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Abstract

We present results on a two-step improvement of mesh
quality in three-dimensional Delaunay triangulations.
The first step refines the triangulation by inserting sinks
and eliminates tetrahedra with large circumradius over
shortest edge length ratio. The second step assigns
weights to the vertices to eliminate slivers. Our ex-
perimental findings provide evidence for the practical
effectiveness of sliver exudation.

Keywords. Mesh generation, tetrahedra, weighted Delau-
nay triangulations, mesh quality, slivers, dynamic triangula-
tion, computer experiments.

1 Introduction

This paper is generally about improving the mesh qual-
ity of three-dimensional Delaunay triangulations and
specifically about the practical effectiveness of sliver ex-
udation as a method to eliminate flat tetrahedra. We
implement published algorithms and study them exper-
imentally, focusing on mesh quality.

Meshing. A mesh of a three-dimensional domain is a
decomposition into simple pieces, called elements. We
consider Delaunay triangulations, which decompose the
domain into tetrahedral elements. One of the distin-
guishing properties of Delaunay versus other triangula-
tions is that they are determined by the set of vertices
sampled from the domain. Another is that they have
fast and reliable algorithms that make the construction
of large and complicated meshes possible. There is an
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extensive literature studying three-dimensional Delau-
nay triangulations; see for example the recent text by
Edelsbrunner [4].

Since the Delaunay triangulation is unique for a given
set of vertices, the problem of constructing a good qual-
ity mesh reduces to choosing vertices for which the De-
launay tetrahedra have good quality. In a nutshell this
means that all angles are in the intermediate range,
avoiding small and large values. The Delaunay refine-
ment algorithm pioneered by Ruppert [10] in two di-
mensions makes use of this reduction by adding ver-
tices incrementally. Shewchuck [11] extends Ruppert’s
algorithm to three dimensions and reports good success
by generally adding vertices at circumcenters of poor
quality tetrahedra. The authors of this paper limit the
choice of new vertices to sinks, which are special cir-
cumcenters [5]. The thus modified refinement method
is used as the first step of the mesh improvement algo-
rithm studied in this paper.

Slivers. The main shortcoming of the Delaunay re-
finement algorithm in three dimensions is its inability
to remove slivers, which are rather flat tetrahedra with
relatively small circumspheres. The persistent presence
of slivers in large Delaunay triangulations has been ob-
served experimentally at least as early as 1985 [1], but
effective methods dealing with them have been found
only recently [2, 3, 6, 9]. This paper implements the
sliver exudation algorithm of Cheng et al. and studies
its effectiveness in practice. The question in focus is
how large a minimum dihedral angle this method can
achieve. The positive lower bound proved in [2] is con-
servative and exceedingly small, and this paper confirms
our intuition that the lower bound that can be achieved
in practice is reasonably large, which makes the sliver
exudation algorithm a viable method in practice.

Our experimental results are, however, inconclusive
for tetrahedra near the mesh boundary. The reason is a
fundamental weakness of the sliver exudation method.
Boundary treatment methods such as the one described
by Li and Teng [9] will have to be added in the fu-



ture to get software that guarantees good mesh quality
throughout the domain.

Outline. Section 2 reviews background material on
Delaunay triangulations and mesh quality. Section 3 de-
scribes weighted Delaunay triangulations and the sliver
exudation algorithm. Section 4 presents our experimen-
tal results for five three-dimensional data sets. Section
5 concludes the paper.

2 Delaunay Refinement

In this section, we review the material necessary to un-
derstand the first step of our mesh improvement, the
Delaunay refinement through sink-insertion. We refer
to the experimental study in [5] for details.

Delaunay triangulations. Given a finite set S of
points in R®, the Delaunay triangulation consists of a
subset of the tetrahedra spanned by the points. We call
the circumsphere of such a tetrahedron empty all points
other than the vertices of that tetrahedron lie outside
the sphere. The Delaunay triangulation consists exactly
of all tetrahedra with empty circumspheres. In the gen-
eral case, in which no five points lie on a common sphere,
the Delaunay triangulation is unambiguous and has the
face-to-face property. In degenerate cases, we construct
a triangulation that is the Delaunay triangulation of an
infinitesimal perturbation of the point set [7].
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Figure 1: Delaunay triangulation in two dimensions with
triangles outside the two boundary curves removed.

The above definition does not mention any kind of
boundary for the domain we mesh. We deal with this
problem by constructing conforming Delaunay triangu-
lations that contain a specified two-dimensional triangu-
lation of the domain boundary as a subcomplex. This

is achieved by making sure that no vertices lie inside
the equator spheres of the boundary triangles. We then
remove the tetrahedra outside that boundary and thus
obtain a triangulation of the domain. The property of
having empty equator spheres of boundary triangles is
maintained throughout the mesh improvement process.
Figure 1 illustrates the idea with an example in two di-
mensions, where the Delaunay triangulation consists of
all triangles with empty circumcircles, and the bound-
ary edges are protected by empty diameter circles.

Mesh quality. We use the classification of tetrahedra
introduced in [2]. It distinguishes poor quality tetrahe-
dra with small Hausdorff distance to a line segment from
those with small Hausdorff distance to a planar figure.
Among the latter, we distinguish tetrahedra with small
Hausdorff distance to a triangle from slivers, which have
small Hausdorff distance to a quadrangle. A refinement
of this classification into nine smaller classes is shown
in Figure 2. We keep in mind that the classification
is fuzzy and depends for example on what exactly we
mean by small Hausdorff distance.

spire spear spindle spike splinter
wedge spade cap dliver

Figure 2: A classification of poor quality tetrahedra into
nine classes.

We use two measures to quantify what we mean by
the quality of a tetrahedron. The first is the ratio of the
circumradius over the shortest edge length, r/£. The
regular tetrahedron has the smallest possible ratio of
r/€ = /6/4 = 0.612.... The first eight types of tetra-
hedra in Figure 2 have large ratio, but slivers may have
ratios as small as v/2/2 = 0.707... or slightly smaller.
The second measure is the minimum dihedral angle, (.
The regular tetrahedron maximizes the minimum dihe-
dral angle at ( = arccos% = 70.528...°. Spires, spears,
and spindles may have reasonably large value of ¢, but



the remaining six types necessarily have small dihedral
angles. Figure 3 illustrates the regions of the various
types of tetrahedra in the ratio-angle plane. The region
near the upper left corner contains what we call good
quality tetrahedra. Tetrahedra that are not in this re-
gion are identified by large ratio, small angle, or both.

70.528..° +
60° +

spires, spears and spindels

GOOD

wedges, spikes and
spadesand caps  splinters

sl i vers.

r/l

0.612... +
0.707... 1

Figure 3: Each tetrahedron is plotted as a point in the ratio-
angle plane. In contrast to other low quality tetrahedra,
slivers reach the left boundary of the region.

Sink-insertion. The basic idea of the Delaunay re-
finement algorithm is to identify a tetrahedron with
large ratio and add its circumcenter to the vertex set.
The empty sphere criterion implies that this tetrahe-

Figure 4: In two dimensions, the (white) sinks are circum-
centers of (dark) non-obtuse Delaunay triangles.

dron is removed as part of the vertex-insertion. As sug-
gested in [5], we modify the general strategy slightly and
limit the added vertices to sinks, which are circumcen-
ters that are contained inside their own Delaunay tetra-
hedra. Figure 4 illustrate the definition by showing the
sinks in a two-dimensional Delaunay triangulation. The

effect of Delaunay refinement by sink-insertion can be
seen by comparing Figure 4 before with Figure 1 after
refinement through iterative sink-insertion. Near the
boundary, the refinement strategy has to be modified
to preserve the protecting equator spheres of boundary
triangles. There are different options and we decide to
keep the boundary untouched by prohibiting new ver-
tices inside the equator spheres.

3 Sliver Exudation

The Delaunay refinement algorithm removes all poor
quality tetrahedra, except slivers. The second step of
our mesh improvement method removes slivers by sliver
exudation as described in [2]. This section provides the
necessary background, most importantly the generaliza-
tion of Delaunay to weighted Delaunay triangulations.

Weighted Delaunay triangulations. The general-
ization replaces the Euclidean distance by more general
distance functions. We assign to each vertex u a weight
U? € R and define the weighted distance between (u,U)
and (2, Z) as ||lu — z||* — (U2 + Z?). For zero weights, the
weighted distance is the Euclidean distance. Note that
the weighted distance does not change if we increase the
weight of one vertex and decrease the weight of the other
by the same amount. A crucial idea is the interpreta-
tion of (u,U) as the sphere with center u and radius U.
Two spheres are orthogonal of their weighted distance
is zero. Observe that two orthogonal spheres intersect
in a circle and have perpendicular tangent planes along
this circle. If one of the spheres is only a point then
it lies on the other sphere. It follows that the circum-
sphere of a tetrahedron is the unique sphere orthogonal
to the four vertices. If we assign weights to the vertices
then we still have a unique orthogonal sphere, known as
the orthosphere of the tetrahedron. Figure 5 illustrates
this idea in two dimensions, where we have a unique
orthocircle for any three circles. It also illustrates the
fact that if we increase the weights of the three circles,
each by the same amount, then the orthocircle retains
the same center but its weight decreases by the same
amount.

Given a set of spheres, we call the orthosphere of four
empty if all other spheres have positive weighted dis-
tance. The weighted Delaunay triangulation of the set
consists of all tetrahedra spanned by the centers that
have empty orthospheres. For the special case of zero
weights, this is the same as the unweighted Delaunay
triangulation. If all spheres have the same but possibly
non-zero radius then the weighted Delaunay triangula-
tion is the same as the unweighted one for the centers,
and we may apply the weight exchange mechanism be-
tween spheres and orthospheres to prove it. Similar to



Figure 5: The dotted orthocircle shrinks as the solid circles
grow. Note that increasing two weights by the same amount
is generally not the same as increasing two radii the same
amount.

the unweighted case, the weighted Delaunay triangula-
tion is unambiguous if the spheres are in general posi-
tion, which includes that no five spheres have a common
orthosphere.

Weight pumping. Consider a vertex u in a weighted
Delaunay triangulation. Its star consists of all tetrahe-
dra that contain u as a vertex. By construction, these
tetrahedra all have empty orthospheres. If we contin-
uously increase the weight of u, as shown in Figure 6,
these orthospheres are pushed away from u invading the
space outside the original orthospheres. At discrete mo-

Figure 6: The dotted orthocircles of the triangles in the star
of u are pushed away from u as its weight increases.

ments in time, the weighted distance between an invad-
ing orthosphere and a sphere in the set vanishes. We
say the weight of v at that time is critical. To pre-
vent the weighted distance to become negative, we lo-
cally change the triangulation by a flip, which replaces
two by three tetrahedra that occupy the same space, or
vice versa. We refer to [8] for details on maintaining a
weighted Delaunay triangulation by flipping. We may
compute the the critical weights of u in increasing or-
der by breadth-first search using a priority queue. At
any moment during the process, the prestar of u con-
sists of all tetrahedra in the initial weighted Delaunay

triangulation whose weighted distances to u are nega-
tive. Between critical weights, the new triangulation is
obtained by substituting the current star for the prestar
of u. We call the above process pumping p.

Let d,, be the minimum Euclidean distance between u
and any other vertex in the triangulation. The sliver ex-
udation algorithm pumps p to a weight that maximizes
the minimum dihedral angle ¢ of any tetrahedron in the
star, but it does not expand the radius beyond 0.45-d,,.
Here 0.45 is an arbitrary positive constant less than one
half. The reason for that restriction is that overlap-
ping spheres may cause some vertices be deleted from
the weighted Delaunay triangulation. With the men-
tioned stopping criterion, all spheres are disjoint and
all points are vertices of the weighted Delaunay trian-
gulation. The main result of [2] is a proof that if we
pump all vertices as described then all dihedral angles
are larger than some constant € > 0 that is independent
of the set of input spheres. In the proof that constant is
positive but miserable small. As our experiments show,
the constant that can be achieved in practice is much
larger and possibly around 5°.

Exudation algorithm. The algorithm pumps every
vertex in the triangulation. There is no restriction on
the scheduling sequence, and pumping each vertex once
is enough. Let S be the vertex set of the initial (un-
weighted) Delaunay triangulation.

void SLIVEREXUDATION(S)
foreach vertex u € S do
U? = PumpP(u);
substitute (u, U) for u and star for prestar
endfor.

The optimal weight U? for a vertex u is computed as
explained above. Keep in mind that U? is optimal only
under fairly limiting conditions, namely that all other
vertices have the fixed weight they happen to have at
the moment and U is less than 0.45 - d,. To formally
describe the pumping process, we write U = 0 for the
initial weight and U < Uj < ... for the critical weights
of u. We let (; be the minimum dihedral angle in the
star of u with weight U?.

float PUMP(u)

i =0; U$ = 0; j = 0; compute (o;

loop
i =i+ 1; compute next critical weight UZ;
if U; > 0.45-d, then exit endif;
expand the star of u and compute (;;
if (; > (; then j = ¢ endif

forever;

return U;.

We note that for efficiency reasons, the star in Func-
tion PUMP is computed incrementally. The prestar is



explicitely constructed and the Delaunay triangulation
is updated only once per vertex in Function SLIVEREX-
UDATION. In order to maintain the data structure dy-
namically, we use the prestar to delete and the star to
create records for tetrahedra. The sliver exudation algo-
rithm is modified for vertices near the domain bound-
ary. Specifically, we limit the weight of every interior
vertex so it cannot assume a negative weighted distance
to the equator sphere protecting any boundary triangle.
Similarly, we limit the weight of a boundary vertex so
it cannot assume a negative weighted distance to the
equator sphere protecting any non-incident boundary
triangle. We check this condition in the prestar of the
vertex when it is pumped. Let n = card S be the num-
ber of vertices. The number of iterations in Function
SLIVEREXUDATION is m. Assuming a constant upper
bound on the ratios /£, Cheng et al. [2] prove that the
star of every vertex has constant size. Function Pump
thus takes only constant time per vertex, which adds up
to a total time of O(n) for sliver exudation.

4 Experimental Results

This section presents experimental results for five three-
dimensional data sets. All experiments are done on a
Pentium IT 450 MHz CPU with 128 MB of memory.
For each data set, we evaluate the mesh quality of the
Delaunay triangulation initially, after refinement, and
after sliver exudation. Each data set starts out with a
boundary triangulation, so the initial Delaunay triangu-
lation has no interior vertices. Our algorithm behaves
different in the interior and near the boundary. To dif-
ferentiate, we call a tetrahedron nezt to the boundary
if at least one of its vertices lies on the boundary, and
interior, otherwise. To simplify the discussion, we fix a
threshold and call a tetrahedron a sliver if its minimum
dihedral angle is { < 5°.

A smooth surface. Our first example is a triangu-
lated skin surface obtained from 24 spheres, which are
connected by blending hyperboloids and inverse sphere
patches. The sphere centers are the vertices of a convex
polytope and represent the permutations of four ele-
ments, hence the name. The first row in Figure 7 shows
the entire mesh and the second an enlarged portion.
The first column shows the boundary mesh while the
other three columns show aspects of the volume mesh
at different stages of the algorithm. The corresponding
statistics is presented in Tables 1, 2, and 3.

The initial Delaunay triangulation consists of more
than 76,000 tetrahedra, of which about 38% are slivers
and are therefore visible in the second column of Fig-
ure 7. In the sphere regions the slivers tend to be small
and parallel to the boundary, while in hyperboloid re-
gions they form stacks of large slivers roughly normal

| | #vert | #tri [ #tet [ time ]
B || 14,287 | 28,574 - -
I | 14,287 - | 76,329 -
R || 43,569 - | 230,119 || 53 min
X || 43,569 - | 223,936 9 min

Table 1: Permutahedron data. Sizes of the boundary mesh
(B), the initial Delaunay triangulation (I), the Delaunay tri-
angulation after refinement (R) and after exudation (X). The
last column shows the running time of the refinement and
the exudation steps.

ratio r/¢ min angle ¢
min | avg | max | min | avg | max
0.58 | 0.72 2.02 - - -
0.71 | 4.65 | 15.74 || 0.002 9.68 | 58.73
0.62 | 0.83 2.14 || 0.282 | 45.29 | 69.90
0.62 | 0.83 2.14 || 3.376 | 46.49 | 69.90

x| &

Table 2: Permutahedron data. Quality measures of the
boundary triangulation and the volume mesh initially, af-
ter refinement, and after exudation.

to the axis. The refinement takes about 53 minutes
and decreases the ratio below 1.0 except for 384 tetra-
hedra in the interior and more than 5,000 next to the
boundary. The total number of vertices and tetrahedra
goes up by more than a factor of three, which is rea-
sonable because the initial mesh has not vertices in the
interior. By construction, all new vertices are in the
interior. At the same time, the refinement step elimi-
nates the majority of the slivers, namely the ones with
large circumspheres, but 516 slivers with small circum-
spheres remain. Sliver exudation takes about 9 minutes
and decreases the number of tetrahedra by more than
6% as it replaces flat tetrahedra. The ratio distribution
worsens only slightly. The average minimum dihedral
angle improves slightly, but most significantly, all dihe-

Lr/t ] 0-1] 12 23] 310] >10]
I, int 0 0 0 0 0
I, bd 838 | 7,570 | 8,869 | 58,299 753
R, int || 143,984 384 0 0 0
R,bd | 80,372 | 5374 5 0 0
X, int || 139,415 887 0 0 0
X,bd || 78,162 | 5466 6 0 0

| ¢ I 0-5 ] 510 ] 10-20 | 20-40 [ 40-71 ]
I, int 0 0 0 0 0
I, bd 28,726 | 20,009 | 17,238 | 9,704 652
R, int 268 827 | 3,775 | 31,892 | 107,606
R, bd 248 768 | 2,230 | 20,795 | 61,710
X, int 0 5 934 | 29,806 | 109,467
X, bd 1 16 710 | 19,992 | 62,915

Table 3: Permutahedron data. Distribution of quality mea-
sures for tetrahedra in the interior and next to the boundary.



dral angles move above the five degree threshold, except
for one. That one sliver has ¢ > 3° and lies next to the
boundary. We guess that it survives the exudation pro-
cess because of the limited freedom in assigning weights
near the domain boundary.

A surface with sharp corners. The second exam-
ple is one twelfth of a wheel. It is mechanical shape
with sharp corners and edges in the boundary. Figure
8 shows the entire shape in the first and an enlarged
portion in the second row. The corresponding statistics
is presented in Tables 4, 5, and 6.

| || F#vert | Ftri | F#tet || time |
B || 11,525 | 23,046 - -
I 11,525 - | 34,892 -
R || 20,688 - | 93,186 || 16 min
X || 20,688 - | 90,969 2 min

Table 4: Wheel data. Sizes of meshes and running time.

min angle ¢
avg | max

ratio r/¢
min | avg | max min |
0.58 | 0.67 | 1.78 - - -
0.65 | 1.94 | 6.57 || 0.000 | 34.16 | 63.92
0.61 | 0.82 | 2.34 || 0.000 | 46.02 | 70.28
0.61 | 0.82 | 2.34 || 0.336 | 47.10 | 70.28

x|

Table 5: Wheel data. Quality measures of the boundary and
volume meshes.

[r/¢ ] 01] 12] 23] 310] >10|
I, int 0 0 0 0 0
I, bd 2,402 | 21,255 | 7,922 | 3,313 0
R, int || 32,479 24 0 0 0
R, bd || 59,709 841 | 133 0 0
X, int || 31,384 109 0 0 0
X, bd || 58,345 999 | 132 0 0

| ¢ | 05[] 5-10 [ 10-20 [ 20-40 | 40-71 |
I, int 0 0 0 0 0
I, bd 846 | 2,462 | 8,078 | 5,681 | 17,825
R, int 65 182 | 876 | 7,009 | 24,371
R, bd 188 327 | 1,308 | 11,984 | 46,876
X, int 0 0 227 [ 6,540 | 24,726
X, bd 3 7| 423 | 11,463 | 47,580

Table 6: Wheel data. Distribution of quality measures.

The initial mesh contains more than 34,000 tetrahe-
dra with a little more than 7% slivers, which can be
seen in the second column. The refinement step leaves
a few tetrahedra with ratios that exceed the threshold of
1.0. In about 16 minutes, it almost doubles the number
of vertices and almost triples the number of tetrahedra.
The size inflation is less dramatic for the Wheel than for
the Permutahedron data because the domain is fairly

thin and requires only a small number of interior ver-
tices. The refinement step also reduces the number of
slivers but not by the impressive rate we have observed
earlier. The exudation step takes only 2 minutes but
leaves three slivers next to the boundary. As in the first
example, it reduces the number of tetrahedra, this time
by a little more than 2%.

Two boundary triangulations. In the third exam-
ple, we study the effect of the boundary triangulation
on the mesh improvement algorithm. The domain is a
human tooth for which we compute the mesh starting
with two different boundary triangulations. The two
models are shown in Figure 9, and the statistics is pre-
sented in Tables 7, 8, and 9. The mesh quality is better

| ToothA || #vert | #tri [ #tet [|  time ]
B 13,453 | 26,902 - -
I 13,453 ~ [ 47,286 B
R 52,325 - | 291,122 1h
X 52,325 - | 282,633 || 15 min

| ToothB || #vert |  #tri [ #tet ||  time |
B 13,453 | 26,902 - -
I 13,453 - 44,438 -
R 51,274 - | 281,978 1h
X 51,274 - | 274,332 15 min

Table 7: Sizes of meshes and running time for ToothA in the
upper and ToothB in the lower half.

ratio r/¢ min angle ¢
ToothA || min | avg | max min | avg | max
B 0.58 | 0.82 3.40 - - -
I 0.74 | 7.88 | 37.02 || 0.007 | 20.19 | 60.12
R 0.61 | 0.84 3.60 || 0.047 | 44.40 | 70.48
X 0.61 | 0.84 3.60 || 0.170 | 45.69 | 70.48
| ToothB || min | avg | max || min | avg | max |
B 0.58 | 0.73 1.55 - - -
I 0.79 | 7.84 | 27.83 || 0.021 | 22.97 | 59.99
R 0.62 | 0.82 1.89 || 0.159 | 45.49 | 69.99
X 0.62 | 0.82 1.89 || 8.924 | 46.71 | 69.99

Table 8 Mesh quality for ToothA in the upper half and
ToothB in the lower half.

for ToothB than for ToothA. That difference has appar-
ently no influence on the running time of the algorithm,
but it has a significant influence on the mesh quality re-
finement and exudation achieve. The difference in mesh
quality is most striking after the exudation step: we ob-
serve 142 slivers with ( = 0.17° in ToothA compared to
no sliver and ¢ = 8.924 in ToothB. It is telling that all
412 slivers lies next to the boundary, which is strong ev-
idence that our insistence on maintaining the boundary
is the main reason for the slivers in the final mesh.



[ToothA [ 01 1-2] 23] 310] >10|
I, int 0 0 0 0 0
I, bd 15,503 | 5,418 | 5,022 | 13,558 7,785
R, int 385 | 1,249 | 5,716 | 46,108 | 153,182
R, bd 798 | 841 | 3,213 | 30,272 | 49,358
X, int 0 11 | 1,584 | 42,968 | 156,139
X, bd 142 78 | 1,598 | 29,677 | 50,436

| ToothB | 0-5 [ 5-10 [ 10-20 | 20-40 [ 40-71 |
I, int 0 0 0 0 0
I, bd 12,437 | 5,481 | 4,358 | 11,528 | 10,634
R, int 366 | 1,201 | 5,286 | 44,204 | 149,222
R, bd 216 | 555 | 1,914 | 19,461 | 59,553
X, int 0 4 [ 1,295 | 41,352 | 151,871
X, bd 0 3| 475 | 18,548 | 60,784

Table 9: Distribution of minimum angles ¢ for ToothA in the
upper and ToothB in the lower half.

More examples. We present experimental results for
two additional data sets. The results are similar to what
we have seen above, so we can be brief. The Head data
is displayed in Figure 10 and the statistics is provided in
Tables 10, 11, and 12. Both the input boundary triangu-
lation and the output weighted Delaunay triangulation
are the largest of all our examples, which explains the
rather long running time. The Hog data is displayed in

| | #vert | #tri | Ftet || time ]
B 33,970 | 67,940 - -
1 33,970 - | 100,452 -
R || 110,919 - | 610,463 5h
X || 110,919 - | 593,098 1.5 h

Table 10: Head data. Sizes of meshes and running time.

ratio r/¢ min angle ¢
min | avg | max min | avg | max
0.58 | 1.21 | 1.60 - - -
0.67 | 4.10 | 8.67 || 0.170 | 20.54 | 61.21
0.62 | 0.93 | 2.39 || 0.034 | 41.33 | 69.88
0.62 | 0.93 | 2.39 || 3.014 | 42.48 | 69.88

x| &

Table 11: Head data. Quality measures of the boundary and
volume meshes.

Figure 11 and the statistics is provided in Tables 13, 14,
and 15. The large volume of the animal requires a large
number of interior vertices, and we observe ratios of fi-
nal over initial size that exceed the ratios in the other
data sets.

5 Discussion

The computational experiments presented in this pa-
per provide evidence for the practical viability of sliver

| ¢ [ 05[] 510 10-20 [ 20-40 [ 40-71 |
I, int 0 0 0 0 0
I, bd | 10,119 | 13,378 | 20,230 | 50,535 | 6,190
R, int 750 | 2,450 | 11,243 | 89,281 | 274,838
R,bd | 1,500 | 4,345 | 21,055 | 118,286 | 86,715
X, int 1 81 | 4,095 | 84,396 | 279,680
X, bd 38 | 1,182 | 16,519 | 119,244 | 87,862

Table 12: Head data. Distribution of minimum angles ¢.

||| #vert | #tri [ #tet [ time ]
B || 13,474 | 26,944 - -
T || 13,474 ~ | 46,491 -
R || 56,982 - | 317,565 2h
X || 56,982 - | 308,801 20 min

Table 13: Hog data. Sizes of meshes and running time.

exudation as method to remove slivers from three-
dimensional Delaunay triangulations. Generally, the
method succeeds in increasing all dihedral angles above
5°. Our results are not as crisp as one would hope, and
the main and perhaps only reason for the shortcoming is
the lack of an effective method for improving the bound-
ary mesh. This is not a weakness of our experimental
set-up but rather a fundamental limitation of the sliver
exudation algorithm as described in [2]. Our positive re-
sults in the interior warrant additional efforts to rethink
the way we deal with domain boundaries. Ideally, we
would like to integrate the improvement of the boundary
triangulation into the mesh improvement algorithm.

We note that the measure of ‘sliverness’ used in this
paper is different from that in [2]. We use the minimum
dihedral angle, while the original exudation paper uses
the volume over the cube of the shortest edge length.
Both measures approach zero as the tetrahedron gets
flat, but they are quite different at the other extreme,
where ¢ assumes its maximum for the regular tetrahe-
dron while the ratio goes to infinity for skinny tetrahe-
dra with short edges, like spires, spears, and splinters.
The biggest advantage of the dihedral angle is that it
is intuitive and makes our statistical results easier to
comprehend.

ratio r/¢ min angle ¢
min | avg | max min | avg | max
B || 0.58 | 0.76 2.89 - - -
I 0.71 | 7.48 | 297.15 || 0.000 | 18.75 | 59.88
R || 062 | 0.84 3.50 || 0.322 | 44.98 | 70.20
X || 062 | 0.84 3.50 || 2.529 | 46.22 | 70.20

Table 14: Hog data. Quality measures of the boundary and
volume meshes.



| ¢ [ 05] 510 ] 10-20 [ 20-40 [ 40-71

T, int 0 0 0 0 0
I, bd || 10,076 | 9,391 | 8,928 | 11,888 | 6,208
R, int 406 | 1,347 | 6,225 | 51,811 | 173,101
R, bd 327 | 740 | 2,867 | 24,392 | 56,349
X, int 0 10 | 1,578 | 48,247 | 176,443
X, bd 6 73 | 1,226 | 23,754 | 57,464

Table 15: Hog data. Distribution of minimum angles ¢.
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Figure 7: Permutahedron data. From left to right, surface mesh, initial Delaunay triangulation, Delaunay triangulation after
refinement, and weighted Delaunay triangulation after exudation. The volume meshes are displayed by showing a transparent
boundary surface together with opaque slivers. No other tetrahedra are shown.
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Figure 8: Wheel data. The display conventions are the same as in Figure 7.
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