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Abstract

A sliver is a tetrahedron whose four vertices lie close to a
plane and whose perpendicular projection to that plane
is a convex quadrilateral with no short edge. Slivers
are both undesirable and ubiquitous in 3-dimensional
Delaunay triangulations. Even when the point-set is
well-spaced, slivers may result. This paper shows that
such a point set permits a small perturbation whose
Delaunay triangulation contains no slivers. It also gives
deterministic algorithms that compute the perturbation
of n points in time O(n logn) with one processor and in
time O(logn) with O(n) processors.
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1 Introduction

This paper presents a smoothing and clean-up algorithm
for 3-dimensional Delaunay triangulations that removes
all slivers. A necessary assumption of the algorithm is
that the input triangles and tetrahedra have a bounded
circumradius to shortest edge length ratio.

Mesh generation. A mesh of a geometric domain is
a decomposition into primitive pieces called elements.
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The generation of meshes has a wide range of applica-
tions in physical simulation, computer graphics, com-
puter vision, geographic information systems, and else-
where. In this paper we consider meshes that decom-
pose domains in R® into tetrahedra.

The size and shape of the triangles and tetrahedra
in the mesh are important because they influence the
convergence and stability of numerical algorithms such
as the finite element method [4, 13]. Given a constant
0o > 0, we say a triangle or tetrahedron has the Ratio
Property [go] if its circumradius divided by the length
of its shortest edge does not exceed gg. If the constant
is either not important or clear from the context we
will drop g¢ from the notation. A mesh has the Ratio
Property if all its triangles and tetrahedra have it, and
a point set S has the Ratio Property if its Delaunay
triangulation has it.

The most common tetrahedral meshes are Delaunay
triangulations. Given a finite set S C R® in general po-
sition, the Delaunay triangulation is the unique trian-
gulation Del S that contains a tetrahedron iff all points
other than the vertices of the tetrahedron lie outside the
circumsphere of the tetrahedron. Fast algorithms for
constructing Delaunay triangulations can be found in
textbooks of computational geometry, for example [5].
Algorithms that maintain Delaunay triangulations un-
der point insertions until the mesh has the Ratio Prop-
erty [go] are given in [10, 11, 12].

Previous work. The ubiquity of slivers in 3-
dimensional Delaunay triangulations has been docu-
mented in Cavendish, Field and Frey [1]. Eliminating
slivers seems difficult though, and most meshing algo-
rithms based on Delaunay triangulations can generate
the Ratio Property but cannot guarantee the absence of
slivers. Talmor [14] notes that even well-spaced points
do not prevent slivers.

The first positive result on slivers was an algorithm
by Chew [3] that eliminates slivers by adding new points
to generate a uniformly dense mesh. In a recent break-
through, Cheng et al. [2] showed how to assign weights



to the points so that the weighted Delaunay triangula-
tion is free of slivers without adding new points. Similar
to the method in this paper, their algorithm assumes
that the input data has the Ratio Property [0o].

The work in this paper is related to techniques that
improve the quality of a mesh in a post-processing oper-
ation. The recently adopted terminology in mesh gen-
eration refers to such an operation as smoothing if only
the embedding of the mesh is affected, and as clean-up if
the mesh is altered through local changes in the connec-
tivity. Among the most popular smoothing techniques
are Laplacian [6] and optimization-based smoothing [7].
Clean-up operations are usually coupled with smoothing
techniques [8].

Results. The main result of this paper is a mesh
smoothing and clean-up algorithm that eliminates sliv-
ers without adding new points. Most slivers disappear
after a mild perturbation of the point set. The remain-
ing slivers migrate to the boundary where they can be
peeled off or can be treated with boundary enforcement
heuristics. As in [2] we consider periodic sets of the form
S = So+7Z3, where Sy C [0,1)? is a set of n points in the
half-open unit cube. The algorithm assumes the input
Delaunay triangulation has the Ratio Property [go] for
a constant gy > 0. The algorithm achieves the improve-
ment in time O(nlogn) with a single processor and in
time O(logn) with O(nlogn) processors. The mathe-
matical derivations needed to prove the algorithm cor-
rect owe their inspiration to the sliver exudation work
of Cheng et al. [2]. The algorithm in this paper and its
proof provide theoretical backing for the experimental
observation that mesh smoothing combined with clean-
up gives better results than either technique by itself

[8).

Outline. Section 2 introduces perturbations and
proves basic geometric results. Section 3 prepares the
proof of the Sliver Theorem, which is presented in Sec-
tion 4. Section 5 presents the algorithm that removes
slivers by perturbing the points. Section 6 concludes
the paper.

2 Preliminaries

This section introduces perturbations and shows that
many geometric properties are preserved after a mild
perturbation.

Linear relations. We adopt the notation of [2] and
call two real quantities X and Y linearly related, de-
noted as X ~ Y if there are constants ¢, C > 0 with
cX <Y <(CX.

For a sample application of this concept consider a
tetrahedron pgrs. Denote the volume of pgrs by V and

the length of the shortest edge by L. We use, as in [2],
o =o(pgrs) = % as a measure of shape quality of pgrs.
Many types of tetrahedra can have small value of o, but
only slivers can simultaneously have the Ratio Property
and a small value of ¢. It is useful to relate this measure
of shape quality with a distance to radius ratio defined
for pgrs. Let D be the distance of point p to the plane
passing through qrs, and let Y be the circumradius of
grs. Figure 1 illustrates these definitions. As proved

Figure 1: Y is the radius of the circle passing through
q,r,s and D is the distance of p from the plane of that
circle.

in [2], we have 12 < o0 < C12 for ¢; = 1/9603 and
C1 = w03 /3. We state this result for later reference.
QuALITY LEMMA. If pgrs has the Ratio Property then
D
Yy~ ag.

Observe that the ratio % depends on the ordering of

the vertices, and more specifically on which vertex is
ordered first. The Quality Lemma implies that all four
possible ratios are linearly related to ¢ and therefore to
each other.

Perturbation. Let S be a set of n points in R3. A
perturbation is a function ' : S — R3. We denote the
image of S by S’ and the image of a point p € S by
p'. The effect of a perturbation on S is quantified us-
ing a function N = Ng : R?> — R that maps every point
z € R3 to the distance from z to the second closest point
in S. For example, if € S then the smallest distance
is zero and N (z) = Ng(z) is the distance to the nearest
neighbor. Note that NN is continuous and Lipschitz with
constant one, that is, |N(z) =N (y)| < ||z — y||- The im-
pact of the perturbation is the smallest real number ¢
such that ||[p—p'|| < ¢N(p) for every p € S. It follows
that the sphere of radius ¢ N(p) around p contains p'.
In this paper we only consider mild perturbations with
impact at most some constant ¢y < % For mild per-
turbations, the spheres around the points are pairwise
disjoint.

The distances between two points before and after a
mild perturbation are linearly related. More precisely,
cllp—dll < [Ip' = d'll < Collp— gl with ¢ =1 — 2¢o
and Cy = 14+2¢py. It is easy to prove these bounds as we
may assume that the two points are the nearest neigh-
bors of each other, that is, N(p) = N(q) = ||p — q||- We
state this result for later reference.



DISTANCE LEMMA. If S’ is the image of a mild pertur-
bation of S then ||p — ¢|| ~ ||[p' — ¢'|| for all p,q € S.

Consider the function N’ = Ng that maps every 2 € R?
to the distance from z to the second closest point in S’.
For mild perturbations, N and N’ are linearly related.

N LeEmMMaA. If S’ is the image of a mild perturbation of
S then N'(z) ~ N(z) for every x € R3.

ProoOF. We establish c3N(z) < N'(z) < C3N(z) for
constants ¢ = 1 —2¢pg and C5 = 14 2. By definition
of mildness,

le—p'[ > [lz—pll—woN(p)

for each p € S. Using the Lipschitz property we get
N(p) < N(z) + ||z — p|| and therefore

(1= wo)llz = pll = poN (z).

We have ||z — p|| > N(z) except if p is closest to z, and
therefore ||z — p'|| > (1—2¢¢)N(z) for all points p other
than the closest. This establishes the lower bound. A
symmetric argument proves the claimed upper bound.

lz -2l >

3 Ratio, Length, Degree

This section recalls a result of Talmor [14] and uses it
to extend a result of Miller et al [11] from Delaunay
triangulations to complexes formed by taking unions of
Delaunay triangulations.

Gap Property. It is convenient to denote a sphere
with center z € R® and radius Z € R by the pair (z, Z).
We call a sphere empty of points in § if it encloses none
of the points of S. In other words, every point of S
either lies on or outside the sphere. Given a constant
~0, we say S has the Gap Property [yo] if every empty
sphere has readius at most vo N (), where z is any point
on the sphere. We prove that perturbations with small
impact preserve the Gap Property. Specifically, we de-
fine 1 = 1/(4v0 +2) and restrict ourselves to very mild
perturbations whose impact is ¢ < ¢1.

GAP PRESERVATION LEMMA. If S has the Gap Prop-
erty [yo] and S’ is the image of a very mild pertur-
bation then there is a constant 4§ depending only
on v such that S’ has the Gap Property [v§].

PROOF. Let z be a point and (z,Z) a sphere passing
through z that is empty of points in S’. We prove below
that Z < yyN'(z), for v{ = 2v0 + 2 + 1/27y. Figure 2
illustrates the argument which follows.

We may assume that Z > N(z). Then the line seg-
ment from z to z intersects the sphere (z, N(x)) in a

Figure 2: The solid spheres are empty of points in S and
the dashed sphere is empty of points in S’.

point, which we denote as y. Let 2% denote the half-
line that starts at z and passes through z, and let the
point uw € £z be furthest from x with the property
that the sphere (u,U = ||u —y||) is empty of points
in S. Since S has the Gap Property [yo], we have
U < 7N (y), and because of the Lipschitz property we
have voN(y) < 2799N(z). Let p € S be a point on the
sphere (u,U). Since p and y both lie on this sphere we
have ||p — y|| < 2U < 4vN(z), and therefore

N(p) N(z) + [lp — =]

2N(z) + llp -yl

(4v0 + 2)N(z)

N(z)/p1-

The distance between p and its perturbed image p' is
therefore at most N(z). But since p' lies on or outside
(z,Z) by assumption, the radius of the sphere around
wis U > ||z — y||- This implies Z < U + N(z), and by
the N Lemma,

IANIN IA

Z < (2% +1)N(2)
2 1
< TN ()
1- 2Q01
1
< (2v%+2+ —)N'(z),
(270 +2+ 3 N'(2)
which proves the claim.

Ratio Property. Talmor proves that if S has the Ra-
tio Property [go] then there is a constant 7o depending
only on gg such that S has the Gap Property [yo]. The
bound on the constant 7o is rather pessimistic but it
exists. Symmetrically, Talmor proves that if S’ has the
Gap Property [y)] then there is a constant gf depend-
ing only on ~y§ such that S’ has the Ratio Property [of].
In short, a finite set has the Ratio Property iff it has
the Gap Property. Together with the Gap Preservation
Lemma this implies that very mild perturbations also
preserve the Ratio Property.



RATIO PRESERVATION LEMMA. If S has the Ratio
Property [go] and S’ is the image of a very mild
perturbation then there is a constant gf depending
only on gg such that S’ has the Ratio Property [gp]-

Union of triangulations. Next we consider a simpli-
cial complex K obtained by mapping the Delaunay tri-
angulation of very mild perturbations back to S. Specif-
ically, a tetrahedron pgrs belongs to K if there is a very
mild perturbation such that p'q'r's’ is a tetrahedron in
the Delaunay triangulation of S’. The complex K fur-
thermore contains all triangles, edges, vertices of these
tetrahedra.

Miller et al. [11] prove that if S has the Ratio Property
[00] then the length of edges sharing a common vertex
is bounded from above by some constant vy depending
only on go: ||p — gl|/[lp — ul| < vo for all edges pg, pu in
Del S. We show that the same is true for the edges in
K, but for a possibly different constant v;.

LENGTH VARIATION LEMMA. If S has the Ratio Prop-
erty [0o] then there exists a constant v; depending
only on gg and ¢; such that ||p —ql|/|lp —ul| < ni
for all edges pq,pu in K.

ProoOF. We prove the claim for vy = v/ - }fg;’;i, where

v is the constant bound on the length variation for a
point set S’ that has the Ratio Property [gp].

We simplify the argument by assuming the distance
between p and its nearest neighbor in S is N(p) = 1.
The Distance Lemma implies 1 — 2p; < N'(p') <1+
2¢1. N'(p') is also the length of the shortest edge with
endpoint p' in Del S’. The Ratio Preservation Lemma
implies that S’ has the Ratio Property [g§], so there
exists a constant upper bound v on the length variation
around p’. The length of the longest edge with endpoint
p' in Del S’ is [|p) —v'|| < v§(1 + 2¢1). The length of

the corresponding edge in Del S is ||p — v|| < v} - }fgii,
which proves the claimed upper bound.

A volume argument can now be used to prove an up-
per bound on the degree of vertices in K.

DEGREE LEMMA. If S has the Ratio Property [go] then
there exists a constant §; such that every vertex
belongs to at most &; edges in K.

Specifically, [2, 11] prove that the vertex degree is
bounded from above by §; = (2v2 + 1)3. As a con-
sequence of the Degree Lemma, each vertex belongs to
at most a constant number of tetrahedra in K.

4 Sliver Theorem

Sections 2 and 3 provide the technical prerequisites for
the proof of the Sliver Theorem II, which motivates the

algorithm for sliver removal presented in Section 5. We
begin by studying conditions under which a perturba-
tion creates slivers.

Circles and Tori. Let (z,Z) be the circumsphere of
a tetrahedron pgrs and let (y,Y) be the circumcircle of
the triangle grs. If pgrs has the Ratio Property [go] then
Z[200 <Y < Z. Call pgrs a sliver if o(pgrs) = % <
09, where g9 > 0 is a constant that we specify later. We
now prove that if pgrs is a sliver, then the distance P
from p to the closest point on the circle (y,Y) cannot
be large.

Torus LEMMA. If pgrs is a sliver and has the Ratio
Property [go] then there exists a constant Cy such
that P S C4(70Z.

PROOF. We prove the claim for Cy = 22, where ¢ =

1—4/1 — 1/402, which is a positive constant less than 1.

Let H be the distance from z to the plane of ¢rs, and let

a be the angle between gy and ¢z, as shown in Figure 3.

Then Y = Z cosa, which implies cosa = % > ﬁ. We

also have H = Zsina < Z(1 — ¢). Next consider p and

Figure 3: The circumsphere (z,Z) of pgrs and the cir-
cumcircle (y,Y) of grs projected along a direction in the
plane of grs.

its closest point x on the plane of ¢rs. By the Quality
Lemma, the distance from p to z is D < 0¢Y/cy. Let Q
bet the distance from zx to its closest point on the circle
(y,Y). We have § > Z5fL > Z21L > ¢ The distance
from p to its closest point on (y,Y") is therefore

P < D+@Q < D(1+1),
C

which proves the claim.

Forbidden regions. Keeping q,r, s fixed, the forbid-
den region F,., is the set of points p such that pgrs is
a sliver and has the Ratio Property [gp]. By the Torus
Lemma, F,, is contained in the solid torus of points at
distance at most P from the circle (y,Y"), as illustrated
in Figure 4. The volume of that torus is the perimeter



Figure 4: Every triangle grs that forms a tetrahedron with
p defines a forbidden region inside a torus of points around
the circumcircle of grs.

of the circle times the area of the sweeping disk, which
is 27Y - TP2.

FORBIDDEN VOLUME LEMMA. If pgrs has the Ratio
Property [0o] then there is a constant Cs that de-
pends only on gg such that the volume of the for-
bidden region F, is at most CsN3(p).

PRrROOF. We prove the claim for C5 = 2n2CZ0303v3.
The Torus Lemma implies that the volume of Fy,, is

V < 2aY-nP?
< 2r’CioiZ3.

Let L be the length of the shortest among the edges
pq,pr,ps. The Length Variation Lemma implies L <
11 N(p), and the Ratio Property implies Z < goL <
oov1 N(p). The claimed upper bound on the volume
follows.

Existence. It remains to put all pieces together and
prove the existence of a very mild perturbation that
removes all slivers. The number IT differentiates the
following result from the theorem with the same name
in [2].

SLIVER THEOREM II. If S has the Ratio Property [go]
then there is a constant o9 > 0 and a very mild per-
turbation with o > oq for all tetrahedra in Del S'.

PROOF. We establish the result for the constant

_ 2 PL_\3
% = 37‘[’02(@01/161) ’

We determine the image of each point in some fixed but
arbitrary sequence. While considering p € S, we keep
the locations of all other points fixed. The image p' of
p is chosen inside the sphere with center p and radius
¢1N(p) and outside the forbidden regions F,; for all
triangles grs that form a tetrahedron with p in K. To

Figure 5: The forbidden regions of p do not cover the
entire inside of the ball of possible images p'.

prove that such a point exists, we show that the inside
of the sphere is not covered by the forbidden regions, as
suggested by Figure 5. This is done by comparing the
volume of that inside with the sum of volumes of the for-
bidden regions. By the Forbidden Volume Lemma, each
triangle grs defines a forbidden region with volume at
most C5N3(p). The Degree Lemma implies that there
are fewer than &} triangles grs. The volume covered by
the forbidden regions is therefore less than &§;CsN3(p).
With og as defined above, this is less than the volume
of the inside of the sphere, which is 4F - o3 N3(p).

5 Algorithm

The proof of the Sliver Theorem II is constructive and
implies an algorithm that computes the perturbation
whose existence is asserted by the theorem. That al-
gorithm assumes the set S = Sy + Z* has the Ratio
Property [go]. It consists of three steps:

1. computing the union complex K of S,
2. perturbing the points in Sp to get S’ = Sj + Z3,
3. constructing the Delaunay triangulation of S'.

Since S contains infinitely many points, we can of course
not compute K explicitly, but we can compute a piece
that determines the rest by translation along integer
vectors. The same applies to computing the Delaunay
triangulation of S’.

Computing K is difficult, but we can efficiently con-
struct a complex K’ that contains K as a subcomplex.
For every point p € S, the new complex K' contains all
edges, triangles, and tetrahedra that connect p with all
points ¢ € S at distance at most v1 N(p) from p. The
Length Variation Lemma implies K C K'. The volume
argument, proving the Degree Lemma still applies and
proves a constant upper bound on the maximum ver-
tex degree in K'. Each tetrahedron sharing p defines a



forbidden region, which we represent by the containing
torus described in the Torus Lemma. Since there is only
a constant number of tori, we can find in constant time
a point p’ inside the sphere with center p and radius
p1 N (p) and outside all tori.

Using the divide-and-conquer algorithm in [9], the
complex K' for n points can be computed in time
O(nlogn) with one processor and in time O("I‘;CJ) with
k < n processors. The single processor version implies
an O(nlogn) time implementation of the entire algo-
rithm. For the parallel version, we also need to perturb
the points in parallel. This can be done by coloring the
vertices of K' with a constant number of colors such
that no two adjacent vertices receive the same color.
A whole color class of points is then perturbed concur-
rently, which leads to a parallel implementation of the

algorithm that runs in time O("l‘,’ci) using k < n pro-
Cessors.

The algorithm sketched above is probably too com-
plicated to have any practical relevance. To simplify,
we would have to eliminate Step 1, as in the weight
assignment algorithm of [2]. There is however a subtle
difference between increasing the weight of a point p and
moving p to a new location p': in the former case all new
simplices share p while in the latter case the motion may
create tetrahedra connecting vertices all different from
p. Moving p might introduce a sliver connecting other
points, and if these other points are already perturbed
images of original points, then we need to backtrack
to repair the damage, which takes time. We leave the
formulation of an efficient deterministic algorithm that
avoids the construction of K as an open question.

6 Discussion

Inspired by the sliver exudation method in [2], this pa-
per shows that slivers in a 3-dimensional Delaunay tri-
angulation with the Ratio Property can be removed by
a small perturbation of the points. One serious draw-
back of the current result are the pessimistic estimates
of the constants used to express it. These constants are
either too large or too small for the results to have any
practical significance. The most serious deterioration of
the constant estimates happens in the transition from
the Ratio Property to the degree bound in the Degree
Lemma. It might be worthwhile to design algorithms
that permit a direct analysis of vertex degrees. An ex-
ample of such an algorithm is the biting method of Li et
al. [10], which produces a mesh from a sphere covering.
Alternatively, we may gain insights by experimenting
with an implementation of the algorithm and measuring
its average and worst-case performance. Another draw-
back is that the result holds only sufficiently far from
the domain boundary, if any. It would be interesting
to extend the method to include possibly constrained

perturbations of points on the boundary of a meshed
domain.
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