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Abstract

A sliver is a tetrahedron whose four vertices lie close to
a plane and whose orthogonal projection to that plane
is a convex quadrilateral with no short edge. Slivers are
notoriously common in 3-dimensional Delaunay trian-
gulations even for well-spaced point sets. We show that
if the Delaunay triangulation has the ratio property in-
troduced in [15] then there is an assignment of weights
so the weighted Delaunay triangulation contains no sliv-
ers. We also give an algorithm to compute such a weight
assignment.
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1 Introduction

This paper studies slivers in 3-dimensional Delaunay tri-
angulations and in particular, the question of how we
can rid ourselves of slivers. This section introduces the
general context in which this question arises and reviews
what is known about it.

Mesh generation. Meshes are cell complexes that
decompose spatial domains for the purpose of numer-
ical simulation and analysis. In this paper we exclu-
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sively consider meshes made up of tetrahedral cells. We
use mathematical terminology whenever reasonable and
define a tetrahedral mesh as a simplicial complex in R3.
The face-to-face property of the mesh is implicit because
a simplicial complex requires that any two simplices are
either disjoint or meet in a common triangle, edge, or
vertex. We also require that every triangle, edge, and
vertex in the mesh is face of a tetrahedron in the mesh.

A spatial domain is typically given in terms of its
boundary constructed using a computer-aided design
system. The tetrahedral mesh generation problem as-
sumes the boundary is piecewise linear and asks for the
construction of a tetrahedral mesh that covers the spa-
tial domain defined by that boundary. The size and
shape of the triangles and tetrahedra are important be-
cause it relates to the convergence and stability of nu-
merical methods such as the finite element analysis, see
Strang and Fix [20].

Probably the most common tetrahedral meshes are
Delaunay triangulations, which are named after Boris
Delaunay [7] and are also known as duals to Voronoi
diagrams, which are named after Georges Voronoi [22].
They are supported by fast algorithms both for con-
struction and for maintenance under local changes. In
this paper we make essential use of a somewhat larger
class of tetrahedral meshes referred to as weighted De-
launay triangulations. This class has been studied ex-
tensively in the geometry literature where its meshes are
known as regular triangulations [3] and also as coherent
triangulations [12]. The fast algorithms for Delaunay
triangulations extend with minor modification to the
larger class of weighted Delaunay triangulations [9].

Previous work. The generation of meshes with well-
shaped triangles in R? is reasonably well understood.
Bern, Eppstein and Gilbert prove that quad-tree decom-
positions can be used to generate meshes free of badly
shaped triangles that adapt to the local density of in-
put specifications [2]. Ruppert proves the same for his
version of the Delaunay refinement method [18]. Exper-
imental studies suggest the latter method adapts better



to input specifications and outperforms the quad-tree
approach with smaller meshes and smoother variation
of edge length.

The generation of meshes of well-shaped tetrahedra
in R® seems considerably more difficult. The extension
of the quad-tree and the Delaunay refinement methods
to R® both encounter significant difficulties. Mitchell
and Vavasis [16] use oct-trees to tetrahedrize a polyhe-
dral volume without bad quality tetrahedra. Dey, Bajaj
and Sugihara [8] and Shewchuck [19] extend the Delau-
nay refinement algorithm to R® but fail to address the
problem of slivers.

The disturbing presence of slivers in 3-dimensional
Delaunay triangulations has been recognized at least
since the experimental study of Cavendish, Field and
Frey [4]. Talmor [21] notes that even well-spaced ver-
tices do not prevent slivers. Chew [5] sketches an al-
gorithm that eliminates slivers by adding points in a
randomized manner.

Results. The main result of this paper is a method
that eliminates slivers without adding any new point
and without moving any point of the given set. In-
tuitively, the method applies physical pressure and
squeezes the Delaunay triangulation. Most slivers give
way to the pressure and disappear. The remaining sliv-
ers migrate to the boundary where they can be peeled
off. Unfortunately, the boundary may change as a result
of the treatment, and we have to resort to boundary en-
forcement heuristics described in the mesh generation
literature. We suppress the distraction of boundary ef-
fects by considering periodic point sets S € R3. In other
words, we choose a finite set So C [0,1)% and duplicate
it within each integer unit cube: S = S + Z3, where Z?3
is the three-dimensional integer grid. The sliver elimina-
tion method assumes the points are distributed so each
tetrahedron in the Delaunay triangulation has the ra-
tio property introduced by Miller et al. [15]: the radius
of the circumsphere is bounded from above by a con-
stant times the length of the shortest edge. If necessary
the ratio property can be generated by adding points at
circumcenters of violating Delaunay tetrahedra.

We show that under the assumption of the ratio prop-
erty we can assign small real weights to the points so the
weighted Delaunay triangulation contains no sliver. We
refer to this result as the Sliver Theorem. Another way
to think of the result is that the ratio property for the
Delaunay triangulation implies the existence of a sliver-
free triangulation of the same set of points. Since the
ratio property prevents all other types of undesirable
elements, our result implies a triangulation free of any
badly shaped tetrahedron. This complements a result of
Talmor [21] that a triangulation without badly shaped
tetrahedron implies the ratio property for the Delaunay
triangulation of the same set of points. In other words,

for a periodic set S C R3 the ratio property for its De-
launay triangulation is equivalent to the existence of a
triangulation without any badly shaped tetrahedron.

Since the sliver-free triangulation is a weighted De-
launay triangulation it can be obtained from the un-
weighted Delaunay triangulation by a sequence of flips.
The algorithm in this paper is thus similar to but also
different from Joe’s heuristic, which improves tetrahe-
dral shape by flipping [13]. Joe’s heuristic is greedy and
halts the improvement of a vertex neighborhood at a
local optimum. The algorithm in this paper improves
a vertex neighborhood by following a more global opti-
mization strategy.

Outline. Section 2 discusses the shape of triangles
and tetrahedra. Section 3 introduces Delaunay trian-
gulations for unweighted and for weighted points. Sec-
tions 4 and 5 prove geometric results needed in the proof
of the Sliver Theorem, which is presented in Section 6.
Section 7 turns this theorem into a sliver removing al-
gorithm. Section 8 concludes the paper.

2 Tetrahedral Shape

A triangle or tetrahedron is badly shaped if it has at
least one small angle. Some badly shaped tetrahedra
have badly shaped bounding triangles, but there are
also tetrahedra with small angles none of whose four
triangles is badly shaped. This section explains what
exactly we mean by good and bad shape and how we
talk about it.

Shape measures. The mesh generation literature is
rich in measures of simplex quality. A common term
is the aspect ratio, which is often but not always de-
fined as the radius of the smallest containing sphere
over the radius of the largest contained sphere. Re-
lated is the measure of degeneracy defined as the length
of the longest edge over the radius of the largest con-
tained sphere. The latter is motivated by the finite el-
ement convergence analysis of Ciarlet [6]. Liu and Joe
[14] consider several other measures for tetrahedra and
study how they relate to each other. In this paper we
use distance, radius, angle and volume to express the
quality of triangles and tetrahedra.

To simplify discussions we use fuzzy language for size
descriptors. In each case we suppose the existence of a
small constant, ¢ > 0, which can be used to make the
statement precise. For example, an angle ¢ is small if
p < g and large if ¢ > m—e. An aspect ratio is large if it
exceeds 1/e. We also use fuzzy descriptors in a relative
sense. For example, the edge pq of a triangle pqr is short
if [[p—q|| < & -max{||p—rl|,|lg —r||}. Similar relative
conventions are adopted for points that are close to each
other or to a line or plane, etc.



Badly shaped triangles. A triangle with large as-
pect ratio has at least one small angle and all three
vertices close to a line. There are two types: a dagger
with one short edge and a blade with no short edge, see
Figure 1.

[

dagger blade

Figure 1: The dagger has one short edge and at least one
small angle. The blade has no short edge and therefore
one large and two small angles.

Badly shaped tetrahedra. Among the tetrahedra
with large aspect ratio we distinguish the ones with at
least three badly shaped triangles from the others. A
tetrahedron of the former type has four vertices close
to a line. The points can be close or far in the direc-
tion along this line, and we distinguish the cases 3-1
(spire), 1-2-1 (spear), 1-1-1-1 (spindle), 2-1-1 (spike),
2-2 (splinter), see Figure 2. The spire has a cycle of

spire spear spindle spike splinter

Figure 2: From left to right the number of daggers among
the four triangles is at least three for the spire, two for the
spear, zero for the spindle, two for the spike, and four for
the splinter.

three short edges and therefore a cycle of three daggers
among its four triangles. The splinter has two opposite
short edges and therefore four daggers, two in each di-
rection. The spear and the spike both have one short
edge and therefore two daggers and two blades as trian-
gles. The spindle has no short edge and therefore four
blades as triangles.

A tetrahedron whose vertices are not close to a line
has a large aspect ratio if its vertices are close to a plane.
We distinguish the cases where two points are close to
each other (wedge), where three points are close to a line
(spade), where the orthogonal projection to the plane
is a triangle with a point inside (cap), and where the
projection is a quadrilateral (sliver), see Figure 3.

wedge spade cap diver

Figure 3: From left to right the number of long edges
with small dihedral angle is one for the wedge, two for the
spade, three for the cap, and four for the sliver.

A similar but different classification of badly shaped
tetrahedra can be found in Bern et. al [1]. Their classi-
fication is based on dihedral angles while ours primarily
considers face angles.

Radius-edge ratio. Let pgrs be a tetrahedron, X
the radius of its circumsphere, and L the length of its
shortest edge, see Figure 4. The tetrahedron pgrs has
Ratio Property o] for a constant gg if X/L < go. If a
tetrahedron has Ratio Property [0o] then so do all of its
triangles. A triangulation has Ratio Property [oo] if all
its tetrahedra have it.

Figure 4: The vertices of the tetrahedron lie on the cir-
cumsphere with radius X. The length of the shortest edge
is L.

The ratio attains its minimum for the regular tetra-
hedron where X/L = v/6/4 ~ 0.612. Space cannot
be tiled with copies of the regular tetrahedron alone
so triangulations require a larger value of go. Ratio
Property [go] eliminates all badly shaped triangles and
all badly shaped tetrahedra other than the slivers. If
00 < 1/v/2 ~ 0.707 then all face angles are acute so
that even slivers cannot exist. However, the ratio prop-
erty for such a small constant is hard to obtain and we
need a different method to eliminate slivers.

3 Delaunay Triangulations

The proof of the Sliver Theorem uses weighted Delaunay
triangulations in an essential manner. This section in-
troduces Delaunay triangulations, weighted points, and
weighted Delaunay triangulations.



Delaunay triangulations. Let S be a discrete set of
points in R3. We permit infinite sets but they must
be locally finite. For simplicity assume that S is in
general position. In particular, for every four points in
S there is a sphere that passes through them and for
any five points there is no such sphere. A sphere is
empty if it encloses no point of S, or equivalently, if all
points lie either on or outside the sphere. The convex
hull of points p,q,r,s € S is a tetrahedron, denoted as
pqrs, and a Delaunay tetrahedron if the circumsphere
is empty. The Delaunay triangulation of S, denoted
as Del S, is the 3-complex consisting of all Delaunay
tetrahedra and their triangles, edges, and vertices.

Delaunay triangulations are popular meshes for sev-
eral reasons. If S is in general position then Del S is
unique and can be efficiently constructed [4, 9]. The
changes caused by deleting or inserting a point are typ-
ically local. Del S contains all edges of a minimum span-
ning tree, and for each p € S it contains the edge to the
closest point. Delaunay triangulations are optimal with
respect to smallest containing spheres of tetrahedra, see
[17].

Given a Delaunay triangulation we can generate a De-
launay triangulation with Ratio Property [go] by adding
points at circumcenters of violating tetrahedra, see e.g.
[19]. If go > 1 then the minimum distance between a
new point and any of the old points is at least the mini-
mum distance between any two of the old points. In the
periodic interpretation of R® we have a finite amount
of volume, which permits only finitely many points if
the interpoint distances are bounded by a fixed posi-
tive lower bound. The method can therefore not add
infinitely many points and halts after a finite amount of
time.

Weighted points and distance. A weighted point,
p = (p,P?) € R® x R, is interpreted as a sphere or ball
with center p and radius P, see Figure 5. The weight of
pis P2 € R, and if P2 < 0 then the radius is imaginary.
The weighted distance between p and 2 = (z,Z2) is
defined as

~ A 2
-2 = \llp—2I? - P2 — 22,

The weighted points p and Z are orthogonal if the
weighted distance vanishes: p L 2 if ||[p— 2|| = 0. Any
four spheres in R® have a common orthogonal sphere,
called the orthosphere. For example, if the four spheres
are points then the orthosphere is the unique circum-
sphere of the tetrahedron they define. Unless the four
centers lie in a common plane, the orthosphere is unique
and has finite radius. The corresponding observation
one dimension lower is that any three circles in R?> have
a common orthogonal circle, called the orthocircle, see
Figure 5. Unless the three centers are collinear, the or-
thocircle has finite radius.

Figure 5: The dotted circle is orthogonal to the three solid
circles. Since the radii of the solid circles are positive, their
centers all lie outside the dotted circle.

Weighted Delaunay triangulations. A weighted
generalization of Delaunay triangulations is obtained by
substituting spheres for points and orthospheres for cir-
cumspheres. To be specific, let w : S — R be a weight
assignment and consider the defined set of spheres:

N

S = {®P’)|pes, P’ =w(p)}.

Assume S is in general position, which among other
things implies that every four spheres have a common
orthogonal sphere and no five spheres have one. A
sphere 2 is empty if ||2—p|| > 0 for every p € S.
The convex hull of four sphere centers is a tetrahedron
and a weighted Delaunay tetrahedron if the common or-
thosphere is empty. The weighted Delaunay triangula-
tion of S, denoted as Del S, is the 3-complex consist-
ing of all weighted Delaunay tetrahedra and their trian-
gles, edges, and vertices. If all radii are zero then the
weighted Delaunay triangulation of the spheres is the
same as the Delaunay triangulation of the centers.

The center p of a sphere p € S may or may not belong
to the weighted Delaunay triangulation. Specifically, p
is a vertex in Del S iff there is a sphere not necessarily
in S that is orthogonal to p and has positive weighted
distance to all other spheres in S. In this paper we
choose weights in a way that guarantees the existence
of such spheres. It follows that the set of centers is also
the set of vertices.

Cross-sections. Orthogonality is inherited from
spheres to circles if the slicing plane passes through at
least one of the two centers. This allows for the possi-
bility that the plane misses the second sphere and the
intersection is a circle with imaginary radius.

Cram 1. If (p, P?) L (z,Z?) then any plane through p
intersects the two spheres in two orthogonal circles.

PROOF. Let (u,U?) and (v, V?2) be the circles of inter-
section between the plane and the two spheres. We have



w=p, U2 =P?and V2 = Z2 — ||z — v||*. Then

2 2 2
lu—vl]” = |lu—2]"—I[z v
= P 4722 |z —v|?

= U*+V?,

which shows that (u, U?) and (v, V2) are orthogonal.

Claim 1 can be extended to dimensions different from
3. Consider for example the two-dimensional case. If
(p, P?) and (z, Z?) are two orthogonal circles then any
line passing through p intersects them in two orthogonal
intervals. Given two intervals there is a unique third
interval orthogonal to both. It follows that all circles
that are orthogonal to two circles (p, P2) and (g, Q?)
intersect the edge from p to ¢ in the same two points.

4 Linear Relations

This section proves a number of relations between dis-
tances, weighted distances, radii, and areas needed for
the proof of the Sliver Theorem in Section 6. We begin
by introducing notation that simplifies computations
and discussions.

Relation. Two quantities X and Y are said to be lin-
early related, denoted as X ~ Y, if there are constants
¢,C>0withe- X <Y <(C-X. Note that ~ satisfies

X~Y = Y~X,
(X ~YIAY ~Z) = X~2Z,

but it is not an equivalence relation because the con-
stants deteriorate in the repeated application of the
second rule: if ¢/,C" are the constant for Y ~ Z then
c¢-c',C-C" are the constants for X ~ Z. The rela-
tion combines well with arithmetic operations on posi-
tive quantities:

X+U~Y+V,
X -U~Y-V,
X/U~Y/V.

X~AU~V) =

If ¢"”,C" are the constants for U ~ V then min{c,c"},
max{C,C"} are the constants for the sums, ¢ -¢c",C -
C" for the products, and ¢/C",C/c" for the ratios. In
this paper we obtain new linear relations from constant
length chains of old linear relations.

Weight property. We suppose that the radii of the
spheres are not large relative to the distances between
their centers. To make this precise we say a pair of
spheres p = (p, P?), ¢ = (q,Q?) has Weight Property
[wo] for a constant wy € (0,1/2)if0 < P,Q < wollp — 4||-
A set of spheres has Weight Property [wo] if every pair

has it. The upper bound on the radii implies the spheres
are pairwise disjoint. It also implies that the weighted
distance between two spheres is not very different from
the Euclidean distance between the two centers:

CLAIM 2. If a pair of spheres p, § has Weight Property
[wo] then [|p —gl| ~ [P — 4l|-

PRrROOF. We establish ¢y - [[p—g¢|| < [[p—¢]] < Cs -
[lp — q|| for constants ca = +/1—2wp? and Cy = 1.
By definition we have ||p —¢l|> = |lp—ql|* — P% — Q2
and P?,Q? > 0 implies |[p — §|| < ||p — q||- We get the
lower bound from P2, Q? < wo?||p — ¢||°, which implies

V1=2wo® - [Ip — qll < |Ip —4qll-

Area and radius. Let pgr be a triangle and X the
radius of its circumcircle. X is no smaller than half the
length of the longest edge, and if pgr has Ratio Property
[00] then X is also not much larger than that. This
implies that X2 is not much different from the area of
the triangle, which we denoted as |pgr|:

CLamM 3. If pgr has Ratio Property [go] then
X? ~ |pgr].

PROOF. We establish c3 - X? < |pgr| < C3 - X? with
c3 = 1/40¢®> and C3 = w. The upper bound is clear
because pgr is enclosed by the circumcircle with radius
X. For the lower bound we express the area in terms of
edge lengths and radius,

llp —qll - llg = [l - lIr — pll

lpgr| = 5

To verify this formula let ¢ be the angle at g and observe
that |pgr| = |lp—dqll - lg—r|| - % The angle at the
circumcenter is Zpxr = 2¢, and hence ||r — p|| = 2X -
sin 4, which implies the area formula. Each of the three
edges has length at least X/go as implied by the Ratio
Property [go]. Hence

XS
> JE—
|pq/r| p— 4903 . XJ
which implies the claimed lower bound.

Radius and radius. Ratio Property [go] and Weight
Property [wo] together imply that for a triangle the radii
of the circumcircle and the orthocircle are not very dif-
ferent. Let p, ¢, 7 be three spheres that define an ortho-
circle with radius Z and whose centers define a circum-
circle with radius X.

CLAaM 4. If p, §,7 have Weight Property [wo] and pgr
has Ratio Property [go] then X ~ Z.



PROOF. We establish ¢4 - X < Z < (4 - X with
cs = V1 —4we? and Cy = 1 + 2g9wo?. The minimum
weighted distance of the circumcenter, z, from the three
weighted points is a lower bound for the radius of the
orthocircle. To bound that minimum note that 2X is an
upper bound on the length of each edge and wy?(2X)?
is an upper bound on the weight of each point:

. 12 12 112
z* > min{llz - plI°, |lz = 4ll°, [l= - 7"}

> X% —4we’X2.
To obtain an upper bound consider the perpendicu-
lar bisectors k and £ of edges pq and gr, which inter-
sect at x, see Figure 6. Let k be the line of points

X,
ON

2¢ % 5607

Figure 6: To avoid a tiny parallelogram we draw the strips
wider and the circle around ¢ larger than allowed by Weight
Property [wo].

with equal weighted distance from p and ¢, and let /
be the same line for ¢ and 7. The width of the strip
between k£ and k is a maximum only if the weights
of p and ¢ are as different as possible, for example
P2 =0 and Q% = wo?|[p—¢||>. In this case the width
is W = wo?||p — ¢||/2 < wo?X. The same upper bound
holds for the width of the strip between ¢ and {. The
centers z of the circumcircle and z of the orthocircle are
diagonally opposite vertices of the parallelogram formed
by k,k,£, £, see Figure 6. Let the angle at x inside the
parallelogram be 2¢. The edge zz cuts this angle into
two and we assume that the angle between zz and k in-
side the parallelogram is £ > . The distance between
the two centers is therefore

w < w02-X
~ siné —  sing

By Ratio Property [00], we have |[p—q|,|lg—7] >
X/0o0. Hence X -siny > X/2p0 and therefore sing >
1/200. The radius of the orthocircle is bounded from
above by the radius of the circumcircle plus the distance
between the centers:

Z < X+|lz—2l < X +200w0” - X,

which is the upper bound claimed at the beginning of
the proof.

Fortunately, Claim 4 does not extend to tetrahedra
where it fails for slivers with four almost cocircular ver-
tices.

Parametrizing slivers. Let pgrs be a tetrahedron,
V the volume, and L the length of the shortest edge.
We define o = o(pgrs) = V/L? and use it as a measure
of quality. Assuming Ratio Property [go] we call pgrs
a sliver if o is less than some threshold o9 > 0 to be
specified later. It is useful to relate this measure with a
distance-radius ratio. Let D be the Fuclidean distance
of point p from the plane passing through grs and let Y
be the radius of the circumcircle of grs, see Figure 7.

Figure 7: D/Y can be defined for each ordering of the
four vertices, but all four ratios are linearly related to o.

CLAIM 5. If a tetrahedron pgrs has Ratio Property [go]
then D/Y ~ o.

PROOF. We establish ¢5-D/Y <o < C5-D/Y for c5 =
c3/24 and Cs = C300°/3. The triangle grs has Ratio
Property [00], so Y ~ L with constants ¢ = 1/po and
C = 2. By Claim 3 we have Y? ~ |grs| with constants
¢3,C3. The volume of the tetrahedron is |grs| - D/3.
Therefore

D Y*.D |grs|-D _

R E 3.5 7
Following the rules for combining linear relations we get
constants c5 = c3/3C° and C5 = C3/3c>.

5 Length and Degree Bounds

This section recalls a result of Talmor [21] which is
then used to extend results of Miller et al. [15] from
unweighted to weighted Delaunay triangulations.

Weighted ratio property. Let S be a periodic set
of points in R%. In other words, S = Sy + Z3 where
So C [0,1)® is finite and Z? is the three-dimensional
integer grid. For a point z € R? let N (z) be the distance
to the second closest point in S. If x € S then z itself
is closest and N(z) is the distance to the closest point
in S — {z}. The following result is Theorem 3.6.2 in
Talmor’s thesis [21]:



CLAM 6. Assume Del S has Ratio Property [go]. Then
there is a constant ¢y depending only on go such
that N(z) < er - N(z) for every empty sphere
(2, Z?) that passes through z.

We extracted cr = 64 - go2M° from Talmor’s thesis,
where M = max{200/sint,400}, ¢ = 2/(1 —cos %),
7 = (arcsin ﬁ) /2. We use Claim 6 to derive a property
for weighted Delaunay triangulations reminiscent of the
ratio property for Delaunay triangulations. A periodic
sphere set is defined by a weight assignment w : S5 — R.
As usual 2 = (2, Z?) denotes the orthosphere and L the
length of the shortest edge of a tetrahedron.

Cram 7. Assume Del S has Ratio Property [go] and
S has Weight Property [wp]. Then there exists a
constant g; depending only on gy and wy such that
Z/L < g, for every tetrahedron in Del S.

PrOOF. We establish the bound for the constant g; =
(1 + wo)er. Let 2 and L be orthosphere and shortest
edge length for a tetrahedron pgrs € Del S. Assume L =
|lp — ¢l|, which implies N(p) < L. Because all points of
S lie on or outside 2 we have N(z) > Z. Let z be a point
on the intersection of the two orthogonal spheres p and
2. By Weight Property [wo] we have ||z —p|| < wp -
N(p) < wg - L. Therefore N(z) < ||z —q|| < ||z — p|| +
[lp—q|| € (1 4+ wo) - L. Claim 6 implies

Z < N(z) < N(@)-er < (1+wer- L,

as stated.

Edge-length variation. For a graph G with vertices
and straight edges in R® we are interested in comparing
the length of edges. Specifically, we define the length
variation at a vertex p € G as

v(p,G) = max{(lp—qll/llp—ull},

where the maximum is taken over all edges pq,pu in
G. Our first result shows that triangles in the weighted
Delaunay triangulation inherit a constant upper bound
on the variation of their edge lengths from the Delaunay
triangulation.

CLAIM 8. If S has Weight Property [wo], Del S has
Ratio Property [go], and pgr € DelS then
lp—dall ~ llp—rll.

PRrROOF. We establish cg - |[p—gq|| < [[p—r| < Cs -
[lp—ql| for g = /1 —4we?/201 and Cs = 1/cg. The
length of an edge is at most twice the radius of the cir-
cumcircle, X, and by Claim 4 that radius is linearly
related to the radius of the orthocircle:

27
- <2X € ——.

By Claim 7 the length of pq is |[p—q|| > Z/o1. The
same bounds hold for ||p — r|| which implies the claimed
linear relation.

Edges forming small angles. If two edges pg and
pu share a common endpoint we denote the angle at
that endpoint as Zgpu. All angles between edges are
measured between 0 and 7. We show that a small an-
gle implies about equal length, and this is even true if
the two edges arise in two different weighted Delaunay
triangulations:

CLAIM 9. Assume Del S has Ratio Property [go], Sh
and S, have Weight Property [wo], and pq € Del S,
pu € Del S,. Then there is a constant 1o > 0 such
that Zgpu < no implies [|p — gl ~ [lp — ull-

PrOOF. We establish the implication for the constant

012 — Vo1 +we? —1/4
(/J02 + 1/4

1
e = B - arctan

and ¢ - [[p—dqll < [lp—ull < Co-[lp—dl for ¢o =
(1 —wo)/2 and Cg = 1/cyg. Let 2 = (2,Z?) be the
orthosphere of a tetrahedron that contains pq as one of
its edges. We cut Z with the plane that passes through

p,q,u and let § = (y,Y?) be the circles of intersection,
see Figure 8. Let k be the line passing through p and

Figure 8: The dotted circle is orthogonal to the two solid
ones. Edges with small angle § cannot be short.

tangent to g. By Claim 1, ¢ is orthogonal to the circles
at which the plane intersects p and §. All circles orthog-
onal to p and to ¢ meet pg in the same two points, see
the comment after Claim 1. The distance between these
two points is twice the radius of the smallest orthocircle.
By Weight Property [wo] that radius is

v

\Y
|
|
£
(=]
[V
S
|
=

Let a be the point on the circle ¢ so that ya intersects
pq in a right angle, see Figure 8. The intersection point



is the center v of the smallest circle orthogonal to p
and §. By Claim 7 we have Y < g1 - |[[p—q||- The
normal distance of a from pgis A = Y — /Y2 - V2
which assumes its minimum when Y is as large and V
is as small as possible. Therefore

1 —4&)02
oillp — gl - \/mzllp— al’ - —5—

= (o1 —vVoi?+wo?—1/4)-|lp—qll.

The angle at p between pg and line k is at least the angle
between pq and pa, which is

A

v

2
llp — gl

Zqpa = arctan

A
Y
01—/ Q12 4+ w2 — 1/4

wo? + 1/4

> arctan

because P2 < wo?-||p — ¢|* and V2 < ||p — ¢||*/4. Note
that the latter expression is twice the constant 7.

For each angle 0 < 6 < 21, let k(f) be the line
passing through p that forms an angle € with pgq, see
Figure 8. The line k(6) intersects § in two points and we
let u(A) be the point further from p. Finally, we define
£(0) = |lp —u(0)||. We have £(0) > (1 —wo) - [lp—ql|
and f(2n9) > 0. Since f is a concave function it follows
that f() is at least (1 — wg)/2 times the length of pq
for all 8 < ny. By assumption there is an angle 8 < g
so u(f) lies on the edge from p to u. The lower bound
of the linear relation follows:

1-— Wo
lp—ull > f(6) > —5—-llp—adll
The upper bound follows by a symmetric argument that
exchanges ¢ and u.

Weighted Delaunay edges. Miller et al. prove that
if Del S has Ratio Property [go] then there is a constant
upper bound on the length variation at every vertex [15].
We use Claim 7 to prove the same is true for the graph
of all possible weighted Delaunay edges. Let K = K (S)
be the union of all weighted Delaunay triangulations de-
fined by weight assignments w : S — R whose sphere
sets have Weight Property [wp]. Since K contains all
edges of the unweighted Delaunay triangulation it con-
nects every point p to the closest point ¢ € S and to
others. Let G be the graph of all edges in K.

CrAM 10. If Del S has Ratio Property [go] then there
is a constant vy > 0 such that v(p,G) < vy for
every vertex p € S.

PRrOOF. We establish the upper bound on length varia-
tion for the constant

(=) (=)
Vo = - ,
0 1 — wo 1 — 4wo?

where m = 2/(1 — cos ). The argument is based on
the two elementary geometry facts provided by Claims
8 and 9. Let ¥ be the sphere of directions centered at p.
We form a maximal packing of circular caps each with
angle 79/4. This means that if a is the center and b is a
point on the boundary of a cap then Zapb = n9/4. The
set of caps with the same centers and with radii 7y/2
covers Y. Since the area of each cap in the first set is
(1 —cos %2)/2 times the area of the sphere, the number
of caps is at most some constant m = 2/(1 — cos ).
The remainder of this proof uses the larger caps, which
cover X.

For each edge pq € K let the point ¢' € X be the radial
projection of ¢. Similarly, for each triangle pgr € K
consider the arc on X that is the radial projection of gr.
The points and arcs form a graph. Let pg be the longest
and pu the shortest edge with endpoint p. We walk in
the graph from ¢' to u'. This path leads from cap to
cap and we just record the sequence of caps visited. If
the path leaves a cap and returns to it later we ignore
the detour and record the cap only once. In the end we
have a sequence of at most m caps.

When we walk from point to point we track the length
of the corresponding edges. As long as we stay within
a single cap the length decreases at most by a factor
of (1 —wp)/2, see Claim 9. If we step from one cap
to the next the length decreases by at most a factor
of v/1 —4wy? /201, see Claim 8. The number of caps is
at most m so ||p — ul| > ||[p — q||/vo. The claim follows
because v(p,G) = [lp — qll/llp — ull < vo.

All Del S with Weight Property [wo] are subcomplexes
of K. Claim 10 thus implies that for all such weighted
Delaunay triangulations the length variation at every
vertex is bounded from above by the constant vyg.

Constant degree. The bound on the length variation
in Claim 10 implies that each vertex belongs to at most
a constant number of edges in K. A straightforward
volume argument suffices to establish this fact.

Cram 11. If Del S has Ratio Property [gg] then there
is a constant §p such that every vertex p € S be-
longs to at most dp edges in K.

PrROOF. We prove the claim for the constant dg =
(2v02 +1)3, where vy is the constant in Claim 10. Let pg
be the longest and pu the shortest edge with endpoint
p. Assume without loss of generality that |[p — u|| = 1.
Let r be a neighbor of p and s a neighbor of r. We
have ||p — r|| > 1 by assumption and ||r — s|| > 1/vg by
Claim 10. For each neighbor r of p let T’ be the open
ball with center r and radius 1/2v. The balls are pair-
wise disjoint and fit inside the ball I with center p and



radius ||p — ¢|| + 1/2vo. The volume of T is

47 1
I = —(|p- )3
T 3 (Ilp—qll + 21/0)
o A 2002 +1\°
- 3 21/0

= (2w +1)*- ||

In words, at most & = (2192 + 1)® neighbor balls fit
into I'. This implies that &g is an upper bound on the
number of neighbors of p.

6 Sliver Theorem

Sections 4 and 5 provide the technical prerequisites for
the proof of the main result of this paper, which is pre-
sented in this section.

Weight pumping idea. The main idea in the proof
of the Sliver Theorem is to assign a weight P? to each
point p € S so the weighted Delaunay triangulation is
free of slivers. To get Weight Property [wg] we choose
the weight of p in the interval W (p) = [0,wo®>N?(p)].
Given a sliver pgrs we use the pigeonhole principle to
show there is a weight P2 in W (p) so pgrs does not
belong to the weighted Delaunay triangulation. While
considering the tetrahedra around p we keep the weights
of g, r, s unchanged and exclude the sliver pgrs from the
triangulation merely by manipulating the weight of p.
To be specific consider the weight interval W (p) and
for each sliver pgrs mark the subinterval W, ; of weights
P? € W(p) for which pgrs belongs to the weighted De-
launay triangulation obtained by changing the weight of
p to P2, see Figure 9. We prove shortly that the length

—
— —
ot — —

W(p) | | : L

Figure 9: The subintervals cover all weights of p for which
the weighted Delaunay triangulation contains a sliver.

of the subintervals goes to zero as we lower the threshold
for slivers. We also prove that there is only a constant
number of subintervals to be considered. Hence we can
choose a positive constant threshold small enough so
W (p) is not covered by the subintervals. Any weight
P? € W(p) outside all subintervals will do.

Existence interval. For a tetrahedron pgrs consider
the orthocenter, z, as a function of the weight P2 of
p. We define H(P) as the signed distance of z from
the plane passing through g¢rs, see Figure 10. H(P) is

Figure 10: If the weights of ¢, r, s are fixed and the weight
of p varies then the orthocenter of the tetrahedron moves
on the normal line passing through the orthocenter of ¢rs.

positive if z and p lie on the same side and it is negative
if they lie on different sides of the plane. As usual, L is
the length of the shortest edge of pgrs.

Cram 12. If p, 4,7, 8 have Weight Property [wo] and
pqrs has Ratio Property [go] then there is a con-
stant ¢12 such that [—c12L, ¢12L] contains all values
of H(P) for which the orthosphere of pgrs is empty.

PrROOF. We establish c12 = /012 + wo? —1/4. The

square radius of the orthosphere is Z? = H(P)? + Y2,
which by Claim 7 is bounded from above by g12L?. The
radius of the circumcircle of ¢grs is X > L/2, and by
Claim 4 the radius of the orthocircleis Y > /1 — 4wg?2 -
X. Putting everything together we get
H(P)2 S leLz - (]. - 4w02) . X2
1 — 4w,?
< (02— TO) .12

as claimed.

Pumping motion. The bound on H(P)? is trans-
lated into a bound on the weight of p. For this purpose
we look at the motion of the orthocenter. Specifically,
we relate P? to the displacement of z along the line of
its motion, which we denote as ¢. As in Figure 7 the dis-
tance of p from the plane passing through grs is denoted

as D.
CLam 13.  H(P) = H(0) — £

PRrROOF. Let E be the distance of p from £. Then
Z? + P? = (H(P) — D)? + E?, see Figure 11. The
square radius of the orthosphere is Z2 = H(P)? + Y2
and therefore H(P)? = (H(P) — D)? + E> — P2 - Y2,
After canceling H(P)? we have

D2+ E2_-Y2 PpP?

2D 2D’

The first term on the right side is H(0) and the second
is the displacement of z if we change the weight of p
from 0 to P2.

H(PP) =



Figure 11: The orthocenter z moves down as the circle
around p grows.

Subinterval length. The goal is to show that the
subintervals of W (p) can be made as small as necessary.
Recall the notation related to the parametrization of
slivers introduced in Section 4.

CrAM 14. The length of the subinterval defined by
pgrs is |Wyes| < c-oY?2.

ProoF. The constant is ¢ = 8c¢j2/cs. By Claim 12
the tetrahedron pgrs belongs to the weighted Delaunay
triangulation only if —¢;2L < H(P) < e¢2L. Using
Claim 13 we get an interval for the weight of p:

2D - (—cioL + H(0)) < P2 < 2D - (cioL + H(0)).

This interval contains Wy, ;. To bound its length we use
L <2Y and D/Y < o/cs from Claim 5. Then

8
|qus| < 4c¢12 - DL < %
5

-oY?,

as claimed.

Finale. We have now all pieces together to state and
prove the main result of this paper, namely that there
are weight assignments whose weighted Delaunay trian-
gulations are free of slivers.

SLIVER THEOREM. Assume Del S has Ratio Property
[00]- Then there is a constant ¢ > 0 and a weight
assignment defining a set of spheres S with Weight
Property [wp] such that o > o for all tetrahedra
pqrs € Del S.

PRrROOF. We establish the result for the constant

Cs - (]. - 4w02) . CU()2
8c12 - 012102 - (2102 +1)%°

Jo

Let p € S and assume without loss of generality that the
distance to its closest neighbor in K is 1. The length
of its weight interval is therefore |W(p)| = wo?. Let
pqrs € K be a sliver, that is, a tetrahedron with o < oy.
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By Claim 14, it defines a subinterval of length |Wg,s| <
(8¢c12/cs) - oY2. By Claim 10, the edges pq, pr, ps have
length at most vy each. By Claim 7, the radius of the
orthosphere of pgrs is Z < g1 - vy. The radius of the
orthocircle of grs is at most Z, and by Claim 4, the
radius of the circumcircle is

< 4 < 9%
- \/1—4(/.)02 - \/1—40.)02.

The number of subintervals is at most the number of
tetrahedra in K that share p. By Claim 11 there are
at most &y edges sharing p, so there are fewer than dg>
such tetrahedra. Let I(p) be the part of W (p) covered
by subintervals defined by slivers. The total covered

length is
8¢
lI(p)] < ?12 aoY? - §o°
< 8c12 - 01%10% - (2v0° + 1)° .
Cs - (]. — 4w02)
< [W(p)l

We can therefore find a weight P2 € W (p)—1I(p). Every
tetrahedron pgrs € K compatible with the weight P2 of
p has o0 > 0¢. We repeat the argument for every point
p € S and obtain a weight assignment that satisfies the
claim.

We remark that the above proof is not circular al-
though at first sight it may appear that weight assign-
ments for different points can interact in complicated
ways. The next section discusses this issue in some de-
tail.

7 Algorithm

This section develops two versions of an algorithm that
eliminates slivers by weight assignment. The algorithm
assumes the points are distributed so the Delaunay tri-
angulation has Ratio Property [go]. The first version is
sequential, the second is parallel, and they both run in
asymptotically optimal time.

General strategy. The main step of the algorithm
assigns a real weight P? to every point p in the given set
S. This is done by processing the points in an arbitrary
sequence. When processing point p € S we compute
subintervals of W (p) and we choose P? € W (p) outside
all subintervals. The Sliver Theorem guarantees that
for a properly chosen constant oy such a weight exists.
After processing all points the weighted Delaunay tri-
angulation contains no tetrahedron with value of o less
than aop.

A critical issue is the apparent circularity of the algo-
rithm: the change of the weight of ¢ may alter some of



the subintervals for p if pq is an edge in K. If p precedes
q in the processing order then ¢ may readmit tetrahedra
around p that have been eliminated earlier by choice of
P2, There are two crucial observations that break the
circularity. The first is that the quality measure for
slivers is symmetric: o(pgrs) = o(gprs). The second is
that we only increase the weight of ¢ so each newly ad-
mitted tetrahedron has g as a vertex. For its own sake,
q chooses its weight to avoid all tetrahedra with o < oy.
As a consequence, any tetrahedron readmitted around
p has value of o at least og.

The key step is the construction of subintervals of
W (p). Recall that each subinterval corresponds to a
tetrahedron pgrs with measure o < gg. The Sliver The-
orem suggests we use the constant oy for which it proves
the subintervals do not cover W (p). In view of the mis-
erably pessimistic estimate of oy we follow a different
strategy. Consider all tetrahedra with vertex p, and for
each pgrs consider the unbounded rectangle

Rl]TS qus X [U(quS)7 +Oo)

in the P2 x o plane. The boundary of the union of
rectangles forms the skyline over W(p), see Figure 12.
The best choice for P? is the weight coordinate of a
highest point on the skyline.

W(p) | |

Figure 12: Each rectangle over W (p) covers the values of
the minimum ¢ around p that cannot be achieved if the
weight is chosen in the P2-interval of the rectangle.

Searching the skyline. The skyline is constructed
by considering all tetrahedra in weighted Delaunay tri-
angulations generated by varying the weight of p and
keeping all other weights fixed. At the time the algo-
rithm works on p € S it has already processed some of
the points. Let w : S — R be the current weight as-
sighment, and for every P? € W(p) let wp : S — R be
defined by

if u e S —{p},
ifu=np.

w(u
wp(u) = { wi)
Note t}lat wg = w. Let Sp correspond to wp. For
every Sp we are only interested in the set Tp C Del Sp
of tetrahedra that have p as a vertex. The skyline is
defined by the union of all Tp for P> € W(p). This
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union is computed by continuously increasing P? from 0
to its maximum, which is wo2N?(p). The set T changes
only at discrete moments:

0=P} <P!<...<Pl, <P!=w’N*(p).

Define T; = Tp for P? between Pf_l and Pl-z. In the
non-degenerate case the step from T;_; to T; consists of
a single flip operation [9, 17]. The sequence of flips is de-
termined using a priority queue storing T;. Each tetra-
hedron carries the time or weight when it is destroyed
by the weight increase, and P? is the earliest such time
of any tetrahedron in the priority queue. That tetrahe-
dron is removed from the priority queue and from the
weighted Delaunay triangulation, and new tetrahedra
are inserted. By Claim 11 the union of all sets Tp has
only constant cardinality so that processing the chang-
ing set costs only constant time in total. At any moment
P? the minimum ¢ value of any tetrahedron in Tp is the
height of the skyline above P2 € W (p).

To summarize, we now have a sequential algorithm
that takes time O(nlogn), where n is the number of
points in Sg. Recall that S = Sy + Z3 is periodic and so
is the Delaunay triangulation. Any one of a number of
published algorithms can be adapted to periodic sets in
a way so it touches only points in Sg. The adaptation
of the algorithm in [9] or in [11] takes time O(nlogn)
because the size of Del S in a period is O(n) by Claim
11. After constructing Del S we assign weights in time
O(n) as explained above. The construction of the cor-
responding weighted Delaunay triangulation is a side
effect of the weight assignment step.

Parallel algorithm. A parallel version of the algo-
rithm can be obtained by taking advantage of Claim
11, which asserts that vertices in K have constant
size neighborhoods. Recall that K is the union of all
weighted Delaunay triangulations, where the union is
taken over all weight assignments w : Sp — R whose
sphere sets have Weight Property [wg]. The degree of a
vertex p € K, denoted as d(p), is the number of edges
with endpoint p. By Claim 11, §(p) is bounded from
above by the constant §y. Hence K has a vertex color-
ing with g + 1 colors. Two vertices of the same color
share no tetrahedra in any of the weighted Delaunay
triangulations so the weight assignment algorithm can
be applied simultaneously. In other words, k processors
can assign weights to the points of one color class in
parallel and achieve optimal speed-up.

To summarize we now have a parallel algorithm that
takes time O(nlogn/k) for k = O(n) processors. The
first step constructs the graph of all edges in K using
the randomized algorithm of Frieze, Miller and Teng
[11]. As in the sequential case this algorithm needs to
be adapted to periodic point sets, which is not difficult.
The graph is then colored with a constant number of



colors. The final two steps are the same as for the se-
quential algorithm except that the coloring is used to
parallelize both the construction of the initial Delaunay
triangulation and the weight assignment.

8 Discussion

This paper shows that if the Delaunay triangulation of
a periodic point set in R® has Ratio Property [go] then
slivers can be removed by assigning small real weights to
the points. In other words, Ratio Property [go] implies
the existence of a weighted Delaunay triangulation with-
out any badly shaped tetrahedron. This complements
the implication in the other direction proved by Tal-
mor [21] and thus establishes the equivalence of Ratio
Property [go] and the existence of triangulations with-
out badly shaped tetrahedra.

Experiments. The technical statement of our result
involves a positive constant oy that tells slivers from
other tetrahedra. For practical purposes a large og is
desirable. The estimate for oy provided by the Sliver
Theorem is miserably tiny, and it will be important to
implement the algorithm and collect empirical estimates
from computational experiments. The primary goal is
to gain insight into how big a constant oy we can expect
in practical cases and how gy depends on gy and on wy.

The sequential algorithm uses an ordering of the ver-
tices and it would be interesting to know whether some
orderings perform better than others. The worst-first
ordering suggests itself, but it is not clear that it yields
higher values of o¢ than a random ordering.

Boundary effects. Until now we avoided any men-
tion of boundary effects. Applications usually triangu-
late bounded and non-convex domains 2 C R? given in
terms of their boundary represented by a 2-dimensional
complex B. If we choose a finite set S C Q we can
construct Del S and remove simplices outside 2. This
works fine as long as Del S conforms to B, by which we
mean that Del S contains a 2-dimensional subcomplex
that subdivides B. However, finding a set S so its De-
launay triangulation conforms to a given 2-dimensional
complex is a difficult problem in general. Edelsbrunner
and Tan [10] describe a polynomial solution to the 2-
dimensional version of the problem, but at this time
there is no such solution available in R®. Heuristic
strategies that add points on B dense enough to force
boundary conformity seem to work in practice and are
described in the applied literature. The algorithm de-
scribed in Section 7 works fine even for triangulations
of non-convex domains, and it can remove slivers inside
and outside Q. Occasionally, the change of a weight
will challenge the conformity of the weighted Delaunay
triangulation, and additional points will have to placed
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to reinforce the boundary. It would be interesting to
formulate conditions on the boundary triangulation un-
der which the algorithm is guaranteed not to affect the
boundary.
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