Mesh Association: Formulation and Algorithms*

Xiangmin Jiaof

Abstract

In computational simulation of coupled, multicom-
ponent systems, it is frequently necessary to transfer
data between meshes that may differ in resolution,
structure, and discretization methodology. Typically,
nodes from one mesh must be associated with ele-
ments of another mesh. In this paper, we formulate
mesh association as a geometric problem and intro-
duce two efficient mesh association algorithms. One
of these algorithms requires linear time in the worst
case if the meshes are well shaped and geometrically
well aligned. Our formulation of the problem and
our algorithms are more general than previous work
and can be applied to surface meshes with curved
elements.

Keywords. Mesh generation, computational geome-
try, point association, data transfer, search, interpo-
lation.

1 Introduction

Mesh association is a problem that arises frequently
in the numerical simulation of complex, multicom-
ponent systems. In such systems, data must be
transferred across interfaces between adjacent do-
mains whose respective meshes may differ in res-
olution, structure, and discretization methodology.
We call the 2-dimensional portion of a discretized 3-
dimensional domain that is adjacent to another such
domain its interface mesh. Given two domains, we
refer to their interface meshes as G and H, alluding

*Research supported by the Center for Simulation of Ad-
vanced Rockets funded by the U.S. Department of Energy un-
der Subcontract B341494.

fDepartment of Computer Science, University of Illinois,
Urbana, IL 61801. {jiao,heath}@cs.uiuc.edu.

iDepartment of Computer Science, Duke University,
Durham, NC 27708. edels@cs.duke.edu.

Herbert Edelsbrunnert

Michael T. Heatht

to a guest and a host mesh. Although the neighbor-
ing physical domains abut each other, the two corre-
sponding interface meshes may not precisely coincide
because of discretization or rounding errors.

There are two distinct phases in data transfer be-
tween domains, one geometric and the other numer-
ical. The first phase is mesh association, in which
each node in G is associated with a face or element
in H. The second phase computes approximate local
coordinates in H for the nodes in G, and then inter-
polates field data using these computed coordinates.
This paper provides a systematic formulation and ef-
ficient algorithms for the first phase. For a discussion
of the second phase, readers are referred to [2, 3, 6].

When the interface meshes of two domains are iden-
tical, with coincident nodes and elements, mesh asso-
ciation is trivial. Domains often have nonconforming
interface meshes, however, due to different discretiza-
tion methodologies or resolution requirements. For
example, in fluid-solid interaction, which is a typi-
cal multidisciplinary problem, a finite difference or
finite volume method with a (block) structured mesh
is often used for the fluid, whereas a finite element
method with an unstructured mesh is typically used
for the solid. Generally, the fluid also has finer resolu-
tion requirements than the solid. Such discrepancies
in interface meshes make mesh association decidedly
nontrivial.

Mesh association has attracted considerable attention
in recent years, but formulations of the problem and
algorithms for solving it have not been completely
satisfactory. Lohner [8] suggests an algorithm for
mesh association, called the advancing-front vicinity
algorithm, but with a restrictive assumption that all
nodes of G lie on the underlying space of mesh H.
Maman and Farhat [9] propose a scheme for associat-
ing nonconforming meshes that relaxes this assump-
tion. They define the associate of a point z to be the
normal projection of z onto H, and the correspond-
ing element would then be the host of that associate.
With this definition, however, there is a nonnegligi-

ble possibility for a point to have more than one as-
sociate or no associate, as illustrated in Figure 1. In
their study, they assume that these problematic cases
do not occur. Their algorithm uses exhaustive search
to find the associate of each node of G, which is not
very efficient, though easy to parallelize.

no projection

o

multiple projections

Figure 1: 1-dimensional example where associate may
be ill-defined using Maman and Farhat’s definition.
Points in upper region between dotted lines do not
project onto H and hence have no associate. Points
in lower region between dotted lines project onto two
elements of H and thus have multiple associates.

In this paper, we consider the mesh association
problem with nonconforming meshes. In particular,
we focus on cases arising from 3-dimensional fluid-
solid interaction, in which the 2-dimensional inter-
face meshes must be associated. Section 2 formulates
mesh association as a geometric problem. Section 3
introduces efficient generic algorithms for mesh asso-
ciation based on the new formulation. Finally, Sec-
tion 4 concludes the paper with a discussion of related
problems.

2 Problem Definition

We first formulate mesh association as a geometric
problem with physical meaning in mesh applications.
In this paper an interface mesh or mesh refers to a
collection of cells of dimension 2, 1, and 0. We call
the 2-dimensional cells elements, the 1-dimensional
cells edges, and the 0-dimensional cells nodes. El-
ements are required to be closed topological disks,
edges are closed topological intervals, and nodes are
points, all embedded in R3. We also require the mesh
to be a pure complex. In particular, the boundary of
each element is a finite union of edges, each edge or
node belongs to at least one element, and any two el-
ements either are disjoint, intersect in a single node,
or intersect along a single edge. The meshes in our
application are portions of surfaces of 3-dimensional
domains, so we may further assume that each mesh

is a 2-manifold with boundary. This means that each
edge belongs to either one or two elements, and each
node belongs to either a linear or a cyclic sequence
of elements. We also assume that the number of el-
ements is at most a constant times the number of
nodes. Occasionally, we will talk about the set of
points contained in the elements of a mesh. This is
traditionally called the underlying space of the mesh,
but we find it easier to ignore the difference between
a mesh and its underlying space.

2.1 Point Association
We start by defining point association, which is the
key component of mesh association.

DEFINITION. An associate of a point x € R® is
a point ' = z'y in a mesh H with minimum dis-
tance to x. An associated element of x is an ele-
ment A(z) = Ap(z) in H containing an associate of
x. The distance from x to H is the Euclidean dis-
tance between x and x', denoted by d(x) = du(x) =
||z — 2'||. Given x and H, point association is the
problem of computing the associated elements of x in
H.

This definition does not make any assumption about
the type of mesh, so it is applicable to meshes of ar-
bitrary structure and with curved elements, and can
also be generalized to higher dimensions. Figure 2
illustrates the definitions. In the figure, the mesh H
lies in a plane, which generally is not the case.

x

G---"-----0

x

Figure 2: Orthogonal projection of x onto plane of
mesh H is z'. Tt is contained in interior of associated
element A(z). Length of line segment zz' is d(z).

This formulation of point association makes sense
both geometrically and numerically. Geometrically,
the associate of a point x is unique in the sense that
for any z, an arbitrarily small perturbation to z suf-
fices to make z’ unique. The perturbed point might
still have more than one orthogonal projection onto
H , but only one will minimize the distance to z. Con-
sequently, we say a point having more than one as-
sociate is a degeneracy. Without loss of generality,

we can then assume general position, which is the ab-
sence of such degeneracy. Degenerate cases can be
handled using techniques such as symbolic perturba-
tion [5, 12].

A point having multiple associated elements, how-
ever, is not a degeneracy. This is because A(z) is not
unique when z' is a node of H or lies in the interior
of an edge, and the probability of this happening is
nonzero when H is flat. Nevertheless, assuming gen-
eral position of z, any reasonable tie-breaking scheme
for choosing A(z) suffices to make it unique. This
causes no harm to the overall objective of mesh as-
sociation since no matter which associated element is
chosen, the interpolation will always give the same re-
sult. Henceforth, we use the notation A(z) to denote
the set of all associated elements of x, and A(zx) to
denote the unique associated element determined by
some tie-breaking strategy, if necessary. We have thus
shown that point association is a well-posed problem.

Numerically, the associate will be used to compute
local coordinates v in H for a node z for subsequent
interpolation. We assume that for each element h
there is a diffeomorphic map, 7, : [0,1]2 — h, which
maps local to physical coordinates. Given the phys-
ical coordinates of the point x, if x € h, the local
coordinates v have an exact solution. If z does not
lie on the host mesh H, however, then the local co-
ordinates can be solved for only approximately. The
best solution in the least squares sense minimizes the
distance from the point z to the point 5 (), where
h = A(z), and nn(y) = z', which agrees with our
definitions of associate and associated element. In
summary, a closest element is optimal for computing
the local coordinates in H of a point z € R®.

Before we move on to mesh association, we note that
the distance function d : R® — R defined by d(z) =
||z — z'|| is Lipschitz continuous.

LEMMA 1. |d(z) —d(y)| < [l - yl|-

To see this, observe that the associate y’ of y lies on or
outside the sphere with center = and radius d(z). The
triangle inequality implies the claimed inequality.

2.2 Mesh Association

DEFINITION. Mesh assoctiation is the problem of
identifying the associated element in o host mesh H
for each node in o guest mesh G, i.e., mesh associa-
tion is point association for all nodes of G.

As in point association, we assume that the nodes
are in general position, so that every node in G has
a unique associate. This is a reasonable assumption,
since the number of nodes is finite. By contrast, as-
suming general position of all points of the surface
represented by G would be unrealistic, as this surface
contains uncountably many points. Without loss of
generality, we also assume that mesh G is connected.
If G has more than one component, associating G
and H can be treated as several independent mesh
association problems, one per component of G.

The definition of mesh association applies to arbi-
trary meshes G and H, which is nice but overly
general. In practice, G and H are typically simi-
lar in shape and close in space, because in principle
they discretize the same surface. In this section, we
propose a criterion for capturing this similarity and
closeness relationship to restrict mesh association to
a manageable scope. Our criterion is based on the
notions of medial axis and local feature size (see also
Ruppert [11]).

DEFINITION. Given a surface mesh H, the medial
azxis is the set M = My of points with at least two
disjoint associated elements. The local feature size
is the map f : H — R defined such that f(y) is the
minimum distance from y to any point of M.

The medial axis is a surface with measure 0 in R3,
which is consistent with our earlier observation that
for every point with more than one associate, we can
find an arbitrarily close point with only one associate.
Intuitively, the medial axis M relates to mesh resolu-
tion and an appropriately discretized notion of curva-
ture of H. In particular, the finer the resolution and
the greater the curvature, the closer M is to H. Note
in particular that the medial axis does not extend all
the way to the edges and vertices of the mesh because
we require multiple associates on disjoint elements. A
point 2 whose distance to the associate ' is less than
the local feature size at 2’ cannot have disjoint associ-
ated elements. These observations motivate us to call
a mesh G close to H if d(z) < f(a') for every point
z of G. In any attempt to solve the mesh association
problem, it seems reasonable to assume that G be
close to H. Essentially, this links how far G can be
locally from H to the local curvature and resolution
of H. This agrees with our intuitive expectation on
the geometric relationship between G and H. Close-
ness implies a connectedness property for associated
elements that is more general than just for nodes of
G. This property turns out to be the key to efficient

algorithms for mesh association. Let X be a possi-
bly uncountably infinite point set, and let A(X) be
the union of sets A(z) over all points z € X. Sim-
ilarly, define A(X) as the set of (pointwise unique)
associated elements of points of X.

LEMMA 2. If a point set X C R® is connected and
close to H, then A(X) is connected.

PrRoOOF. We prove the claim by contradiction, us-
ing Lemma 1 and the intermediate value theorem of
differential calculus. Let C C X be a connected
curve with endpoints x; and z;. Assume A(zq)
and A(z2) belong to two distinct connected compo-
nents A; and A, of A(X). Let g(z) be the differ-
ence in Euclidean distances from z to A; and to
As, g(x) = da,(x) — da,(x). Since d is continu-
ous, so is g. By definition of associated element,
da,(x1) < da,(x1) and da,(z2) < da,(z2). There-
fore, g(z1) < 0 and g(xz2) > 0. According to the
intermediate value theorem, there is a point z € C'
such that g(z) = 0, which implies x € M. This con-
tradicts the closeness assumption. [|

3 Mesh Association Algorithms

In this section, we consider algorithms for mesh as-
sociation. Except for the brute-force one, all algo-
rithms depend on the guest mesh G being close to
the host mesh H. However, we equip the algorithms
with safeguards so that a violation of that assump-
tion influences only the running-time and not their
correctness.

3.1 Brute-Force Algorithm

A simple but robust algorithm for mesh association
performs point association independently for each
node in G.

BRUTEFORCE

forall nodes v € G do
d(v) + oo;
forall elements h € H do
if d(v) > dp(v) then
d(v) < dp(v); A(v) « h
endif
endfor
endfor.

The inner for-loop is a brute-force method for point
association. At the end of each iteration, d(v) stores
the distance from v to H, and A(v) stores the asso-
ciated element of v. When the algorithm terminates,
the arrays d and A contain the distances and associ-
ated elements for all guest nodes.

This algorithm is not very efficient. If m is the num-
ber of nodes in G and n the number of nodes in H,
then the algorithm requires ©(mn) time, assuming
the distance from a point to an element is computed
in constant time. The algorithm is slow but robust,
and neither its correctness nor its running-time de-
pends on G being close to H. In the following, we will
improve the performance of this algorithm in various
respects, but we shall use brute-force as a fallback if
all else fails.

One obvious source of inefficiency in the brute-force
algorithm is that it ignores neighborhood informa-
tion. In practice, the associated elements of nearby
nodes tend to be nearby as well. We take advantage
of this observation by making two changes to the al-
gorithm. In the outer loop, we traverse the nodes in
G from neighbor to neighbor. In the inner loop, we
perform a local search in H instead of a blind global
search. Implementing local search is the main issue
here, and it will be discussed shortly.

Another improvement takes advantage of the numer-
ical nature of mesh association. Recall that the pur-
pose is to compute approximate local coordinates in
H of nodes in G. These coordinates must be within
some numerical tolerance so that the interpolated re-
sult is reasonably accurate. We will use the concept
of tolerance to improve performance and maintain ro-
bustness of our algorithms.

3.2 Steepest Descent

Steepest descent is a greedy method for finding local
minima [7]. The basic idea is to move in the direction
of locally steepest slope. We use this idea in the inner
loop of the mesh association algorithm. After finding
A(u) for a node u € G, we search for the associ-
ated element of a neighboring node v € G by starting
from A(u) and walking in H until we reach a local
minimum. The outer loop is implemented as a depth-
first search of the graph of nodes and edges in G, see
e.g. [4]. To simplify the description of the algorithm
we just write ““forall nodes v € G in df-order do’’
to indicate depth-order traversal of the nodes. This
order provides information about the predecessor of

v, which is a neighbor u for which d(u) and A(u)
are already known. To avoid the case where v has
no predecessor, we compute d(u) and A(u) for some
arbitrary node u using BRUTEFORCE and start the
search at a neighbor v of that initial node wu.

STEEPESTDESCENT

forall nodes v € G in df-order do
h +— A(u);
do
mark h with v;
d(v) < dn(v); A(v) < hs
h + CLOSEST(h,v)
while d(v) > dp(v)
endfor.

Function CLOSEST returns the element adjacent to h
in H that is not yet marked with v and that minimizes
the distance to v. For the marking mechanism we
can either use a bit array or an integer array that
identifies the marking node by index. In the former
case we need to unmark elements before repeating
the inner do-loop in search for the associated element
of the next node.

Reaching a local minimum, however, is not the same
as finding A(v). Figure 3 shows a 1-dimensional ex-
ample where STEEPESTDESCENT fails, even though
G is close to H. If we start from A(u), the greedy
search will never reach A(v). To overcome this dif-
ficulty, we introduce a small positive parameter &,
called a safeguard, which is a tolerance for the dis-
tance between a node and its associated element.
Specifically, if the distance between v and the re-
turned h = A(v) exceeds the tolerance times a mea-
sure of the length of h such as its diameter, dp(v) >
€ - diam h, then the element is rejected and BRUTE-
FORCE is used to recompute the associated element.

The choice of safeguard value € may be delicate. If it
is too small, then the safeguard test may frequently
call upon BRUTEFORCE and slow down STEEPEST-
DESCENT. On the other hand, if the safeguard value
is too large, then the computed coordinates may be
inaccurate.

3.3 Vine Search

We expect the steepest descent algorithm to be ef-
ficient in practice, but it is somewhat problematic

Figure 3: Edges of host mesh are solid, and those
of guest mesh are dashed. Steepest descent algo-
rithm fails because gradient of distance function from
v points in wrong direction.

because it depends on the choice of a safeguard pa-
rameter €. This subsection proposes a new algorithm
that is efficient and safe without depending on any
parameter. It still relies on the assumption that G is
close to H.

The key to the new algorithm is the connectedness of
A(uw), for every edge uv in G, as claimed in Lemma
2. In effect, A(uv) provides a path that leads us from
the associated element of u to that of v. Based on the
Chinese proverb, “to find the melon, follow the vine,”
we call this the vine search algorithm. It is convenient
to follow a path in a slightly larger set B(uv) of ele-
ments. We need some definitions to say exactly what
the larger set is. For an element, edge, or node t € H
we denote by H(t) the subset of elements that con-
tain t. In the case of an element we have H(t) = {t},
but for edges and nodes the set H(t) usually, but not
necessarily, contains more than one element.

Definition 1 Let x € R, h € H an element, and
x' = x), the associate of x in h. Let t be h, an edge
of h, or a node of h, so that ©' lies in the interior of
t. We say z locally associates with h if ©' = le(t)-

Observe that local association is weaker than associ-
ation. In other words, x locally associates with every
element h € A(x), but there can be other elements
with which it also locally associates. The set B(uv)
is by definition the collection of elements h such that
there is at least one point z € wuv that locally as-
sociates with h. We trivially have A(uv) C B(uv).
Since A(uv) is connected by Lemma 2, the associ-
ated elements A(u) and A(v) belong to the same con-
nected component of B(uv). Hence there is a path
of elements we can follow. This is exactly what the
vine search algorithm does. For an element h € H

it checks local association, and if that holds it marks
h and recursively visits unmarked neighboring ele-
ments. Here by neighboring elements we mean the
elements that share an edge or a node with h.

VINESEARCH (h)

if ISLOCALLYASSOCIATED(h, uv) then
mark h;
if d(v) > dp(v) then
d(v) + dp(v); A(v) < h
endif
forall unmarked neighbors k of h do
VINESEARCH(k)
endfor
endif.

Function 1ISLOCALLY ASSOCIATED decides whether or
not there is a point z € ww that locally associates
with h. This is a local test and we can reasonably
assume that the decision can be made in time propor-
tional to the number of elements that share an edge
or a node with h. The complete algorithm combines
the outer depth-first loop of STEEPESTDESCENT with
VINESEARCH as the inner loop replacing the steepest
descent search.

Testing local association usually takes constant time,
but it is somewhat more involved than computing
distance. One may therefore consider modifying vine
search so it first follows the strategy of steepest de-
scent and resorts to the more elaborate vine search
only if the identified element is not as close to the
node as expected. This will speed up the algorithm
at the cost of reintroducing a heuristic parameter.
Also, if we are not sure whether the guest mesh G
is indeed close to the host mesh H, in the technical
sense introduced above, we can safeguard vine search
against disaster by using a parameter € > 0 as we did
for STEEPESTDESCENT.

3.4 Analysis of Vine Search

The running time of vine search depends on the type
of the meshes and how they relate to each other
geometrically. We analyze the algorithm under ad-
mittedly favorable assumptions. We believe that in
typical applications of mesh association, the meshes
violate the assumptions only mildly and thus incur
only slightly higher running-time than analyzed here.
Note that the following assumptions are needed only
for the analysis and not for the correctness of the
algorithm.

(1) G is a convex region contained in a plane in R3.
The same holds for H. The planes of G and H
are parallel and the orthogonal projection of G
onto the plane of H is contained in H.

(2) All elements of G and H are triangles whose an-
gles are bounded from below by some constant
d>0.

While typical meshes are not flat, as required by
(1), they represent differentiable surfaces and are lo-
cally approximately flat. The assumptions of paral-
lel planes and convexity are not very important and
serve mainly to simplify the argument below. As-
sumption (2) is essential because the size of angles
has a direct influence on the running time.

Let G' be the mesh obtained by projecting all ele-
ments of G orthogonally onto the plane of H. The
crucial combinatorial quantity in the analysis of vine
search is the number of intersections between edges
in H and in G'. We prove below that the number
of intersections is at most some constant times the
number of edges in H and in G'. The argument re-
duces the problem to counting the number of holes
in the union of a finite set of triangles, again assum-
ing all angles are bounded from below by the same
constant §. Matougek et al. prove that the number of
holes is at most some constant times the number of
triangles, where the constant depends of course on ¢
[10]. Let n be the total number of edges in H and in
G combined.

LEMMA 3. The number of pairs of edges, one in H
and the other in G', that have non-empty intersection
is at most ¢ - n, where ¢ is some constant depending
on 4.

PROOF. The outside region of H is the complement
of the geometric support within the plane of H. Add
this region to H, thicken each edge by a tiny amount,
and remove the resulting narrow strips from all tri-
angles and from the outside region. We get a col-
lection of slightly smaller triangles, which are sepa-
rated from each other and from the outside region
by narrow channels. Do the same for G'. Consider
the union of all the resulting triangles. If we make
the channels sufficiently narrow, we get a hole in the
union for each intersection point involving the edge
in the original H. To apply the result by Matousek et
al., we replace the two outside regions by a collection
of triangles whose union is exactly the union of the
outside regions, at least in the vicinity of G and H.

That result now implies that the number of intersec-
tion points is at most some constant times n. Each
intersection point z corresponds to a single pair of
edges that intersect at x, unless z is a node of H or
G', in which case it corresponds to at most (27/5)?
pairs, which is again a constant.]

We now prove that under assumptions (1) and (2),
vine search takes only time proportional to the num-
ber of edges in H and in G. Note first that because
H lies in a plane, we have A(uv) = B(uv) for every
edge uv € G. The number of elements in A(uv) is at
most one larger than the number of edges in H that
intersect the projection of uv. Lemma 3 thus implies
that the total size of all marked sets of elements is

U Bww)| < Y |Bw)]
e ww€eG
= > |A(w)|
w€eG
< (e+1)-n.

For each marked triangle h, vine search visits h to-
gether with all elements that share an edge or a node
with h. The angle bound implies that the number of
such triangles is at most some constant, namely less
than 67 /4. This completes the proof that vine search
takes time only linear in the size of the guest and host
meshes.

4 Discussion

In this paper we considered the mesh associa-
tion problem, which arises in numerical simulations
with multiple components represented by disparate
meshes. We provided a precise formulation of the
problem and introduced algorithms for solving it. We
analyzed vine search, which is the most advanced of
the three algorithms, and showed that it takes time
only linear in the size of the meshes, under some as-
sumptions. The first author is in the process of im-
plementing the algorithms of this paper, and apply-
ing them in coupled, multicomponent simulation of
solid propellant rockets, with the intention to report
experimental findings later.

A different, but closely related problem, which we
call mesh tracking, arises in simulations with moving
boundaries [2]. In such applications we must update
the associated elements as the mesh moves. The rela-
tionship between mesh association and mesh tracking

is analogous to that between mesh generation and
adaptive mesh refinement. Mesh association asso-
ciates the meshes starting from scratch, without any
hint from a previous computation. Mesh tracking, on
the other hand, has a previous computed result as a
starting point, and each iteration is typically cheaper
than a complete mesh association from scratch. The
techniques discussed in this paper, such as steepest
descent and vine search, are also applicable to mesh
tracking.

Point association is related to some well-known prob-
lems in computational geometry. One of these is
point location [1, Chapter 5], which can be consid-
ered as a special case of point association in which
the associate of a point is itself. Our approach to
mesh association is similar to algorithms described
for overlaying two meshes in the plane, see e.g. [1,
Chapter 2|. The strongest hint for this similarity is
the cost per edge intersection made explicit in the
analysis of the vine search algorithm. The same cost
occurs in overlaying two meshes, where each intersec-
tion becomes a node of the new mesh.

References

[1] M. Berg, M. Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Al-
gorithms and Applications. Springer-Verlag,
Berlin, 1997.

[2] J. R. Cebral and R. Lohner. Fluid-structure cou-
pling: extensions and improvements. In 35th
ATAA Aerospace Sciences Meeting, Reno, NV,
1997. ATAA-97-0858.

[3] S. Chippada, C. N. Dawson, M. L. Martinez,
and M. F. Wheeler. A projection method for
constructing a mass conservative velocity field.
Computer Methods in Applied Mechanics and
Engineering, 157:1-10, 1998.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 1989.

[5] H. Edelsbrunner and E. P. Miicke. Simulation of
simplicity: a technique to cope with degenerate
cases in geometric algorithms. ACM Transac-
tions on Graphics, 9:66-104, 1990.

[6] C. Farhat, M. Lesoinne, and P. LeTal-
lec. Load and motion transfer algorithms for

[7]

18]

[9]

[10]

[11]

[12]

fluid/structure interaction problems with non-
matching discrete interfaces: momentum and en-
ergy conservation, optimal discretization and ap-
plication to aeroelasticity. Computer Methods in
Applied Mechanics and Engineering, 157:95-114,
1998.

M. T. Heath. Scientific Computing: An Intro-
ductory Survey. McGraw—Hill, New York, 1997.

R. Lohner. Robust, vectorized search algorithms
for interpolation on unstructured grids. Journal
of Computational Physics, 118:380-387, 1995.

N. Maman and C. Farhat. Matching fluid and
structure meshes for aeroelastic computations:
a parallel approach. Computers € Structures,
54:779-785, 1995.

J. Matousek, J. Pach, M. Sharir, S. Sifrony, and
E. Welzl. Fat triangles determine linearly many
holes. SIAM Journal on Computing, 23:154-169,
1994.

J. Ruppert. A Delaunay refinement algorithm
for quality 2-dimensional mesh generation. Jour-
nal of Algorithms, 18:548-585, 1995.

R. Seidel. The nature and meaning of perturba-
tions in geometric computing. Discrete € Com-
putational Geometry, 19:1-17, 1998.

