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1 Introduction

Macromolecules such as protein and DNA have complex structure. The specific spatial configurations of molecules
are important for proteins and nucleic acids to carry out their functions. Surface area and molecular volume
are two geometric quantities which determine various properties of these complex molecules. They play a role in
protein folding (Chotia, 1975), conformational stability (Kauzmann, 1959), solubility (Langmuir, 1925; Sharp et al.,
1990; Sharp et al., 1991), crystal packing (Richards, 1977; Rashin et al., 1986), molecular recognition and docking
(Connolly, 1986), and in enzyme catalysis (— DO WE HAVE A REFERENCE? —).Recently, energy refinement
methods have been developed which include the surface area (Freyberg et al., 1993) or excluded volume (Kundrot
et al., 1991) for calculating solvation energies. With the advances in X-ray crystallography and NMR techniques,
molecular structures have been determined for many proteins and nucleic acids in atomic detail. Current and future
structure results provide rich material for atomic level molecular modeling and analysis.

Lee and Richards introduced the models of solvent accessible surface (SA) and molecular surface (MS) for
proteins. In the important special case of a point size solvent the two surface are the same and referred to as the van
der Waals surface (VS) model of the molecule, see figure 2.1. These models provide a means to unambiguously define
geometric properties of molecules and they motivate the development of algorithms and software for computing
such properties. Computation of the surface area and volume of molecules have been the focus of research for some
time, and algorithms of both analytical and numerical nature are available. In general, however, it is still difficult
to rigorously and precisely describe and manipulate various aspects of the shape of a macromolecule.

In parallel, the field of computational geometry has experienced rapid progress since its establishment in the late
70’s (Preparata & Shamos, 1985; Edelsbrunner, 1987). Some developments have direct implications for molecular
biology. Among these, the alpha shape theory (Edelsbrunner et al., 1983) provides a quantitative method to accu-
rately describe and compute shapes at multilevels of details in 3-dimensional space, R3. It uses Delaunay complexes
and their filtrations to describe the topological structure of a molecule. The mathematical relation between alpha
shapes and the above mentioned sphere models of a molecule has been firmly established (Edelsbrunner, 1993).
With the availability of 3-dimensional alpha shape software (Edelsbrunner & Miicke, 1994; Edelsbrunner et al.,
1995; Varshney et al., 1994), it is now possible to accurately and efficiently compute a variety of geometric aspects
of a molecules.

Computational methods to determine the area and volume based on VS, SA and MS models can be broadly
divided into two categories: approximation methods (Shrake & Rupley, 1973; Richmond & Richards, 1978; Alden
& Kim, 1979; Wodak & Janin, 1980; Muller, 1983; Pavlov & Fedorov, 1983; Wang & Levinthal, 1991; Grand
& Jr., 1993) and analytic methods (Connolly, 1983; Connolly, 1985a; Connolly, 1985b; Richmond, 1984; Gibson
& Scheraga, 1987; Gibson & Scheraga, 1988; Kundrot et al, 1991; Perrot et al, 1992). (— THE FOLLOWING
THREE REFERENCES HAVE NOT BEEN CATEGORIZED ... JIE CAN YOU ADD THEM TO THE RELEVANT LISTS?:
(Richards, 1985; Pascual-Ahuir & Silla, 1990; Connolly, 1993). —)Most approximation methods involve certain
discretizations, such as polyhedral or triangular decompositions or the representation of surface with a large number
of dots. Among these methods, Richards’ VOLUME program (Richards, 1974) is widely used and is distributed in
the vADAR package (Wishart et al., 1994). (— WHY Is (RICHARDS, 1974) NOT INCLUDED IN THE REFERENCE
LIST OF THE APPROXIMATION METHODS? —)It uses either bisector planes or planes based on van der Waals radii
to divide the space of the internal atoms into polyhedra. Atoms on the surface are divided similarly with the
help of fictitiously placed solvent atoms. The area and volume of the molecule are then calculated through these
polyhedra. The GEPOL program, distributed as part of the ARVvOLMOL package (Pacios, 1993), is one of the two
programs known to the authors of this paper that compute the MS area and volume (Pascual-Ahuir & Silla, 1990;
Silla et al., 1991; Pascual-Ahhuir et al., 1994). It fills the solvent inaccessible space between atoms with spheres,
and then triangulates these spheres. The triangles facing outside are selected and used in turn to compute area
and volume.

Representing atoms by spherical balls provides the opportunity for analytic treatment of surface area and
volume of molecules. Among the analytic methods, the ANAREA program is distributed in the VADAR package and
computes the area of the SA model (Richmond, 1984). The MsDOT program by Connolly, which is distributed as
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part of ARVOMOL, is the second program computing the MS area and volume (Connolly, 1983; Connolly, 1985a;
Pacios, 1993). Closed-form analytical expressions for area and volume computation were also derived by Gibson
and Sheraga (Gibson & Scheraga, 1987); they eliminate overlap of 5 or more atoms using an observation by Kratky
(Kratky, 1981). In this paper, we compare our results with those obtained using the programs ANAREA, GEPOL,
MSDOT, and VOLUME.

The paper is organized as follow. We first introduce the ideas and concepts behind the alpha shape theory as a
fundamental approach to address geometric and topological questions about molecules. We then describe the alpha
shape based algorithm for computing surface area and volume. Finally, we compare our computational results with
result obtained with other software.

2 Theory and Algorithms

A full account of the alpha shape theory and the resulting algorithms for computing geometric properties of
molecules can be found in the computer science oriented literature (Edelsbrunner et al., 1983; Edelsbrunner &
Miicke, 1994; Edelsbrunner, 1993; Edelsbrunner et al., 1995). This paper makes an attempt to intuitively describe
the concepts and ideas behind the alpha shape theory. It also explains the algorithms that compute area and
volume of a molecule based on its alpha complex.

2.1 Models of molecules and Voronoi diagram

Three definitions of surface are widely used for molecular modeling. In each case, atoms are treated as possibly
intersecting spherical balls (Lee & Richards, 1971; Richards, 1977; Connolly, 1983). The van der Waals surface
(VS) is the surface of what is covered by the atoms each represented by a spherical ball with van der Waals radius,
see figure 2.1, A. The solvent accessible surface (SA) is generated by the center of the solvent (modeled as a rigid
sphere) when rolling about the van der Waals surface of the molecule, see figure 2.1, B. The molecular surface (MS)
is the surface generated by the front of the same solvent sphere, see figure 2.1, C.

A B C

Figure 2.1: Molecular surface models: A. van der Waals surface (VS), B. solvent accessible surface (SA), and C.
molecular surface (MS).

In early work on algorithms for surface area computation, Richards and others applied Voronoi diagrams to
decompose a molecule (Richards, 1974; Finney, 1975; Gellatly & Finney, 1982). The Voronoi diagram divides the
space into cells, one per atom. See figure 2.2 for a 2-dimensional version, where atoms are modeled as disks. The
boundaries of the cells neatly divide up the entire molecule. A Voronoi cell is generated by the atom inside, and
it consists of the part of space closest to its generating atom. Thus, for every point inside a cell, its distance to
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Figure 2.2: The weighted Voronoi diagram (dashed lines) decomposes the molecule into convex pieces.

the generating atom is less than (or equal to) its distance to any other atom in the molecule (Voronoi, 1907). A
variety of application of Voronoi diagrams to biology and chemistry can be found in (David & David, 1982).

Exactly how the space is divided up depends on what kind of distance is used. If every atom has the same van
der Waals radius, we use the Euclidean distance between the point of interest and the center of the atom. As a
result, the dividing plane for two equally large atoms is the bisector plane, on which every point is equidistant to
the centers of both atoms. When we have different van der Waals radii for different atoms, we use the square of
the length of the tangent line segment to the surface of an atom as the weighted distance. The dividing plane of
two atoms is called the radical plane, which is in general different from although parallel to the bisector plane of
the centers. Every point on the radical plane has equally long tangent line segments to the both atoms. Figure
2.3 shows a radical line defined for two disks and illustrates the weighted distance to the disks. The decomposition
obtained using weighted distance is called the weighted Voronoi diagram. Its cells have the same properties for
atoms of mixed radii as the (unweighted) Voronoi cells have for atoms of identical radii. Figure 2.2 illustrates
the concept by superimposing atoms modeled as disks and the weighted Voronoi diagram they define. Note that
the cells neatly decompose the molecule into convex pieces. Furthermore, the cells themselves fill space without
redundant overlap.

In the general 3-dimensional case, two weighted Voronoi cells either have no common intersection or they
intersect in a planar facet, three cells either have no common intersection or they intersect in a common straight
edge, and four cells either do not intersect or they intersect in a common vertex. Five cells do not share any
common points at all. The part of an atom contained in a weighted Voronoi cell is convex since the cell is convex
and so is the atom ball. Intuitively, we can sense that the weighted Voronoi diagram contains information about
questions of nearness among the atoms. This information will be made more explicit shortly.

A difficulty encountered by early attempts to apply Voronoi diagrams directly to molecules originates with cells
that extend to infinity (Richards, 1985). Whereas atoms occupy only a finite part of space, the Voronoi cells of
some atoms at the surface of the molecule are infinitely large. This is a potential problem if Voronoi cells are
used for computations and several heuristics dealing with this problem have been proposed, see (Richards, 1985;
Richards, 1974; Finney, 1975; Gellatly & Finney, 1982). For example, hypothetical solvent molecules were set up
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di
d2

Figure 2.3: Points on the radical line have equally long tangent line segments to the two atoms. CAN WE DROP THE
LABELS ‘D1’ AND ‘D2’ IN THE FIGURE?

around the molecule, with the sole purpose of defining positions of additional radical planes that close off Voronoi
cells of atoms. As described in the next section, we use the dual of the Voronoi diagram as our combinatorial
map to carry out area and volume computation. Together with the principle of inclusion-exclusion this leads to an
analytic method for area and volume computation, without the help of any heuristic techniques.

2.2 Delaunay complex

The problem of triangulating the atom centers might at first seem unrelated to the construction of the Voronoi
diagram. The gray lines in figure 2.4 show the edges of a complex that covers the convex hull of the atom centers.
To describe the connection between the Voronoi diagram and a triangulating complex, we need to first define the
convex hull of a set of points. Suppose we have a finite set of points in R3, for example the atom centers of a
molecule. If we stretch a plastic wrap tightly around the points, the shape taken up by the wrap then gives the
boundary of a convex body referred to as the conver hull of the point set. We decompose the convex hull into a
collection of tetrahedra with points in the set as vertices. To cleanly fill up the convex hull, the edges of tetrahedra
are not allowed to cross or intersect the triangles, except they may share common vertices. More formally, any two
tetrahedra in the decomposition are either disjoint or they intersect in a common triangle or a common edge or a
common vertex. Such a decomposition is called a simplicial complex. The complex triangulates the set of points.
In R?, the tetrahedra are reduced to triangles, see figure 2.4.

A set of points can be triangulated in many ways. The complex shown in figure 2.4 is a well-known one, called
the Delaunay complex or triangulation. It has many nice geometric properties, see e.g. (Rajan, 1994), and it reflects
the boundary overlap among the Voronoi cells.

The Delaunay complex is derived from the Voronoi diagram by the following direct translation. If a ball has a
non-empty Voronoi cell then it is a vertex in the complex. If two Voronoi cells share a common facet (contained in
the radical plane of the two corresponding balls) then the edge connecting the two ball centers is in the complex.
If three Voronoi cells share a common edge, then the triangle spanned by the three ball centers is in the complex.
Finally, if four Voronoi cells share a common point, then the tetrahedron spanned by the four ball centers is in
the complex. Observe that the rule guarantees if an edge belongs to the complex then its endpoints are vertices
in the complex. Similarly, if a triangle belongs to the complex then so do its edges, and if a tetrahedron belongs
to a complex then so do its triangles. This enumeration accounts for all intersection patterns among Voronoi cells.
The vertices, edges, triangles, and solid tetrahedra together form a special complex, called the Delaunay complex
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Figure 2.4: Gray lines show the Delaunay complex of the centers of the atoms. Note the duality with Voronoi diagram
shown in dashed lines.

of the point set. It is named after the Russian mathematician Boris Delaunay (Delaunay, 1934) building on work
of his teacher, Georges Voronoi (Voronoi, 1907).

The duality between the Delaunay complex and the Voronoi diagram is reflected in a number of aspects. In R3,
each vertex, edge, triangle, tetrahedron in the Delaunay complex corresponds to a cell, facet, edge, vertex in the
Voronoi diagram. Similarly in R?, each vertex, edge, triangle in the Delaunay complex corresponds to a cell, edge,
vertex in the Voronoi diagram. See figure 2.4 for an illustration of the 2-dimensional case, where the Delaunay
complex and the the Voronoi diagram are superimposed. As a result of the duality, the Delaunay complex and
the Voronoi diagram contain exactly the same combinatorial information, although this information is represented
differently. An important consequence of the duality is that algorithms for Delaunay complexes have meaning
for Voronoi diagrams and vice versa. In particular, it seems easier to design a robust algorithm for constructing
Delaunay complexes than for constructing Voronoi diagrams. The main reason is that the Delaunay complex
comprises no new geometric information and all edges, triangles, and tetrahedra can be stored combinatorially as
pairs, triplets, and quadruplets of vertex indices. In contrast, the Voronoi diagram contains vertices that are not
part of the input data.

The method we use to compute the Delaunay complex of a set of spherical balls is based on the notion of
flipping (Joe, 1991; Edelsbrunner & Shah, 1992; Edelsbrunner & Miicke, 1994). This is implemented in the DELCX
program. The most common type of flip in R? changes the diagonal of a convex quadrilateral. Before the flip
the quadrilateral is decomposed into two triangles sharing a diagonal, after the flip it is decomposed into the two
triangles sharing the other diagonal. There are two other types of flips. One adds a point in the middle of a triangle
and decomposes the triangle into three smaller ones, the other removes a vertex common to three triangles and
replaces them by their union, which is again a triangle. In R3, there are four types of flips. An edge shared by three
tetrahedra can be replaced by the triangle shared by two tetrahedra occupying the same part of space. Inversely,
a triangle shared by two tetrahedra can be replaced by the edge shared by three tetrahedra. A single tetrahedron

can be decomposed into four by adding a new vertex inside. Inversely, a vertex shared by four tetrahedra can be
removed replacing the four by their union, which is again a tetrahedron.

The program DELCX adds one point at a time via a flip that decomposes the containing tetrahedron into four.
Successive flips are used to transform the neighborhood of the new point into a decomposition with Delaunay

tetrahedra, (Joe, 1991; Edelsbrunner & Shah, 1992). This algorithm has time-complexity O(n log n), implying that
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A. Simplices of 0 -3 dimension

B Simplices which ft together nicely.

/

C. These intersectins arenot allowed.

Figure 2.5: A. A O-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron.
B. A collection of simplices that fit together nicely in 3-dimensional space. C. Intersection patterns among simplices that
are not allowed in a complex. JIE, CAN WE DELETE THE INDIVIDUAL CAPTIONS, EXCEPT THE A, B, C7

the computing time required scales roughly like to nlogn, where n is the number of atoms. This is a consequence
of the spatial distribution of atoms in molecules, which typically form a dense arrangement of balls. All atoms
have bond lengths of roughly the same length and the distribution is more or less of uniform density. For such a
spatial arrangement, the number of tetrahedra, triangles, edges, and vertices in the Delaunay complex is O(n) and
the required time is O(nlogn).

2.3 Simplicial complexes

We are interested in the Voronoi decompositions of the molecule rather than the decomposition of the entire space.
Similarly, we are not just interested in the Delaunay complex of the molecular convex hull but rather the part
that corresponds to the molecule. To understand how to obtain information from the Delaunay complex about the
actual molecule, we first need to describe a few topological concepts, which can be found in introductory texts on
topology, see e.g. (Munkres, 1984).

Topology creates a unified language and notation by calling a vertex a 0-simplez, an edge a 1-simplez, a triangle
a 2-simplex, and a solid tetrahedra a 3-simplex. The integer number indicates the intrinsic dimension. Examples
are shown in figure 2.5 A. Observe that the boundary of a simplex consists of other simplices, albeit their dimensions
are lower. These lower-dimensional simplices are the faces of the original simplex.

Complicated geometric objects can be build from a collection of simplices. The goal is to construct the object
in an organized fashion. This is achieved by adhering to the following two rules:
(i) for every simplex used, its faces are also be part of the construction, and

(ii) the common intersection of any two simplices is either empty or a face of both simplices.
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Figure 2.5, B and C, illustrates these ideas. If the above two rules are followed, the resulting object is called
a stmplicial compler. We have already seen an example of such a complex, namely the Delaunay complex of a
molecule. It contains a wealth of combinatorial information about the molecule, as will be apparent shortly.

2.4 Alpha complexes

A molecule has many simplices in its Delaunay complex. We need to organize them rather than randomly pile
them up. There is a natural way to arrange the simplices in a sequence (Edelsbrunner & Miicke, 1994). The idea is
roughly analogous to the principle employed in gel filtration or gel electrophoresis, where molecules are separated
according to their size. To explain the idea, we first ignore the differences in size among atoms and assume all have
the same radius. For all the atoms in this peculiar molecule, we start to grow balls simultaneously from each atom
center by gradually increasing the uniform radius, a. A ball grows only inside its own Voronoi cell and is clipped
when it reaches the boundary of this cell. A simplex is collected at the moment the clipped balls growing from its
vertices have a common boundary intersection.

We have the following scenario. At the beginning when radius is 0, we only have vertices in our collection, and we
take the atom centers as the first elements to appear in our sequence of simplices. All vertices appear simultaneously.
Because the balls gradually grow they will eventually overlap. At the moment when the boundaries of 2 clipped
balls overlap, we time-stamp the corresponding edge in the Delaunay complex, and add it at the end of the evolving
sequence. When the boundaries of 3 clipped balls grow to overlap, we time-stamp the corresponding triangle in the
Delaunay complex and add it to the sequence. We do the same for the solid tetrahedra whenever the boundaries of
4 clipped balls overlap. When the balls are grown large enough, all the simplices in the Delaunay complex will have
been put in the sequence. Thus we have organized all the simplices into a sequence. In topology, this sequence is
called a filter of the simplicial complex. The filter has an important property. If we sequentially choose any number
of simplices from the beginning of the sequence we obtain a collection of simplices that itself forms a complex. It
is a subcomplex of the Delaunay complex. The sequence of such subcomplexes is called a filtration of the Delaunay
complex.

Note that when 2 balls grow, their bounding spheres intersect in a circle that sweeps out the bisector plane. A
piece of this plane is found as a 2-dimensional facet in the Voronoi diagram. Now we consider atoms of different
sizes. We assign the van der Waals radius of the associated atom as the initial radius rg to each ball. We grow or
shrink the ball by changing the o parameter: the actual radius is

re = A\/rE+a’

For increasing « the ball grows and for decreasing « the ball shrinks until it vanishes when a? = —rZ. This would
never be the case if we chose a from the set of real numbers. To avoid this technical difficulty, we choose o? from
the set of real numbers, positive and negative, which really means we choose « from the set of non-negative reals or
positive multiples of the imaginary unit, /—1. When « = 0, we have the actual size of the molecule. By growing
the balls in this fashion we again obtain a sequence of the Delaunay simplices, the filter.

If we increase « from its least possible value, we can imagine an index moving along the filter from its start.
When we stop at a certain value, all simplices to the left of the index have shown up and form a simplicial complex.
The corresponding ball diagram at the moment is characterized by the particular «a value, which controls the ball
size. The simplicial complex associated with an « value is a subcomplex of the Delaunay complex and is referred
to as the alpha complez (Edelsbrunner et al., 1983; Edelsbrunner & Miicke, 1994). The alpha shape is the part of
space covered by simplices in the alpha complex. Figure 2.6 shows the alpha complex of the 2-dimensional molecule
in figures 2.2 and 2.4 for a small, medium, and large value of «. Because of the filter property, simplices in an
alpha complex for a smaller value of « are present in an alpha complex of a larger value of a. As a result, the alpha
complex for a smaller value of a is always a subcomplex of one for a larger value of «, and both are subcomplexes
of the Delaunay complex. Furthermore, the number of possible alpha complexes for a molecule cannot exceed the
number of simplices in the Delaunay complexes.
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Figure 2.6: A. The alpha complex for the small value of alpha consists mostly of vertices, together with 4 edges and
one triangle. B. The alpha complex for the medium value of alpha consists of 2 components, one just a vertex and the
other consisting of quite a few triangles, edges and vertices. It contains the complex in A as a subcomplex. C. The alpha
complex for the large value of alpha is connected and contains the other alpha complexes as subcomplexes. CAN THE
FIGURES BE ARRANGED FROM LEFT TO RIGHT, TO SAVE SPACE?
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The molecule with van der Waals atom radii is faithfully represented by the alpha complex for @« = 0. Together
with the Delaunay complex it contains a wealth of information about the spatial arrangement of the molecule.
The key to making a connection to the actual molecule is to link the alpha complex with the weighted Voronoi
decomposition of the molecule. As demonstrated in (Edelsbrunner, 1993), the alpha complex reflects or encodes
combinatorial, topological, and metric information about the molecule. The combinatorial equivalence between
the alpha complex and the corresponding Voronoi decomposition of the union of balls is most obvious from the
definition: each simplex indicates a collection of clipped balls with non-empty common intersection.

The topological correspondence between the molecule and the alpha complex (for & = 0) can be seen from
figure 2.6. Each component of the union of disks contains a component of the complex, and each hole of the union
of disks is contained in a hole of the complex. More precisely and generally, the molecule is homotopy equivalent
to the alpha complex (for « = 0), see (Edelsbrunner, 1993). Consider for example the tiny hole in the molecule
represented by the disk union in figure 2.6 B. It corresponds to a much larger triangular hole in the alpha complex.
If the atom sizes were a little larger, such as in C where that specific hole has disappeared, the planar triangle would
have been added so as to fill the hole in the alpha complex. One characteristic of combinatorics is that changes
occur in discrete steps, such that the actual size of the hole has no direct influence on the nature of the alpha
complex. Taking advantage of this topological correspondence, we can locate all voids inside a protein, regardless
their sizes. We can also identify atoms facing outside with precision. Void computations will be explained in a
companion paper.

The third correspondence between the molecule and its alpha complex is metric. As an application, we will
see in the next section and the companion paper how the simplices in the alpha complex can be translated into a
combinatorial expressions for the volume and surface area of a molecule and its voids.

3 Computing Area and Volume

As mentioned in the introduction, the computation of surface area and volume of a molecule has received much
attention in the past. The problem is difficult because the spherical balls modeling the van der Waals atoms overlap
due to chemical bonds, van der Waals contacts and solvent contacts (when a solvent probe can touch two or more
atoms simultaneously). Were the atoms completely isolated, we would only need to sum up the area and volume of
each individual ball. An obvious approach is to use the principle of inclusion-exclusion: when two atoms overlap,
we subtract the overlap, when three atoms overlap, we add the overlap, etc. This continues when there are four,
five, or more atoms intersecting. At a combinatorial level, the principle of inclusion-exclusion is related to the
Gauss-Bonnet theorem used by Connolly (Connolly, 1983). It is still difficult to accurately keep track of where
the overlaps occur, especially when there are many different combinatorial situations (Petitjean, 1994). Current
numerical algorithms for estimating area and volume (Shrake & Rupley, 1973) ignore the combinatorial problem.
SHOULD WE SAY SOMETHING ABOUT HOW THEY IGNORE THE PROBLEM, E.G. BY ASSUMING THERE IS AT MOST
3-FOLD OVERLAP?

3.1 Direct inclusion-exclusion

Once the alpha complex is constructed, it provides a route to untangling the combinatorial complexity of atom
intersections. This is done by trimming the full inclusion-exclusion formula until it contains no redundant terms. An
example of area computation by alpha shape trimmed inclusion-exclusion is shown in figure 3.7 A. Let b1, b, b3, ba
be the four disks. To simplify the notation we write A; for the area of b;, A;; for the area of b; Nb;, and A;;;, for
the area of b; N b; N by. The total area of the union, b; U by U bz U by, is

Atotal = (A1+ Az + A3+ Ag)
(A12 + Aoz + Aos + Asz4)
+ Az
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Sely

Figure 3.7: The alpha complex of a molecule can be used to trim the list of terms implied by the straightforward
application of the inclusion-exclusion principle. The area formula contains a term per simplex in the alpha complex.
CAN WE PUT THE FIGURES SIDE BY SIDE, TO SAVE SPACE? ALSO, PLEASE RELABEL BALLS TO b. ALSO, CAN
YOU ENLARGE THE CIRCLES WITHOUT CHANGING THE ALPHA COMPLEX SO THAT THERE IS AT LEAST ONE TYPE
OF INTERSECTION THAT DOES NOT CORRESPOND TO A SIMLEX? ACTUALLY, IT WOULD MAYBE BE EASIEST TO
USE PAT’S PROGRAM TO REDO THE FIGURE WITHOUT LABELS, WHICH WOULD BE FINE.
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We add the area of b; if the corresponding vertex belongs to the alpha complex, we subtract the area of b; N b;
if the corresponding edge belongs to the alpha complex, and we add the area of b; N b; N by if the corresponding
triangle belongs to the alpha complex. This is an example of what we call the direct inclusion-exclusion method.
In three dimensions the most complicated terms are intersections of 4 spherical balls, and these terms correspond
to tetrahedra in the alpha complex.

It turns out that for 3-dimensional molecules in R3 intersections of 5 or more atom balls at a time can always
be reduced to a signed combination of intersections of 4 or fewer balls, (Edelsbrunner, 1993) That overlaps of more
than 4 balls actually occur for real molecular data and reductions are applicable is argued in (Petitjean, 1994). In
particular, the union of all balls can be expressed as a signed combination of intersections, with a term per vertex,
edge, triangle, tetrahedron in the alpha complex. Each vertex corresponds to a single ball taken positive, each edge
corresponds to the intersection of two balls taken negative, each triangle corresponds to the intersection of three
balls taken positive, and each tetrahedron corresponds to the intersection of four balls taken positive. In other
words, following the combinatorial information of the alpha complex avoids redundant high order intersections
altogether. Although the resulting formula is much smaller than entire inclusion-exclusion formula, it expresses the
exact volume and surface area of the molecule, see (Edelsbrunner, 1993).

A similar but weaker result has been discovered for the 2-dimensional case earlier (Kratky, 1981). Kratky
observed that the common intersection of 4 or more circular disks can be reduced to a signed sum of lower order
intersections. Successive application of this idea eventually leads to a formula where each term is the intersection
of at most 3 disks. This formula may still contain redundant terms and will generally be longer than the formula
obtained from the alpha complex. Kratky’s idea has been applied to 3 dimensions without proof (Gibson &
Scheraga, 1987).

In this context it is worth mentioning that the intersections of up to 4 atom balls derived from the alpha complex
all have a uniform structure. This simplifies the necessary analytic computation of volume and area for such small
groups of balls. To explain the uniformity, consider a tetrahedron in the alpha complex whose vertices are the
centers of balls b1, bs, b3 and by. First, the intersection of the balls is non-empty. Second, the common intersection
of any 3 of the 4 balls is non-empty and not contained in the 4th ball. Third, the common intersection of any 2 of
the 4 balls is non-empty and not contained in the union of the other two balls. Finally, no ball is contained in the
union of the other three balls. Such a configuration is referred to as an independent collection of balls. The above
reductions are possible because collections of 5 or more spherical balls in R? cannot be independent and because
every non-independent collection can be reduced to a signed combination of smaller collections. This also implies
that a formula obtained by following the ideas of Kratky can still be further reduced until all terms correspond to
independent collections.

3.2 Short inclusion-exclusion

Although the inclusion-exclusion formula obtained from the alpha complex contains only independent terms and
is therefore minimal, it is possible to find even shorter expressions of area and volume if non-integer coefficients
are used. Indeed, we can use the angles at the atom centers relative to its neighbors in the alpha complex as
coefficients for that purpose. All angles are measured as fractions of circles or spheres and are thus automatically
normalized between 0 and 1. This is what we refer to as the short inclusion-exclusion method. It expresses the
surface area as a sum of areas of intersections of at most 3 balls, each with an angle coefficient. Similarly for volume,
except that the total volume of all tetrahedra in the alpha complex needs to be added to the sum of intersections.
Tetrahedra volumes are significantly easier to compute than volumes of the intersections of 4 balls, which leads to
improved running-time even in the case of volume. The short inclusion-exclusion method is important for practical
computation.

Rather than describing the short formula in detail we refer to (Edelsbrunner, 1993) and present a small 2-
dimensional example. Figure 3.7 B illustrates the method in 2 dimensions. In this case, the alpha complex consists
of a single triangle, 4 edges and 4 vertices. Let ¢35, ¢3, ¢4 be the outside angles of the triangle. Then the area of
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the disk union 1s

Atotal = (L-A1+62-As+ ¢35 A5+ ¢a - Ad)
1 1 1
- (1-A —-A —A —A
( 12-1-2 23-1—2 24-1—2 34)
+ A

where A is the area of the triangle. In general, A is the total area of all triangles in the alpha complex, or in 3
dimensions, it is the total volume of all tetrahedra.

3.3 Algorithms

Following the above illustrations, we briefly describe the algorithm as implemented in the voLBL package. The
notation uses K for the alpha complex, o for a simplex in K, ¢ for a vertex, ¢j for an edge, ijk for a triangle, and
17kl for a tetrahedron. The algorithm expressing the direct inclusion-exclusion method can be written as follows.

Vi=A:=0.0;
for each 0 € K do

if o is a vertex 7 then V :=V +vol(b;); A := A + area(b;) endif;

if o is an edge ij then V :=V —wvol(b; Nb;); A := A — area(b; Nb;) endif;

if o is a triangle ijk then V :=V 4 vol(b; N b; Nby); A := A+ area(b; Nb; Nby) endif;

if o is a tetrahedron ijkl then V :=V —wol(b; Nb; Nby Nb;); A:= A — area(b; N b; Nby Nb;) endif
endfor.

Here, vol() and area() are metric functions for volume and area computations of the insection of up to 4 balls. As
mentioned earlier, all intersections are of a uniform type, namely the atom balls involved are independent.

For the short inclusion-exclusion method, we divide our computations into three parts: void computation, shape
computation and outside-fringe computation. Voids here are defined in strictly topological sense, that is, they are
cavities buried inside the molecule that have no open outlets to connect them to the outside. In void computation,
the volume of a void is computed by first measuring the volume of the corresponding alpha complex void, then
measuring the volume and area of the atom balls that reach into this complex void. Volume of the complex void
minus the volume covered by the reaching in balls gives the volume of the actual void in the molecule. More details
of void computation can be found in the companion paper, see also (Edelsbrunner et al., 1995). Shape computation
is straightforward: it sums the volume over all the tetrahedra found in the alpha complex.

The outside-fringe is the part of the molecule that lies outside the alpha complex. It is measured by the short
inclusion-exclusion method which was illustrated by our second example earlier. The algorithm can be summarized
as follows.

V=A:=0.0;

for each o on the outside boundary of K do
if o is a vertex ¢ then V :=V + ¢, -vol(b;); A= A
if o is an edge ij then V :=V — ¢, - vol(b; N b;); A
if o is a triangle ijk then V :=V + ¢, - vol(b; N b;

endfor.

+ ¢5 - area(b;) endif;
‘= A — ¢, -area(b; N b;) endif;
Nbr); A= A+ ¢, -area(b; N b; Nby) endif

For a vertex o, ¢, is the solid angle at o outside the alpha complex. For an edge o, ¢, is the dihedral angle at o
outside K. Finally, for a triangle o, ¢, is 1 if both sides of ¢ lie on the outside and % if only one side lies on the
outside of K.
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¢m’«@

Figure 3.8: Correspondence between the molecular surface (MS) and the solvent accessible (SA) model of a molecule.
JIE, CAN WE CHANGE THE LABELING TO ryg AND 7,7

3.4 Area and volume of MS model

As illustrated in figure 2.1, the combinatorial structure of the SA and the MS models of a molecule are the same.
Both are represented by the same alpha complex. Each sphere patch of the SA model corresponds to somewhat
smaller but otherwise identical sphere patch in the MS model. Each circular arc of the SA model corresponds to a
torus patch swept out by the solvent sphere as its center moves along the arc. Each corner point of the SA model
corresponds to an inverse sphere patch that lies on the surface of the solvent sphere whose center is the corner
point. Figure 3.8 illustrates the relationship between the MS and the SA model in 2 dimensions, and it indicates
how the metric sizes of the MS patches can be computed from the SA model, see also (Edelsbrunner et al., 1995).

We explain this in more detail. The ball radius of an atom in the SA model, rga, is the sum of its van der
Waals radius rvg and radius of the solvent sphere, rs. We shrink the SA model by excluding all volume that can
be reached by a copy of the solvent sphere with center on the SA surface. The effect of this shrinking process is
different for the sphere patches, the circular arcs, and the corner points of the SA model. A sphere patch shrinks
to radius ryg towards its center; this gives the convex sphere patches of MS model. The circular arcs grows into a
torus patch, which is a saddle shaped patch. In 2 dimensions, the torus patch becomes an arc of a circle outside the
MS model, see figure 3.8. A corner point at the intersection of 3 spheres in the SA model grows into a triangular
patch on the solvent sphere centered at the corner point.

Measuring the MS model requires the computation of area and volume of various basic geometric pieces. For
example, we have the following formula for computing the fraction of the torus swept out by a revolving circular
arc bounding the disk sector shown in black in figure 3.8.

Area = 27 -rg(rq-0—rs-sind),

where 74 is the radius of the circular arc in the SA model, which is also the center circle of the torus. The following
formula computes the volume of the piece of solid torus swept out by the disk sector.

Volume = tan@ - (r3 — rjvs - cosf)

~rs~sin0~(rd~rs~cosﬁ—r§—rf)

+ +

3 i3 2
sy esin 47y g - 0.

wlxy A |y

JIE, WE NEED TO EXPLAIN WHAT 74 vs AND # ARE.Formulas for other basic geometric pieces, such as ball wedges, 777
ball sectors, sphere caps, etc., can be found in (Edelsbrunner & Fu, 1994).

JIE, ] TOOK OUT ALL THE DISCUSSIONS OF CONTRIBUTIONS TO MS SINCE IT SEEMS NOT WELL-DEFINED.
THE TEXT IS STILL IN THE FILE, AND WE SHOULD DISCUSS THIS IN REGARD TO THIS PAPER AS WELL AS FUTURE
VERSIONS OF VOLBL. —777
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3.5 Checking correctness

The program VOLBL has a built-in mechanism for checking the correctness of the computations. Using the ‘checking’
option, it computes the surface area and volume of both SA and MS models in two different ways and compares the
results. The two ways correspond to the direct and the short inclusion-exclusion formulas. After computing area
and volume, the two results are checked to match to the last digit of precision. Besides checking the overall area
and volume, VOLBL also checks the correctness of atomic contributions, which are again computed in 2 different
ways and results are finally compared.

4 Results

The structures chosen from the protein databank for calculating area and volume are listed in table 4.1. The
computation based on alpha complexes involves four steps. The first step assigns the radii to the atom centers.
The radius of an atom is its van der Waals radius plus the probe radius. When the radius of the probe is assigned
to 0.0A, both the solvent accessible and molecular surface results will give van der Waals area and volume. The
assignment is done through a utility program, PDB2wWA. Van der Waals radii are taken from Richards’ parameter
set in VADAR. All accessible and molecular surface calculations use the probe radius of 1.2A. The second step
computes the (weighted) Delaunay complex of the collection of atom balls, using the coordinates of the sphere
centers and the radii as assigned by the first step. This is achieved by the program DELCX. Its expected running
time is on the order of nlogn, n the number of atoms, assuming they form a more or less dense distribution in
space. Implicitly, DELCX also builds the (weighted) Voronoi diagram that decomposes the molecular space into non-
overlapping convex pieces. The third step constructs the filter of the Delaunay complex using the program MKALF
(Edelsbrunner & Miicke, 1994). The running time is again on the order of nlogn assuming dense distribution. The
final step uses VOLBL to compute the metric area and volume, as well as the atomic contributions thereof. The
SA and MS area and volume are computed simultaneously using one probe radius. All calculations are performed
without corrections for the cusp condition. VOLBL requires time proportional to n. The constant of proportionality
is relatively high so that the actual running time of VOLBL sometimes exceeds the time required for constructing
the Delaunay complex and its filter, even for large proteins with tens of thousands of atoms. The actual running
time for the short inclusion-exclusion version of VOLBL is significantly less than that for the direction inclusion-
exclusion method. This is mostly due to the smaller constant of proportionality: only triplets rather four-tuplets
of intersecting balls need to be considered.

The computed area for the proteins listed in table 4.1 are given in tables 4.2 through 4.4. For comparison, VS,
SA and/or MS area are also computed using several programs distributed in the VADAR and ARVOMOL packages
(Wishart et al., 1994; Pacios, 1993). With the exception of VS volume, comparisons are given with the computations
obtained with at least one analytical and one approximation method. From VADAR, VS volume is computed using
Richards’ vOLUME program (the bisection/radical plane method), and SA area is computed using Richmond’s
analytical ANAREA program. From ARVOMOL, VS, SA and MS area and volume is computed using Pascual-Ahuir
et al.’s GEPOL program. VS and MS area are also computed using Connolly’s analytical Ms/MsDOT program (Pacios,
1993). In the calculations with GEPOL, we used 60 triangles to approximate an atom sphere. For consistency, all
calculations use Richards’ van der Waals radii parameter set (available from the VADAR package (Wishart et al.,
1994)) and a probe radius of 1.2Awhen SA or MS area/volume are computed.

Table 4.2 reports the VS surface area computed with the alpha shape based analytical method, vOLBL, with
Connolly’s analytical method, MsDoOT, and with Pascual-Ahuir et al’s GEPOL method. Table 4.3 reports the SA
areas computed with VOLBL, ANAREA and GEPOL. Table 4.4 reports the molecular surface area computed with
VOLBL, MSDOT and GEPOL. Residue contributions of SA surface area for three proteins, 5mbn (deoxy myoglobin),
2ptn (pancreatic trypsin) and 2rns (ribonuclease), are shown in figures 4.1, 4.2 and 4.3. The SA area contribution
results computed with vOLBL are compared with the results obtained with Richmond’s ANAREA.

Tables 4.5 through 4.7 compare results of volume computation using the alpha shape based VOLBL with results
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PDB name

leca
1nxb
1rbe
1rbe
1rbf
1rbg
1rbh
1rbi
2act
2cha
2lyz
2ptn
2rns
2sn3
eyt
3rn3
4pti
5mbn
larb
lcau
lcse
lecd
licm
1mbd
1plc
1rro
1thm
lycce
3sdh
4gcr
5p21

Table 4.1: List of proteins used in the calculations of molecular area and volume.

7 res

137

62
124
124
124
124
124
124
218
248
129
230
124

51
104
125

58
154
263
424
345
136
131
153

99
108
279
103
292
174
165

protein name

Hemoglobin (erythrocruorin, aquo met)
Neurotoxin B

Ribonuclease S mutant metl3ala
Ribonuclease S mutant met13phe
Ribonuclease S mutant met13gly
Ribonuclease S mutant met13ile
Ribonuclease S mutant met13leu
Ribonuclease S mutant met13val
Actinidin

Alpha chymotrypsin a

Lysozyme

Trypsin

Ribonuclease S

Scorpion neurotoxin

Cytochrome C

Ribonuclease A

Trypsin inhibitor

Myoglobin (deoxy)
Achromobacter protease 1
Canavalin

Subtilisin carlsberg

Hemoglobin (erythrocruorin, deoxy)
Intestinal fatty acid binding protein
Myoglobin (deoxy, pH 8.4)
Plastocyanin

Rat oncomodulin

Thermitase

Cytochrome C

Hemoglobin I

Gamma-B crystallin

C-*H-Ras p21 protein

authors and reference

(Steigemann & Weber, 1979)
(Tsernoglou, 1978)
(Varadarajan & Richards, 1992)
(Varadarajan & Richards, 1992)
(Varadarajan & Richards, 1992)
(Varadarajan & Richards, 1992)
(Varadarajan & Richards, 1992)
(Varadarajan & Richards, 1992)
(Baker & Dodson, 1980)
(Birktoft & Blow, 1972)
(Diamond, 1974)
(Walter et al., 1982)

(Kim et al., 1992)

(Zhao, 1992)

(Takano & Dickerson, 1980)
(Howlin et al., 1989)
(Marquart et al., 1983)
(Takano, 1984)

(Tsunasawa et al., 1989)

(Ko et al., 1993)

(Bode et al., 1987)
(Steigemann & Weber, 1979)
(Eads et al., 1993)

(Phillips & Schoenborn, 1981)
(Guss et al., 1992)

(Ahmed, 1993)

(Teplyakov et al., 1990)
(Louie & Brayer, 1990)
(Royer-Jr., 1994)

(Najmudin et al., a)

(

Pai et al., 1990)

15
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Table 4.2: Computed van der Waals surface (VS) area (in Az) of selected proteins.

protein

leca
1nxb
1rbe
1rbe
1rbf
1rbg
1rbh
1rbi
2act
2cha
2lyz
2ptn
2rns
2sn3
eyt
3rn3
4pti
5mbn
larb
lcau
lcse
lecd
licm
1mbd
1ple
1rro
1thm
lyce
3sdh
4gcr
5p21

7 res

137

62
124
124
124
124
124
124
218
248
129
230
124

51
104
125

58
154
263
424
345
136
131
153

99
108
279
103
292
174
165

VOLBL

13928.2

9673.7
12077.2
12126.1
12083.7
12224.3
12223.6
12187.5
21288.5
22551.2
12734.3
21433.0
12050.8

6293.0
21171.2
12390.3

5939.1
16269.8
24796.8
37453.0
31905.8
13889.6
14098.8
16320.6

8856.6
11143.6
26174.1
11152.2
30172.1
18875.3
17636.8

MS/MSDOT

13842.9

5672.1
11989.8
12042.2
11958.3
12033.1
12061.3
12046.1
21260.6
22521.6
12700.7
21439.9
11828.8

6448.5
21170.3
12328.1

5939.4
16192.0
24773.2
37452.7
31889.5
13817.3
14108.9
16220.5

9670.1
11144.1
26169.4
11142.5
29947.1
18873.1
17611.3

GEPOL

13909.4

5683.3
12040.3
12120.8
12025.2
12106.8
12160.8
12102.7
21162.0
22505.6
12704.8
21480.5
11867.7

6431.8
21125.1
12287.9

5919.6
16247.8
24861.1
37367.2
31955.6
13862.2
14116.1
16248.3

9721.2
11105.9
26123.8
11102.6
29968.8
18895.6
17716.0

16
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Table 4.3: Computed solvent accessible (SA) surface area (in Az) of selected proteins.

protein

leca
1nxb
1rbe
1rbe
1rbf
1rbg
1rbh
1rbi
2act
2cha
2lyz
2ptn
2rns
2sn3
eyt
3rn3
4pti
5mbn
larb
lcau
lcse
lecd
licm
1mbd
1ple
1rro
1thm
lycc
3sdh
4gcr
5p21

7 res

137

62
124
124
124
124
124
124
218
248
129
230
124

51
104
125

58
154
263
424
345
136
131
153

99
108
279
103
292
174
165

VOLBL

7099.9
4035.3
6688.0
6627.3
6616.1
6701.7
6668.8
6665.1
9152.4
10952.8
6703.8
9420.4
6693.2
4411.7
11647.3
6884.1
3974.5
8328.5
9707.9
20050.9
12729 .4
7068.2
7440.2
8362.6
5330.5
9973.0
9879.2
6498.8
13670.0
§910.2
8590.6

MS/MSDOT

7130.2
4058.8
6850.1
6781.8
6793.7
6793.2
6773.9
6735.6
9192.9
11073.1
6766.8
9463.6
6764.3
4234.6
11755.5
6908.3
4019.6
8415.6
9706.4
20171.5
12777.2
7109.0
7519.5
8500.9
5112.7
5999.7
9913.5
6599.8
13747.1
8963.8
8639.4

GEPOL

7111.1
4027.7
6721.7
6618.2
6661.8
6581.7
6647.4
6573.8
9124.4
10885.2
6678.0
9403.4
6669.7
4176.6
11633.5
6814.9
3971.9
8349.9
9733.9
20107.8
12718.8
7089.8
7439.9
8326.1
5052.4
5970.8
9873.9
6372.7
13700.0
8§974.2
8615.7

17



Analytic Shape Computation of Macromolecules — I. Molecular Area and Volume Through Alpha Shape

Table 4.4: Computed molecular surface (MS) area (in A2) of selected proteins.

protein

leca
1nxb
1rbe
1rbe
1rbf
1rbg
1rbh
1rbi
2act
2cha
2lyz
2ptn
2rns
2sn3
eyt
3rn3
4pti
5mbn
larb
lcau
lcse
lecd
licm
1mbd
1ple
1rro
1thm
lyce
3sdh
4gcr
5p21

7 res

137

62
124
124
124
124
124
124
218
248
129
230
124

51
104
125

58
154
263
424
345
136
131
153

99
108
279
103
292
174
165

VOLBL

7005.0
3437.1
6044.9
5886.5
6028.7
9975.3
6006.1
5947.4
9094.5
11086.9
6323.1
9518.0
9917.2
3800.3
10905.7
6130.7
3346.5
8203.4
10009.3
20306.2
12649.5
6950.9
7536.9
8279.1
4586.5
5502.9
9692.5
6060.4
13937.2
8618.7
8447.1

MS/MSDOT

6849.7
3402.6
9958.6
9872.6
5939.4
9877.1
5907.0
9811.5
9556.8
10842.4
6293.7
9537.8
5918.4
3436.9
10797.9
6036.1
3346.0
8048.1
9565.9
19957.6
12272.3
6820.3
7390.0
8152.8
4368.9
9379.5
9454.7
5961.0
13769.3
8470.8
8§202.3

GEPOL

5970.6
3196.5
5337.0
5342.5
5351.0
5380.4
5391.6
5389.1
9281.8
9917.5
5901.9
8656.6
5922.1
3526.5
9796.3
5601.3
3124.2
6893.1
9249.1
18258.7
11610.0
5888.1
6315.6
6850.1
4128.9
4764.8
§228.1
5292.8
11763.7
7378.7
7050.9

18



Figure 4.1: Residue contributions to SA area in deoxy myoglobin (5mbn) as computed with VOLBL and ANAREA.



Figure 4.2: Residue contributions to SA area in RNAase (2rns) as computed with VOLBL and ANAREA.



Figure 4.3: Residue contributions to SA area in pancreatic trypsin (2ptn) as computed with VOLBL and ANAREA.
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Table 4.5: Computed van der Waals surface (VS) volume (in AB) of selected proteins.

protein

leca
1nxb
1rbe
1rbe
1rbf
1rbg
1rbh
1rbi
2act
2cha
2lyz
2ptn
2rns
2sn3
eyt
3rn3
4pti
5mbn
larb
lcau
lcse
lecd
licm
1mbd
1ple
1rro
1thm
lyce
3sdh
4gcr
5p21

7 res

137

62
124
124
124
124
124
124
218
248
129
230
124

51
104
125

58
154
263
424
345
136
131
153

99
108
279
103
292
174
165

VOLBL

13588.5

5841.0
11812.2
11873.3
11860.7
11980.1
11958.7
11926.6
20996.5
22431.3
12681.7
21031.0
11803.0

8536.7
20682.9
12169.6

5836.5
15924.6
24384.9
373377
31410.8
13575.3
13579.7
15961.5
12611.3
10687.5
25478.8
10903.4
29486.6
18697.9
16987.1

VOLUME

18542.2

7443.7
14580.9
14366.9
14596.9
14658.7
14688.8
14659.3
28069.5
31791.2
17053.1
29046.2
14270.5

8335.1
30331.4
16120.3

7572.1
21229.9
32636.1
92776.3
42659.3
18555.0
19289.9
22105.8
12580.7
14682.4
34946.0
15043.3
41242.6
25479.6
23586.6

GEPOL

13383.1

9741.0
11763.9
11807.0
11696.3
11886.4
11785.2
11761.8
21055.6
22460.5
12594.1
21305.9
11575.2

6558.0
20606.5
12196.0

5830.2
15944.2
16998.0
37335.9
31310.6
13325.5
13519.3
15764.2

9401.9
10769.9
25567.0
10883.9
28833.0
18823.9
16998.0

22
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Table 4.6: Computed solvent accessible (SA) volume (in AB) of selected proteins.

protein

leca
1nxb
1rbe
1rbe
1rbf
1rbg
1rbh
1rbi
2act
2cha
2lyz
2ptn
2rns
2sn3
eyt
3rn3
4pti
5mbn
larb
lcau
lcse
lecd
licm
1mbd
1ple
1rro
1thm
lyce
3sdh
4gcr
5p21

7 res

137

62
124
124
124
124
124
124
218
248
129
230
124

51
104
125

38
154
263
424
345
136
131
153

99
108
279
103
292
174
165

VOLBL

25132.8
11344.7
22068.9
22072.6
22033.9
22286.0
22226.9
22127.0
36926.2
41058.5
23378.5
37563.5
22044.1
14328.4
38744.7
22695.4
11323.0
29433.7
42314.7
70369.1
54619.0
25059.1
25826.5
29441.1
19914.7
20034.6
44096.1
20697.2
53079.8
33441.2
31329.3

GEPOL

25396.5
11273.0
21798.0
22040 .4
21969.9
21819.7
21793.8
21890.7
36713.6
40777.8
23540.1
37884.0
21604.0
12048.1
38657.7
22433.7
33776.8
29235.9
42185.8
70364.5
94862.1
25396.5
25898.8
29460.4
17578.9
19906.3
43768.0
20240.6
51992.1
33776.8
31251.5

23
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Table 4.7: Computed molecular surface (MS) volume (in AS) of selected proteins.

protein

leca
1nxb
1rbe
1rbe
1rbf
1rbg
1rbh
1rbi
2act
2cha
2lyz
2ptn
2rns
2sn3
eyt
3rn3
4pti
5mbn
larb
lcau
lcse
lecd
licm
1mbd
1ple
1rro
1thm
lycc
3sdh
4gcr
5p21

7 res

137

62
124
124
124
124
124
124
218
248
129
230
124

51
104
125

38
154
263
424
345
136
131
153

99
108
279
103
292
174
165

VOLBL

16764.4

6879.1
14477.1
14601.0
14509.1
14709.2
14671.4
14616.5
26112.1
28016.9
15627.9
26331.3
14520.9

9437.5
25287.6
14927.1

6964.2
19644 .4
30642.1
46485.3
39559.2
16733.4
16952.0
19586.2
13985.0
13222.6
32477.9
13231.7
36669.7
23037.3
21262.8

GEPOL

17728.2

7385.1
15174.7
15356.6
14947.2
15181.6
15282.9
15193.6
25362.0
29121.9
16214.8
27302.5
14904.2

7087.9
267717
15861.3

7391.6
21147.4
31445.2
49967.3
40773.6
17473.7
18362.4
20773.0
11957.9
13932.9
33996.8
13994.2
39286.8
24034 .2
22523.7

24
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obtained with GEPOL and Richards’ vVOLUME. VOLBL and GEPOL compute volume in all three models, VS, SA and
MS, while Richards’s vVOLUME as distributed in VADAR only computes VS volume.

5 Discussion

We see from tables 4.2 through 4.4 that VS, SA and MS area computed from VOLBL are comparable to areas
computed by other analytical methods such as ANAREA and MS/MsSDOT. Residuewise area contributions computed
by VOLBL and ANAREA as depicted in figures 4.1, 4.2 and 4.3 also agree in general. On the other hand, VS
volumes computed with VvOLBL and vOLUME differ significantly, with the latter giving volumes always larger by
20 to 40%, see table 4.5. VOLUME is one of the earliest programs developed for molecular metric computation.
It highlights the difference between the approximation and the analytical methods. Approximation methods are
usually less accurate, because they do not rigorously deal with the complicated combinatorial problems of the
molecular structures. To achieve fast speed, approximations are often made in these methods when errors are
assumed to be tolerable, or when an accurate treatment is too involved or too costly. On the other hand, when
fine grained discretization is used and longer running times are allowed, the accuracy of approximation methods
can converge to that of analytical methods.

Among the analytical methods, the difference in computed SA area between voLBL and Richmond’s ANAREA,
as well as the difference in computed VS and MS area between voLBL and Connolly’s Ms/MsSDOT are probably
due to the (lack of) treatment of high order atom overlaps and different treatment of geometric degeneracy. We
elaborate in the following two sections.

5.1 High order of atom overlap

Some of the available analytical methods ignore high order overlaps of atoms. For example, it is reported that
Connolly’s analytical algorithm and related methods ignore overlaps of 4 or more atoms (Petitjean, 1994). Petijean
investigates this problem in detail. Using small molecules as examples, he discovers that the relative error is often
around 30% for surface calculation and 5% for volume calculation when overlaps of four atoms and above are
ignored (Petitjean, 1994). He also shows that in practical situations (e.g. aromatic compounds), overlaps of up
to six atom balls occur frequently. Applications requiring high precision of surface area and volume computation
should benefit from the use of VOLBL which treats overlaps accurately.

5.2 Degeneracy

A fundamental issue in practical geometric computing is robustness. Common sources for the lack of robustness
are geometric primitive tests that are ambiguous in degenerate or near degenerate cases. For example, degeneracy
occurs when 3 or more points are collinear, when 4 or more points are coplanar, or when 5 or more points are
cospherical. The trouble starts when a primitive geometric test is applied to these points. Different outcomes of
such a test lead the process into logically different branches of the program. An arbitrary decision would typically
be acceptable if it is consistent with earlier ones. However, inconsistent decisions can lead the program into
geometrically impossible states that cannot be resolved.

Here is a typical example. Consider an algorithm that needs to decide whether a point is to the right or to the
left of a directed line passing through two other points. When the three points are collinear, the test is ambiguous,
and suppose the outcome of the test is “left”, maybe because of a slight bias caused by a small numerical error.
When the same 3 points are encountered later, the test might assign an inconsistent “right” value, possibly because
the points are presented to the test in a different order. This inconsistency is likely to ultimately crash the program.
In principle, this problem cannot be fixed with improved numerical precision, since collinear points will always be
collinear. What is needed is an arbitrary yet consistent decision.
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Figure 5.1: Cusp in the MS model. THIS FIGURE NEEDS TO BE IMPROVED. IT IS NOT CLEAR WHAT THE MS
MODEL IS IN THIS CASE.

A popular method battling the problem of robustness is the (actual) perturbations of atom coordinates (Perrot
et al., 1992; Eisenhaber & Argos, 1993) and/or atom radii (Connolly, 1993). The hope is that a small perturbation
will remove all degeneracies in the data. The drawback of such perturbations is they do not always work, and if
they work, they do change the input and thus the output. Alternatively, one could write tests that unambiguously
detect and classify degenerate cases. Such tests would have to rely on exact rather than floating-point arithmetic.
This method leads to a large number of special cases, which have to be handled individually in a consistent manner.
In the case of spherical balls in 3 dimensions this case analysis is likely to result in a nightmarish programming
experience.

In the computational geometry community, several methods have been suggested to cope with geometric de-
generacy (Edelsbrunner & Miicke, 1990; Yap, 1990; Emeris & Canny, 1991). The method of choice in our imple-
mentation is the symbolic perturbation of coordinates and radii. This is referred to as SoS (for “simulation of
simplicity”) and described in detail in (Edelsbrunner & Miicke, 1990). SoS symbolically perturbs coordinates and
radii and systematically treats all special cases by a consistent reduction to the general case. Observe that only
the construction of the Delaunay complex and the filter are prone to instable behavior if presented with inaccurate
numerical computation. Floating-point operations in VOLBL are solely used to compute area and volume and not
to derive any decisions impacting the flow of control. The above discussion of robustness and perturbation thus
does not apply to VOLBL.

5.3 Riemannian interpretation of the MS model

Combinatorially, the SA and the MS model of a molecule are equivalent since they both are defined by the
same solvent sphere rolling about the VS model. Indeed, they are both represented by the same alpha complex.
Nevertheless, the area and volume associated with the two models may differ significantly. For example, the area
and volume changes an octanol molecule experiences during a rotation can be different by 50% between the two
models (Pascual-Ahuir & Silla, 1990). Motivated by these differences, it has been suggested that the molecular
surface models certain physical/chemical phenomena more accurately than the solvent accessible surface (Jackson

& Sternberg, 1993).

Unfortunately, the MS model suffers from an inherent deficiency. Surface smoothness lacking in the SA model
was probably the motivation for the development of the MS model. However, when two probe spheres overlap
in the process of reaching into a narrow tunnel from two sides, they form cusps which are local violations of
smoothness, see figure 5.1. As a result, the overall smoothness of MS model is destroyed. To rid this dilemma,
we propose to ignore cusps altogether. In other words, we consider the MS model as an emersed surface with self-
intersections. Computing the volume still makes sense because the surface is orientable and locally inside/outside
can unambiguously be defined. The surface bounds a 3-dimensional body, although the emersion of this body has
flaps of self-overlap. It is like a piece of perfectly straight 3-dimensional space being placed into 4 dimensions:
there can be flaps that lie side by side and overlap in their 3-dimensional projection. As an analogy, consider an
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icosahedron with boundary made of paper. Cut the icosahedron open and lay it out in the plane. Depending on the
choice of cuts the unrolled surface may overlap itself. These overlaps can be ignored since the refolding produces
a perfect 2-dimensional manifold. This is why we call the cusp-free version of the MS model its Riemannian
interpretation.

5.4 Removing self-overlap

JIE, SHOULD WE REALLY DISCUSS THESE OPERATIONS CONTRADICTION OUR PROPOSAL OF THE RIEMANNIAN
INTERPRETATION? For area and volume computation cusps can be corrected by subtracting the self-intersecting
part from the calculation (Connolly, 1985a; Connolly, 1993), if so desired. This is easy when there are only two
atoms and gets quite difficult when 3 or more atoms are involved. The correction in area and volume is likely to
be rather small. JIE, SHOULD WE DO THIS IN VOLBL IN SPITE OF OUR PROPOSAL?: In VOLBL, cusp correction is
provided as an option which only considers the two atom cases.

Cusp-correction is problematic. We give a qualitative argument. For an MS model of a molecule, its surface
is defined depending on the solvent: the surface is what the front of a solvent experiences while rolling about the
molecule. A large solvent experiences a different surface than a small solvent. Since the MS surface is experienced
by the solvent in a time averaged sense, we consider that a solvent approaching atoms from one side will not stay
at the cusp regions for an extended period of time to exclude another solvent approaching the same region from
the other side. The exclusion effect is present only for a fraction of the total time, and can be represented by a
small probability. Cusp-correction would raise this small probability to certainty. As a result, cusp-correction may
turn out to make the approximation of reality worse rather than better.

There is also a practical reason against cusp-correction. In the continuum approach for solvation and electrostatic
studies, a protein is represented as a cavity of low dielectric constants in a high dielectric constant medium. The
Poisson-Boltzmann equation is solved for electrostatic potentials (Sharp & Honig, 1990; Madura et al., 1994;
Sharp, 1994). For boundary value type of differential equations, such as the Poisson-Boltzmann equation, boundary
conditions are an integral part of the problem directly influencing the computed electrostatic potential. Smoothness
of the boundary is locally violated at the cusps and it is necessary to introduce extra conditions considering the
cusp as a 1-dimensional boundary of a piece of the surface. In analysis, it is possible to derive these extra boundary
conditions, e.g. from calculus of variation. The problem becomes more complicated in actual computation and
none of the currently popular methods considers any such extra conditions.

JIE, I AM NOT SURE THERE IS A SATISFYING DEFINITION OF “CONTRIBUTION” IN THE MS MODEL. CAN WE
REALLY CLAIM WE COMPUTED SOMETHING REASONABLE HERE? FOR NOw, I REMOVED THE DISCUSSION IN THE
PAPER.

6 Conclusion

This paper describes an alpha shape based algorithm for computing molecular surface area and volume for both
SA and MS models. Its implementation as the program VOLBL is described in some detail in the unpublished
report (Edelsbrunner & Fu, 1994), see also (Edelsbrunner et al., 1995). It belongs to the category of analytical
methods and is combinatorial in nature, within the tradition of computational geometry (Preparata & Shamos, 1985;
Edelsbrunner, 1987). Unlike previous analytical approaches, all computations are based on the dual topological
structure of the molecule, which guarantees the combinatorial correctness of the computation. For example, it does
not neglect cases when more than 4 atoms have a common intersection, although area and volume computations of
such high order intersections are not actually performed. Efficient computation is achieved by precisely identifying
atoms on the surface and their topological structure. Area and volume can be computed using the short inclusion-
exclusion formula whose terms involve at most 3 intersecting balls at a time. The preparing computations by
DELCX and MKALF employ a symbolic perturbation (Edelsbrunner & Miicke, 1990) of the geometric data. As a
consequence, our software does not suffer from a lack of robustness caused by degenerate data. We have applied the
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method to several proteins to demonstrate both the validity and the robustness of the alpha shape based method.
In a companion paper, we continue the effort by describing the computation of voids and interfacial contacts in
protein using the alpha shape method.
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