The cells are named after the Russian mathemati-
cian Voronoi who studied the geometry of numbers [40).
The terminology in the literature is not entirely uni-
form and Voronoi cells are also known as power cells,
Dirichlet cells, Thiessen polygons, etc.

Delaunay complex. The Delaunay complex is a col-
lection of simplices that records the overlap pattern
among Voronoi cells. Specifically, the complex con-
tains the convex hull of k + 1 ball centers iff the corre-
sponding k-1 Voronoi cells have a non-empty common
intersection. To develop the necessary mathematical
notation let B be a subset of k + 1 atoms and define
zB:{z¢|AieB}andVB——-{L§-|A4€B}. The
Delaunay complez is
D = {o=convzp| nVB # 0},

see Figure 5, where conv zp denotes the convex hull of
the points in z5. The non-degenerate position assump-

Figure 5: Delaunay complez: Voronoi cells are represented
by vertices and the pairwise and triplewise overlap among
cells is represented by edges and triangles.

tion implies that the points in zp are affinely indepen-
dent and their convex hull is a simplex of dimensio
card B — 1. '

The complex is named after the Russian mathemati-
cian Delaunay, also Delone, who defines the complex
as the collection of cells that satisfy the empty sphere
property [11]. For a set of points the condition is ex-
pressed in terms of spheres passing through points.

H. Edelsbrunner

The generalization to a set of balls is expressed in terms
of spheres that are orthogonal to balls, which means the
square distance between their centers equals the sum
of square radii.

Fact 1 ¢ = convzp belongs to D iff there is a ball
orthogonal to all A; € B and further than orthogonal
from all other balls.

Dobkin and Laszlo [13] design a data structure for stor-
ing a 3-dimensional Delaunay complex and Facello [21]
describes the implementation of an incremental algo-
rithm for constructing it.

Alpha shape. In order to apply duality to molecules
it is necessary to restrict the construction of simplices
to the portions of Voronoi cells covered by the atom
balls. This leads to the definition of alpha complexes
and alpha shapes. Observe first that the Voronoi cells
decompose the union of balls into convex regions: V; N
VW = V; N A;. The dual or alpha complez records the
overlap pattern among these regions:

K = {o=convzp | ﬂVB ﬂﬂB # 0},

see Figure 6. The dual complex is a subcomplex of

)

-
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)

Figure 6: Dual or alpha complez: it contains the subset of
simplices in D that record overlap among Voronoi cells that
reach into the union of balls.

the Delaunay complex: IC C D. The alpha shape is the
union of simplices in K. It is often convenient to ignore
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the difference between alpha shape and alpha complex,
but sometimes it is essential to remember that the for-
mer is a polyhedron and thus a subset of space while

the latter is a complex and therefore a combinatorial
structure.

Alpha shapes have been introduced for points in the
plane by Edelsbrunner, Kirkpatrick and Seidel [19].
They have been generalized to points in three dimen-

sions by Edelsbrunner and Miicke [20] and to balls in -

general dimensions by Edelsbrunner [14]. The alpha is
a parameter that expresses growth of balls. When we
talk about a fixed set of balls this parameter is irrele-
vant, but it will be used in section 7 where simultaneous
growth of atom balls is discussed.

Duality. As a first application we mention the use
of the alpha shape in constructing the dual union of
balls. Consider for example the Van der Waals model:
VW = | J; 4;. The boundary of VW consists of sphere
patches that meet along circular arcs and corner points.
We call these k-patches, for k = 2,1,0. The direct
construction of the patches is made difficult by numer-
ical inaccuracies resulting from the use of floating-point
computation. A more robust strategy is to first com-
pute the alpha complex and to use the dual correspon-
dence for all decisions on patch overlap. This idea has
been implemented by Akkiraju and Edelsbrunner [1]
who construct a triangulation of the surface. Another
fast algorithm for constructing the surface, but not a

triangulation, is described in Halperin and Overmars
[25].

The particular dual correspondence useful in this
context relates the boundary of VW with the bound-
ary of the alpha shape, see Figure 6. To express the
correspondence let B be a set of k + 1 balls and define
Sp as the set of spheres bounding the balls in B.

Fact 2 The intersection of the spheres, (\Sg, contains
a (2 — k)-patch of the boundary of VW iff the simplex
g = conv zg belongs to the boundary of the alpha shape.
Furthermore, a patch is face of another patch iff the
corresponding simplex of the latter is a face of the cor-
responding simplez of the former patch.

269

4 Connectivity

A topologically interesting aspect of molecules is their
connectivity. It is fairly common for biomolecules to
have tunnels and voids. A tunnel is a hole through the
molecule that is accessible from the outside whereas a
void is a hole that is completely surrounded by atoms.
Classifying and counting holes is one of the major top-
ics in topology. A particularly useful formalism is
that of homology groups and Betti numbers, see e.g.
Munkres [33]. Curiously, the type of holes that is most
important in the study of biomolecules is not a hole
in the topological sense at all. These holes are cavi-
ties or depressions through which biomolecules inter-
act. They are called hollows in the philosophical treat-
ment of holes by Casati and Varzi [5] and pockets in
this paper.

Voids and dual simplex sets. A wvoid of a shape
M C R® is a bounded component of the complement,
R3® — M. For example, the solvent accessible model
M = SA in Figure 2 has two voids, and so does the
corresponding alpha shape in Figure 6. That this is
not a coincidence follows from a general result implied
by the nerve theorem first proved by Leray [31].

Fact 3 A union of balls and the corresponding alpha
shape are homotopy equivalent.

In a nutshell this means that the two are connected
the same way: they have the same type, number, and
arrangement of holes. The correspondence between the
two shapes can be made geometrically more specific,
see Figure 6.

Fact 4 A union of balls contains the corresponding al-
pha shape, and each void of the alpha shape contains
the corresponding void of the union of balls.

A void of the alpha shape is covered by a collection of
simplices that belong to D but not to K. We call this
the dual simplez set of the void. Each dual simplex set
is open at the boundary. Applications of these sets will
be discussed in section 5.

Pockets. Cavities that are not voids are more diffi-
cult to define because it is not immediately clear where
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they should start and what criterion can be used to dif-
ferentiate shallow depressions from ones that should be
taken seriously. Connolly (8] sought to visualize such
cavities indirectly through highlighting the skeleton of
the complement. Kuntz [27) identifies a region of the
complement as a cavity if a sphere can get stuck there.

We follow the approach of Edelsbrunner, Facello and
Liang [18] who use an acyclic relation of the tetrahe-
dra in the Delaunay complex to define pockets. Specif-
ically, let the orthosphere of a tetrahedron ¢ = conv 2 B
be the unique sphere orthogonal to all four balls in B.
Two tetrahedra form a pair in the relation, ¢ < 7, if
they share a common triangle and the center of the or-
thosphere of ¢ lies on 7’s side of the triangle. Similarly,
we set o <X oo if one of the triangles of o belongs to
the convex hull and the center of the orthosphere lies
on the other side of that triangle. Take all tetrahedra
in D — K, arrange them in groups defined by shared
descendents, and remove the group containing co. For
each remaining group add the faces that do not belong
to K and combine two groups if they share at least one
triangle. The result is what we call the dual simplex
sets of pockets. A pocket is the part of space outside
the ball union covered by simplices in its dual simplex
set. In the end, the notion of pocket is very similar to
Kuntz’s ideas about cavities.

The dual simplex set of a pocket is typically partially
open and partially closed. Define the mouth as a com-
ponent of boundary simplices. Each mouth describes
a connection between the pocket and the space out-
side the molecule. A void is a pocket without mouth.
Figure 7 shows a large pocket formed by the HIV-1
protease molecule. Pockets of one molecule naturally
interact with protrusions of another. It is desirable to
define a protrusion in a symmetric manner, such as
the pocket of the complement. This is indeed possible
once we understand that the structure of the comple-
ment can also be expressed in terms of finite sets of
balls, see section 6.

Computing and counting holes. The three types
of topological holes of a molecule are counted by Betti
numbers, which are the ranks of the three possibly non-
trivial homology groups. Definitions of these concepts
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are technically fairly involved and can be found in ev-
ery text on algebraic topology. Intuitively, the Betti
number [y counts the components, 8; counts the inde-
pendent tunnels, and /3 counts the voids. Traditional
algorithms, such as the matrix manipulation method
described in Munkres [33], are impractical for the size
of complexes that arise as duals of biomolecules. An
algorithm that is efficient in R? is developed by Del-
finado and Edelsbrunner [12]. It computes all three
Betti numbers using a filter of the Delaunay complex.
This is a linear ordering of the simplices so every pre-
fix is a subcomplex, and the alpha complex is one such
prefix. The simplices following the alpha complex in
the filter form the dual simplex sets of all voids and of
the outside of the molecule.

The filter can be extended to also represent the rela-
tion over the tetrahedra needed to define dual simplex
sets of pockets. The Betti number algorithm can then
be extended and compute pockets by collecting sim-
plices of D—K in groups as determined by the relation,
see Edelsbrunner, Facello and Liang [18].

5 Geometric Size

There is a connection between the topological complex
representation of a molecule and its geometric size. We
restrict the discussion to the volume of a union of balls
and a void, but similar formulas also exist for surface
area and length of arcs.

Inclusion-exclusion. This combinatorial principle
expresses the volume of a union of balls as an alter-
nating sum of volumes of common intersections:

vl J4 = ¥ (=1)°2 B-1vol(")B.

BCA
The number of terms is exponential in the number
of balls, and the volume of (B is progressively more
difficult to evaluate as the cardinality of B increases.
Kratky [26] observed that most of the terms in the
inclusion-exclusion formula are redundant, and this
includes the non-zero terms many of which cancel.
Specifically, he considered the common intersection of
a finite collection of disks and proves that there is an
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Figure 7: HIV-I protease: dual simplex set inside alpha shape to the left, and pocket indicated by balls defining the wall of

the pocket to the right.

exact inclusion-exclusion formula that contains only
terms for sets B of cardinality 1, 2 and 3. Scheraga and
collaborators use the generalization of Kratky’s result

to balls in R2 in their software for volume computation
(36].

Truncated formulas. A weakness of Kratky’s re-
sult is that it does not specify which terms of the basic
inclusion-exclusion formula are redundant. For exam-
ple, the formula that simply takes all terms for sets
B of cardinality 1, 2, 3 is not correct. Naiman and
Wynn [34] observe that the formula that has a term
for each Delaunay simplex is exact. Even this for-
mula contains redundant information, and the smallest
inclusion-exclusion formula that gives the exact volume
contains a term for each simplex in the alpha complex.

Fact 5 The volume of a union of balls is

vol UA = Z (=1)card B-lyg) ﬂB,

1=

where B is the set of balls so that o = conv zp.

This result is due to Edelsbrunner [14] who proves it by
integration over Euler characteristics. All intersections

of k41 balls that correspond to k-simplices in K have
the same combinatorial type, see Figure 8. For this

Figure 8: The common inlersection of 1, 2, 3,  spherical
balls.

reason the formula in Fact 5 is significantly easier to
implement than that over simplices in D.

The proof in [14] reveals a relationship between the
union of balls in R® and a convex polyhedron in R%.
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More generally, one can consider the union of intersec-
tions of balls, which corresponds to a possibly non-
convex polyhedron in R*. Edelsbrunner [15] shows
that the volume can be computed with a truncated
inclusion-exclusion formula derived from the boundary
complex of that polyhedron.

Angle-weight formulas. The volume of a void can
be computed using Fact 5 if we first fill the void with
balls and then subtract from the total volume the vol-
ume of the original molecule. This seems roundabout
and indeed there is a direct formula based on the dual
simplex set. For a tetrahedron ¢ and a face 7 define
the angle, ¢, ,, equal to % if 7 is a triangle, equal to
the dihedral angle at 7 if it is an edge, and equal to the
solid angle at T if it is a vertex. The volume is the total
volume of the dual simplex set minus its intersection
with the ball union.

Fact 6 The volume of void V with dual set of tetrahe-

dra T is
volV = Z volo
o€T
* Z Z (‘Umrdﬁ * 7,5 - Vol mB:
o€T o 2TEK

where B is such that T = conv 2.

The dimension of any simplex 7 in the above formula
is at most 2. The terms are therefore restricted to
intersections of at most 3 spheres.

Experimental results. The alpha shapes software
includes the implementation of inclusion-exclusion for-
mulas for volume and surface area and has been pub-
lically available for many year at ftp.ncsa.uiuc.edu.
Its functionality with a focus on geometric size is de-
scribed in Edelsbrunner, Facello, Fu and Liang [17].
Peters, Fauck and Frommel use the software to auto-
matically identify ligand binding sites near the bound-
ary of proteins [37).

The more recent facility to identify and compute
pockets is used by Liang and McGee to estimate hydra-
tion change due to osmotic stress [32]. Edelsbrunner,
Liang and Woodward [29] use the software and exten-
sions of the inclusion-exclusion formulas to pockets for

H. Edelsbrunner

the purpose of gathering statistical data about average
sizes of pockets and mouths and computing correlation
to the size of ligands, etc. For general binding sites
they observe a remarkable variety in size, and for the
HIV-1 protease molecule they measure a surprisingly
large range of sizes for a flexible pocket that adjusts to
the binding ligand.

6 Shape and Symmetry

Questions of complementarity are common in biology,
and Blaney and Dixon [4] study the problem of molecu-
lar docking where complementarity assumes a concrete
geometric meaning. An interesting special case arises
when one type of molecule forms aggregates where the
molecule docks with a copy of itself. To do this the
molecule must be locally self-complementary. This sec-
tion studies the molecular skin model, which provides
a means to realize perfect complementarity.

Body and skin. Given a finite set of atom balls, A;,
the skin is obtained as the envelope of an infinite family,
F. We generate this family through addition and scal-
ing. A ball is the preimage of the weighted distance
function m; : R® — R: A; = m~!(—o0, 0]. Addition
and multiplication with a scalar are well defined and
give rise to the vector space of functions. We borrow
the vector space for the balls and define

Z’}’i'fli =

where m(z) = " ; - mi(z). In this vector space we
define the convex hull of the A; as the set of combi-
nations ) v; - A; with }_; = 1 and ; > 0 for every
1, as usual. For each ball (z,7) in the convex hull, the
infinite family F contains the ball (z, %), which is a
shrunken copy that shares the same center. The body
is the union of balls in F, and the skin is the envelope,
see Figure 9. The only difference between the body and
the molecular skin model in section 2 is that the latter
first grows the balls to compensate for the shrinking
effect inherent in the construction. The definition of
body and skin is due to Edelsbrunner [16]. Some of
the important properties are:

Fact 7 The body and the union of the A; are homotopy
equivalent.

771 (o0, 0],
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Figure 9: From outside in: boundaries of the union, the
body, and the complement of the union of orthogonal disks.

Together with Fact 3 this implies that the body is ho-
motopy equivalent to the alpha shape.

Fact 8 The skin consists solely of sphere and hyper-
boloid patches, and in the non-degenerate case it is ev-
erywhere tangent continuous.

The exception to tangent continuity happens when two
of the atom balls touch and the point where they touch
lies on the boundary of the union. In this case the
hyperboloid that blends between the two spheres de-
generates to a double-cone and tangent continuity is
violated at the apex of that double-cone.

Complementarity. We use a fundamental symme-
try between Voronoi and Delaunay complexes to rep-
resent the complement of a molecule by another finite
set of balls. The idea is similar to the computer pro-
gram DOCK by Kuntz and collaborators where a pocket
is filled with balls to get a positive imprint [28]. We
replace the heuristic filling process by a canonical con-
struction.

Recall that each tetrahedron o € D corresponds to a
vertex shared by four Voronoi cells. Let B; = (yj,q;)
be the ball whose center, yj, is that Voronoi vertex
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and whose square radius, q?, is the weighted distance
of y; from any one of the four balls that generate the
four Voronoi cells. By construction, B; is orthogonal
to the four balls and further than orthogonal from all
other A;. To complete the construction we add an
infinitely large ball (a half-space) with center at the
infinite end of every unbounded Voronoi edge. An ex-
ample is shown in Figure 9 where the innermost curve
is the boundary of the union of the B;. The new set of
balls has some possibly surprising properties.

Fact 9 The complement of the interior of the U:.‘ B; is
contained in and homotopy equivalent to |J, Ai.

This implies that the A; and B; together cover the
entire R3.

Fact 10 The skin of the B; is the same as the skin of
the A;. The bodies of the two sets are complementary
and intersect in the common skin.

Protrusions. One of the applications of the set of
balls B; is that it facilitates the definition and construc-
tion of protrusions. Recall the definition of a pocket in
section 4 and think of a pocket as a protrusion of the
complement. Symmetrically, we can think of a protru-
sion as a pocket of the complement.

Consider the Delaunay complex of the Bj, which is
the same as the set of Voronoi cells of the A; together
with their faces. The dual complex of the B; is a sub-
complex of that Delaunay complex. Define a relation
over the cells, as in section 4, and group the cells and
their faces outside the dual complex to form dual cell
sets of pockets. One difficulty with this approach is the
asymmetry with respect to co, which is part of the old
but not of the new relation. We can either manually
pick cells and remove the groups that contain them,
or we can construct another set of balls C) from the
non-imaginary B;, the same way as the B; are derived
from the A;. Because we select only non-imaginary
balls, the set of Cj is not equal to the set of A;, but
their union and body are the same. The cell generated
by the largest of the Ci. would be the best candidate to
play the role of co in the construction of protrusions.

While the Delaunay complex of the A; is simplicial,
if we assume non-degenerate position, the Delaunay
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Figure 10: Three alpha shapes of the Gramicidin A molecule. The parameter o grows from left to right.

complex of the B; is simple. This is because it is not
defined by input data but rather by balls derived from
the input data.

7 Metamorphosis

The assumption of static molecules with fixed atoms is
convenient but certainly not realistic and therefore of
limited use.

Growth. A simple form of change is growth, but
even in this framework there is more freedom than can
be controlled. Alpha shapes are designed to control si-
multaneous growth with only one parameter: a2. Sim-
ilar to the square radii, o can be negative in which
case a is imaginary. For a given o? € R we define

Ai(e) = (2i,4/r2+a?).

For vanishing a we have the original balls, and for van-
ishing r; we have all balls of the same radius, a. The
a-compler, K, is the dual complex of the union of the
Ai(a). An example is shown in Figure 10.

In this framework smaller balls grow faster than
larger ones and as o grows all balls converge to radius
a. The ramification of the quadratic growth formula
is computational efficiency. The weighted distance of
z € R® from A;(a) is

lz = zl*-rf +a? = mi(z) + o

In words, the ordering of the balls by weighted distance
of = does not change with changing a. It follows that
the Voronoi cells remain unchanged and so does the
Delaunay complex. The only thing that changes with
growing a is that &C,, contains more and more simplices
of D until, for large enough a, we have Ko =D. An
interesting application that still needs to be explored
is the use of the hierarchy of a-complexes in algorith-
mic approaches to shape matching as it occurs in the
simulation of docking processes.

The difference between the Van der Waals and the
solvent accessible models of the A; can generally not be
bridged by quadratic growth. In this case we observe
linear growth defined by

Ag(a) = (Zg,'.",;-l-a).

A computationally reasonable efficient approach to rep-
resenting this one-parametric family constructs the De-
launay complex for the A;(0) = A; and adopts the
complex through edge and triangle flips as a changes
continuously. Details are described by Facello [22].

Motion. A molecular shape represented by a space
filling diagram deforms if the atom balls move about.
Possibly the geometrically cleanest deformations are
observed when the molecular skin model is used. It re-
mains tangent continuous at all times except at points
in time and space where it changes topology. The
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Figure 11: Three skins of the same nine balls that go through a small amount of shrinking.

breaking of a connection is locally realized by a hy-
perboloid of one sheet that gets narrower, becomes a
double cone, and flips over to a hyperboloid of two
sheets, see Figure 11. The creation of a tunnel goes

through the same sequence backwards and with inside
and outside exchanged.

A possible application of general motion is, for ex-
ample, the visualization of the folding process. The
driving force of the motion could be a molecular dy-
namics software, such as the one created by Schulten
and collaborators [35]. The numerical simulation pro-
duces snap shots of the computed motion that need
to be connected by small interpolating homotopies. A
full implementation of such a system could be used to
efficiently and accurately track any size and topology
change during the motion. This information can be
fed back into the software that computes the motion
for the next time step.

Space of shapes. The ability to canonically deform
shapes opens up the possibility to construct spaces of
shapes. This idea is pursued by Cheng, Edelsbrunner,
Fu and Lam who use a single parameter to control the
deformation from one shape to another [6]. To sketch
the particulars of the method, let the two shapes be the
skins of two sets of balls, X and Z. At time t € [0,1]
the set of moving balls is

Y(t) = {1-9)-Xi+t-Z;| Xi€ X,Z; € Z).

Even far apart balls X; and Z; are matched, but due
to the vector space of balls their combination is usually
redundant as it shrinks away on its trip from Xj; to Z;.
The time parameter defines a 1-dimensional space of
shapes. Members of this space can be combined with
a third shape, etc. With k + 1 shapes, each the skin of
a set of balls, we get a k-dimensional space of shapes.
Any shape in this space is indexed by its barycentric co-
ordinates that specify the fractions in which the given
shapes contribute to the mixing of shapes.

It would be interesting to test this idea of shape in-
dexing in the construction of databases for small drug
compounds. To get the method off the ground we need,
in addition to the synthesis algorithm outlined above,
and analysis algorithm that finds for a given skin the
best approximation within the space.

8 Conclusion

The author’s personal interest in molecular biology is
based on the strong connection to geometry and topol-
ogy. He is still amazed, in fact, of the extent in which
biological questions influenced his thinking about prob-
lems in quite a few seemingly unrelated areas.
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