
Topological Persistence and Simplification
�

Herbert Edelsbrunner
�
, David Letscher

�
, and Afra Zomorodian

�

Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� �
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
Research by the first and third authors is partially supported by ARO

under grant DAAG55-98-1-0177. Research by the first author is also par-
tially supported by NSF under grant CCR-97-12088.�

Department of Computer Science, Duke University, Durham, and
Raindrop Geomagic, Research Triangle Park, North Carolina.�

Department of Mathematics, Oklahoma State University, Stillwater,
Oklahoma.�

Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.

1

There is a large body of parallel work on iso-surfaces or
level sets of 3-dimensional density functions. We refer to
Milnor [7] for the mathematics and to Sethian [9] for a nu-
merical view. A density function is a map ����� ��� � and
an iso-surface ���
��
	�� is the preimage of a constant image
value 	 . The sequence of iso-surfaces obtained by increas-
ing 	 represents a growth process similar to that represented
by a filtration. Specifically, simplices in a filter correspond
to critical points of a density function. In this context, topo-
logical simplification means reducing the number of critical
points. This process is related to smoothing or simplifying
the graph of � , which is a 3-dimensional manifold in ��
 .

Outline. Section 2 reviews alpha complexes and homol-
ogy groups. Section 3 introduces persistence for Betti num-
bers and non-bounding cycles. Section 4 describes an al-
gorithm that computes persistence. Section 5 formulates
simplification algorithms based on persistence. Section 6
provides experimental evidence for the speed and utility of
these algorithms. Section 7 concludes the paper.

2 Background

This section introduces the background we need to de-
fine and compute topological persistence. We begin with al-
pha complexes, continue with homology groups for � � co-
efficients, and end with the incremental algorithm for com-
puting Betti numbers.

Alpha complexes. A spherical ball ���� � � ��� � ��� � ���
� is defined by its center � and square radius � � . If � ����� ,
the radius is imaginary and so is the ball. The weighted
distance of a point from a ball is � �! �
"#� �%$ "'& ��$ � & � � .
Note that a point "(� � � belongs to the ball iff � �! �
"#�*) � ,
and it belongs to the bounding sphere iff ���! �+",� � � . Let -
be a finite set of balls. The Voronoi region of �� � - is the
set of points for which �� minimizes the weighted distance,. �! � / "0� � ��1 �2�! �
"#�) �3�4 �
"#� �65 �7 � -28:9
The Voronoi regions decompose the union of balls into con-
vex cells of the form ���; . �! , as illustrated in Figure 1.
Any two regions are either disjoint or they overlap along
a shared portion of their boundary. We assume general po-
sition, where at most four (three in � �) Voronoi regions can
have a non-empty common intersection. Let <>=?- have
the property that its Voronoi regions have a non-empty com-
mon intersection, and consider the convex hull of the corre-
sponding centers, @BA �DCFEHGJIK/L� 1 �� � <M8 . General posi-
tion implies that @#A is a N -simplex, where N �OCFPHQSR < &�T .
The dual complex of - is the collection of simplices con-
structed in this manner,U � / @BA 1 <O=V- �XW�!HY A

� ��Z; . �! �\[�^] 8_9

Figure 1 illustrates a 2-dimensional example of this con-
struction.

Any two simplices in
U

are either disjoint or they in-
tersect in a common face, which is a simplex of smaller
dimension. Furthermore, if @ � U , then all faces of @ are
simplices in

U
. A set of simplices with these two proper-

ties is a simplicial complex [8]. A subcomplex is a subset` = U that is itself a simplicial complex.

w

v
u

Figure 1. Union of nine disks, convex decomposition using
Voronoi regions, and dual complex.

Chains, cycles, boundaries. Let
U

be a simplicial com-
plex in � � . A N -chain is a subset of N -simplices in

U
. We

define addition of chains with integer coefficients modulo
2. In other words, the sum of two N -chains a �Sb is the sym-
metric difference of the two sets,

a�c b � � aed b ��&�� a ; b � �
which is commutative. The set of all N -chains together with
addition form a group denoted as fXg . The empty set is the
zero element of fhg . There is a chain group for every integerN , but for a complex in � � , only the ones for �) N)ji
may be non-trivial. The boundary k g � @ � of a N -simplex @
is the collection of its � N &^Tl� -dimensional faces, which is
a � N &mTl� -chain. The boundary of a N -chain is the sum of
the boundaries of its simplices, k g � a � �mnmo Y_p k g � @ � . Each
boundary operator is a homomorphism k g � f gq� f g �

and the collection of boundary operators connect the chain
groups into a chain complex,

9L9F9 �] � f �srut� f � ruv� f
 rxw� f � ruy�] � 9L9F9z9
The kernel of k{g is the collection of N -chains with empty
boundary and the image of k|g is the collection of � N &VTl� -
chains that are boundaries of N -chains,

}_~ Q k�g � / a � f�g 1 kJg � a � �O] 8 ���� k g � / b � f g �
 1�� a � f g � b � k g � a � 8:9
A N -cycle is a N -chain in the kernel of k g and a N -boundary
is a N -chain in the image of k{g��
 . The collections ��g of N -
cycles and ��g of N -boundaries together with addition form

2

subgroups of f�g . An essential property of the boundary
operators is that the boundary of every boundary is empty,k g �
�� k g � a � �] . This implies that the groups are nested,� g =m� g =mf g , as illustrated in Figure 2. The boundary of

0 0

2 1

C3 C

Z

0 0 0

Z

1

B B1 B

0

2 0

C2

= 3B

C0 Z= 0

Z 3

Figure 2. Chain, cycle, boundary groups and their images
under the boundary operators.

a vertex is the empty set, which implies that every 0-chain
is also a 0-cycle, �
� � f � . Because

U
is a complex in

� � , there are no non-empty 3-cycles or 3-boundaries, that
is, � � � � � � /] 8 .
Homology groups. The N -th homology group is the N -th
cycle group factored by the N -th boundary group,

� g ��zg��J��g . Its elements are the homology classes a c��hg � / a c� 1 � � ��g:8 , for all a � ��g . The zero element is] cO��g ���g , and the sum of two classes is � a c �hg � c � b c ��g � �� aec b � c ��g . A subset generates a group if every group
element is the sum of elements in the subset. A basis is a
minimal generating set. In general, there are no canonical
bases, but all bases have the same size which is the rank
of the group. Because taking symmetric differences is like
adding modulo 2, the size of a group is 2 raised to the power
of its rank. The N -th Betti number of

U
is the rank of theN -th homology group, � g �^QSPHG }�� g . As
� g � � g ��� g ,

QSPHG }�� g � QuP�G } �zg & QSPHG } ��gJ9 (1)

There is a Betti number for each integer N , but for com-
plexes in � � , only the ones for �) N)	� may be non-zero.
According to the Universal Coefficient Theorem for Homol-
ogy [8] for complexes in � � , the Betti numbers under � � are
the same as those under � .

Intuitively, a non-bounding 0-cycle represents a collec-
tion of components of

U
and there is one basis element per

component. It follows that � � is the number of components
of
U

. A non-bounding 1-cycle represents a collection of
non-contractible closed curves in

U
, or dually, a collection

of tunnels formed by
U

. We can write each tunnel as a sum
of tunnels in a basis, and �
 is the size of the basis. A non-
bounding 2-cycle represents a collection of non-contractible
closed surfaces in

U
, or dually, a collection of voids, which

are components of � � & U . As before, � � is the size of a ba-
sis of voids, which is equal to the number of voids. Finally,
there are no 3-cycles because

U
is a complex in � � .

Age filters. We base all formulas and algorithms in this
paper on an ordering of the simplices, where each prefix of
the ordering contains the simplices of a subcomplex. We
call such an ordering a filter. The sequence of subcom-
plexes defined by taking successively larger prefixes is the
corresponding filtration. Figure 3 illustrates these defini-
tions with a filter of 18 simplices. We think of a filtration

u
t

117 8 9

s

u

s

u
t

s

u
t

10

t

s

u
t

s

uu

s s

t

s

u
t

s

s

t

s

u
t

s

uu

s

t

151413

s

u
t

16

s

u
t

17

s

u
t

t

v

w

v

w

v

w

sv -

w

tw +

v

w

uv -

v

w

v v

w

tuw -

uw +

stw +

w +v +

suv -

w

v

suw -

v

w

v

ww

u +

s

u
t

6 su +

t + 21 3 4 5

t

0 s + st -

sw -

w

v

w

v

v

s

u

v

t

stu -tu +12

Figure 3. The filter is the sequence of light simplices. The
corresponding filtration is the sequence of complexes.

as describing an evolution of a complex for which the sole
element of change is growth. For dual complexes of a col-
lection of balls, we generate a filter and a filtration by lit-
erally growing the balls. The filter is a consequence of this
growth.

We now describe the growth model for spheres we use
in Section 6 to apply our results to weighted point data in
� � . For every real number 	 � � , we increase the square
radius of a ball �� by 	 , giving us �� � 	h� � � � �u� � c 	h� . We
denote the collection of expanded balls �� � 	h� as - �
	�� . The	 -complex

U �
	�� of - is the dual complex of - � 	h� [3]. For
example,

U � &�
 � �] , U � � � � U
, and

U ��
 � �
� is
the dual of the Voronoi diagram, also known as the Delau-
nay triangulation of - . For each simplex @ � � , there is
a unique birth time 	 � @ � defined such that @ � U �
	�� iff	�� 	 � @ � . We order the simplices such that 	 � @ � � 	 ���|�
implies @ precedes � in the filter. More than one simplex
may be born at a time and such cases may arise even if -
is in general position. For example in Figure 1, edge ��� is
born at the same moment as triangle �#7�� . In the case of
a tie, it is convenient to order lower-dimensional simplices
before higher-dimensional ones, breaking remaining ties ar-
bitrarily. We call the resulting sequence the age filter of the
Delaunay triangulation.

3

Incremental algorithm. The ordering of simplices in a
filter permits a simple algorithm for computing Betti num-
bers of all complexes in a filtration [2]. We review the es-
sential steps of the algorithm here. Suppose the sequence
of @�� , for �)�� ��� , is a filter and the sequence ofU � � / @�� 1 �)	�^)
� 8 , for �)�� ��� , is the corre-
sponding filtration. Before running the algorithm, the Betti
number variables are set to the Betti numbers of the empty
complex, that is, � � � ��
 � �	� � � . The algorithm is
shown in Figure 4.

integer � BETTI-NUMBERS
� �

for � � � to � & T doN �VR ��� @ � & T ;
if @ � belongs to a � NMc T � -cycle in

U �
then � gx�
 � � g��
 c T
else � g � � g & T

endif
endfor;
return � � ��� �
 � � � � .

Figure 4. The function returns the Betti numbers of the last
complex in the filtration.

But how do we decide whether a � N�c Tl� -simplex @ � be-
longs to a � Nec Tl� -cycle in

U � ? For N c T � � , this is trivial
because every vertex belongs to a 0-cycle. For edges we
maintain the connected components of the complex, each
represented by its vertex set. An edge belongs to a 1-cycle
iff its two endpoints belong to the same component. Trian-
gles and tetrahedra are treated similarly, using the symme-
try provided by complementarity, duality, and time-reversal
[2].

Once we decide the cycle question for each simplex, we
call a � N�c Tl� -simplex @ � positive if it belongs to a � N�c T � -
cycle and negative otherwise. Let � g � ��
g be the N -th Betti
number of

U
 , and let � E�� g � � E��
 g and G ~�� g ��G ~��
 g be
the number of positive and negative N -simplices in

U
 . The
correctness of the incremental algorithm implies

� g � � E�� g & G ~�� g��
 � (2)

for �) N) � . In words, the Betti number �zg is the num-
ber of N -simplices that create N -cycles minus the number
of � N c T � -simplices that destroy N -cycles by creating N -
boundaries. Observe that Equation (2) is just a different way
to write Equation (1). All Betti numbers are non-negative
so � E�� g � G ~�� g��
 for all � . We will see in Section 3 that
there exists a pairing between positive N -simplices and neg-
ative � N c Tl� -simplices. This pairing is the key to under-
standing the persistence of non-bounding cycles in homol-
ogy groups.

3 Persistence

We wish to simplify a complex through the removal of
its topological attributes. We describe a measure that ranks
attributes by their life-time in a filtration — their persistence
in being a feature in the face of growth. In this section we
introduce the concept of persistence for Betti numbers and
non-bounding cycles. We define persistence abstractly us-
ing cycle and boundary groups of complexes in a filtration.
To make the abstract concrete, we give an algorithm that
pairs the creation of a non-bounding cycle with its conver-
sion to a boundary.

Algebraic formulation. Algebraically, it is easy to count
the population of non-bounding cycles whose life-time ex-
ceeds a given threshold. We will see later that this statis-
tic is sufficient for determining the life-time of individual
non-bounding cycles. We define ��
 g � ��
 g to be the N -th cy-
cle group and N -th boundary group, respectively, of the � -
th complex

U
 in a filtration. To capture persistent cycles
in
U
 , we factor its N -th cycle group by the N -th boundary

group of
U
 ��� , � complexes later in the filtration. Formally,

the � -persistent N -th homology group of
U
 is

�
�� �g � �
 g � � �
 ���g ; �
 g � � (3)

which is well-defined because �
 ���g ; ��
 g is the intersec-
tion of two subgroups of f
 ���g and thus a group itself. The
� -persistent N -th Betti number �
�� �g of

U
 is the rank of�
�� �g . Note that as we increase � , negative simplices cancel
positive simplices earlier in the filtration. In other words,
increasing � by one shortens the persistence of all non-
bounding cycles by one. We may kill short-lived attributes,
the topological noise of the complex, by increasing � suffi-
ciently.

The � -persistent homology groups can also be defined
using injective homomorphisms between ordinary homol-
ogy groups. Observe that if two cycles are homologous inU
 , they also exist and are homologous in

U
 ��� . Consider
the homomorphism

�
�� �g � �
 g � �
 ���g �
that maps a homology class into one that contains it.
The image of the homomorphism is isomorphic to the � -
persistent homology group of

U
 , ��� �
�� �g��
�
�� �g .

Abstract algorithm. To measure the life-time of a non-
bounding cycle, we find when the cycle’s homology class
is created and when its class merges with the boundary
group. A positive simplex creates the class and a negative
one merges the class with the boundary group. To detect
these events, we maintain a basis for

� g implicitly through
simplex representatives.

4

Initially, the basis for
� g is empty. For each positive N -

simplex @ � , we first find a non-bounding N -cycle a � that con-
tains @ � but no other positive N -simplices. We prove that a �
exists using induction as follows: start with an arbitrary N -
cycle that contains @ � and remove other positive N -simplices
by adding their corresponding N -cycles. This method suc-
ceeds because each added cycle contains only one positiveN -simplex by inductive assumption. After finding a � , we
add the homology class of a � as a new element to the basis
of
� g . In short, the class a � c � g is represented by a � , anda � , in turn, is represented by @ � . For each negative � N c Tl� -

simplex @�� , we find its corresponding positive N -simplex @ �
and remove the homology class of @ � from the basis. A
general homology class of

U � is a sum of basis classes,

b c^� g � � � a��ec^� g �
� � g c � a � 9

The chains b and n a � are homologous, meaning they be-
long to the same homology class. Each a � is represented by
a positive N -simplex @ � , � � � , that is not yet paired by the
algorithm. The collection of positive N -simplices � � � � b �
is uniquely determined by b . The youngest simplex in � is
the one with largest index and we denote this index as � � b � .

list � PAIR-SIMPLICES
� �` � � `
 � ` � �O] ;

for � � � to � & T doN �^R ��� @�� & T ;
if @�� is negative then

(*) b � k g��
 � @�� � ; � � � � b � ;` g � ` g d / � @ � � @�� � 8
endif

endfor;
return � ` � � `
 � ` � � .

Figure 5. The function returns three lists of paired simplices
in the filter.

The algorithm, as shown in Figure 5, identifies @ � as
the culprit for turning the N -cycle created by @ � into a N -
boundary. We document this by appending � @ � � @�� � to the
list

` g . The persistence of that N -cycle is one short of the
difference between indices, �M& ��& T .
Time-based persistence. Alternatively, we could define
persistence as the difference in birth times of the two sim-
plices, 	 � @ � �X& 	 � @ � � . This view corresponds to an exten-
sion of our previous index-based formulation. Let

U	� �/ @�� 1 	2� @�� �s)�	 8 . Then for every real � � � , we define

the � -persistent N -th homology group of
U
�

to be

� � � �g � � �g � � � � � �g ; � �g � 9 (4)

Note that we are not changing the ordering of the simplices,
so the simplex pairs do not change. Therefore, we may
use the abstract algorithm above to compute the persistence
pairs. In general, however, we have fewer pair-wise differ-
ent complexes, as all simplices with birth-time 	 enter the
filtration at that time. In the index-based formulation, the
simplices arrive individually with different indices.

Time-based persistence is useful in the context of iso-
surfaces of density functions. Index-based persistence is
appropriate for alpha complexes, as most interesting activity
occurs in a small range of 	 . We will not discuss time-based
persistence in this paper any further, although all our results
will be valid with little modification.

Visualization. Our pairing algorithm gives us a set of
simplex pairs � @ � � @�� � , each representing a N -cycle for �)N) � . We may visualize each pair on the index axis by
a half-open interval � � � �J� which we call a N -interval. We
show this in Figure 6 for the filtration in Figure 3. The in-
cremental algorithm in Section 2 asserts that �
g is the num-
ber of N -intervals that contain index � on the axis.

We extend this visualization to two dimensions spanned
by the index and persistence axes. The N -interval of � @ � � @�� �
is extended into a N -triangle spanned by � � � � � , � � � � � , � � � �h&� � in the index-persistence plane. The N -triangle is closed
along its vertical and horizontal edges and open along the
diagonal connecting � � � � � to � � � �s& � � , as shown in Figure
6. It represents the N -cycle created by @ � , which is destroyed
by @�� progressively earlier as we increase � .

s
160

u
1
t

[

st tuw suw stw
17

v

[

suv
3 11 12

tu
13 14 15

stusu
2 4 5 6 10987

[

[[

uwsvuvtww

[
[

[[
[

sw

index

persistence

)))

)
))

))

Figure 6. Visualization of the result of Function PAIR-
SIMPLICES. The triangles of
 and of
�� � are unbounded
and not drawn. The light and dark triangles represent 0-
cycles and 1-cycles respectively.

.

5

Assume for a moment that our algorithm is correct,
which means �
�� �g is the number of N -triangles that con-
tain point � � � � � . Then the persistent Betti numbers are
non-increasing along vertical lines in the index-persistence
plane. The same is true for lines in the diagonal direction
and for all lines between the vertical and the diagonal direc-
tions.

MONOTONICITY LEMMA. �
�� �g) �
�� � � �g whenever � �) �
and �) � �) �3c � � & � � � .

Correctness. To prove the abstract algorithm is correct,
we show that the pairs it produces are consistent with the
persistent Betti numbers defined by (3).

N -TRIANGLE LEMMA. The number of N -triangles contain-
ing � � � � � in the index-persistence plane is �
�� �g .

PROOF. We proceed by induction over � . For � � � , the
number of N -triangles that contain � � � � � is equal to the num-
ber of N -intervals � � � �J� that contain � . This is equal to the
number of left endpoints minus the number of right end-
points that are smaller than or equal to � . Equivalently, it is
the number of positive N -simplices @ � with �2) � minus the
number of negative � Nsc Tl� -simplices @�� with �q) � . But
this is just a restatement of Equation (2), which establishes
the basis of the induction.

Consider � � � � � with � � � and assume inductively that
the claim holds for � � � � & T � . The relevant simplex for the
step from � � � � &OT � to � � � � � is @�
 ��� . The persistent N -th
Betti number can either stay the same or decrease by 1. It
will decrease only if @�
 ��� is a negative � N c Tl� -simplex,
or equivalently, � ��c � � � � is the upper right corner of a N -
triangle. Indeed, no other N -triangle can possibly separate� � � � & T � and � � � � � . This proves the claim if @�
 ��� is a
positive � N�c T � -simplex or a simplex of dimension different
from N�c T . Now suppose that @�
 ��� is a negative � N�c T � -
simplex and define the N -cycle b � k gx�
 � @�
 ��� � . There are
two cases, as shown in Figure 7.

i l

index

i > l

p+l

persistence

p

p -1

< l l+p

Figure 7. The light N -triangle corresponds to Case 1 and
the dark one to Case 2.

Case 1. Assume there is a N -cycle a in
U
 homologous

to b , that is, a � b c �
 ��� �
g . Then a bounds neither in

U
 nor in
U
 ��� �
 , but it bounds in

U
 ��� . If follows
that �
�� �g � �
�� � �
g &�T . We need to show that the
pair � @ � � @�
 ��� � constructed by the algorithm satisfies�e) � , because only in this case does the N -triangle of@
 ��� separate � � � � &VTl� from � � � � � . Recall that @ � is
the youngest positive N -simplex in � � b � . To reach a
contradiction suppose � � � . Then a is a non-boundingN -cycle also in

U � , and because it is homologous tob , we have @ � � a . But this contradicts a = U
 as@ � [� U
 .
Case 2. Assume there is no N -cycle in

U
 homolo-
gous to b . Then ��
 g ; �
 ��� �
g � ��
 g ; �
 ���g , and
hence �
�� �g � �
�� � �
g . We need to show that the
pair � @ � � @�
 ��� � constructed by the algorithm satisfies� � � , because only in this case does the N -triangle
of @
 ��� not separate � � � � & Tl� from � � � � � . Our as-
sumption above implies that at least one of the posi-
tive N -simplices in � � b � was added after @�
 . Hence� � � � b � � � .

4 Computation

In this section, we complete the abstract algorithm for
pairing by specifying how to implement line (*) of Func-
tion PAIR-SIMPLICES. We do this by computing the in-
dex � of the youngest positive N -simplex in � � b � , whereb � kJgx�
 � @�� � . We refer to this computation as cycle search
for @�� . We will first describe the data structure, then explain
cycle search, prove its correctness, and analyze its running
time.

Data structure. We use a linear array � � � 9�9 � &qT�� , which
acts similar to a hash table [1, Chapter 12]. Initially, � is
empty. A pair � @ � � @ � � identified by the algorithm is stored
in � � ��� together with a list of positive simplices � � defining
the cycle created by @ � and destroyed by @�� . The simplices
in that list are not necessarily the same as the ones in � � b � .
All we guarantee is that b is homologous to the sum of cy-
cles represented by the simplices in the list, and that the
list contains the youngest simplex in � � b � , which is @ � as
above. The correctness proof following the algorithm will
show that this property is sufficient for our purposes. The
data structure is illustrated in Figure 8. Each simplex in the
filter has a slot in the hash table, but information is stored
only in the slots of the positive simplices. This information
consists of the index � of the matching negative simplex and
a list of positive simplices defining a cycle. Some cycles ex-
ists beyond the end of the filter, in which case we use
 as
a substitute for � .

6

t suu
17

s

8 6

s

3

st
1696 875 10 1514131211

u
stw

tw
uw

uw

tuw

v w

tu stusuw

tw

swwv

159

tw stwsuvuwsvuv
4

14

suss

13

3210

16

tusus t u

Figure 8. Hash table after running the algorithm on the filter
of Figure 3.

Cycle search. Suppose the algorithm arrives at index � in
the filter and assume @ � is a negative � N|c T � -simplex. Recall
that � � b � is the set of positive N -simplices that represent the
homology class of b � k,@�� in

� � �
g . We search for the
youngest N -simplex in � � b � by successively probing slots
in � until we find the right one. Specifically, we start with a
set � equal to the set of positive N -simplices in b , which is
necessarily non-empty, and we let � � � P�� � � � be the index
of the youngest member of � . We will see later that if � � ��� is
unoccupied, then � � � � b � . We can therefore end the search
and store � and � in � � ��� . If � � ��� is occupied, it contains a
collection � � representing a permanently stored N -cycle. At
this moment, this N -cycle is already a N -boundary. We add
� and � � to get a new � representing a N -cycle homologous
to the old one and therefore also homologous to b . The
Function YOUNGEST in Figure 9 performs a cycle search
for simplex @�� .

integer YOUNGEST
� simplex @�� �

� � / @ � k�g��
 � @�� � 1 @ positive 8 ;
loop� � � P�� � � � ;
if � � ��� is unoccupied then

store � and � in � � ��� ; exit
endif;
� � � c � �

forever;
return � .

Figure 9. The function returns the index of the youngest basis
cycle used in the description of the boundary of @�� .

A collision is the event of probing an occupied slot of
� . It triggers the addition of � and � � , which means we
take the symmetric difference of the two collections. For
example, the first collision for the filter of Figure 3 occurs
for the negative edge
 7 . Initially, we have � � /
 � 7 8 and �
equal to 4, the index of 7 . � � � � is occupied and stores �
 �/L� � 7 8 . The sum of the two 0-cycles is � c �2
 �D/
 � � 8 ,
which is the new set � . We now have � � � , the index of � .
This time, � � � � is unoccupied and we store the index of
 7
and the new set � in that slot.

Correctness. We first show that cycle search halts. Con-
sider a collision at � � ��� . The list � � stored in � � ��� contains@ � and possibly other positive N -simplices, all older than @ � .
After adding � and � � we get a new list � . This list is nec-
essarily non-empty, as otherwise b would bound. Further-
more, all simplices in � are strictly older than @ � . There-
fore, the new � is smaller than the old one, which implies
that the search proceeds strictly from right to left in � . It
necessarily ends at an unoccupied slot � � � � of the hash ta-
ble, for all other possibilities lead to contradictions.

It takes some more effort to prove that � � � � is the correct
slot, or in other words, that � � � � b � , where b � kBg��
 � @�� �
is the boundary of the negative � N�c Tl� -simplex that trig-
gered the search. Let � be the cycle defined by � � . Since
� is obtained from b through adding bounding cycles, we
know that � and b are homologous in

U � �
 . A collision-
free cycle is one where the youngest positive simplex corre-
sponds to an unoccupied slot in the hash table. Cycle search
ends whenever it reaches a collision-free cycle. For exam-
ple, � is collision-free because its youngest positive simplex
is @ � and � � � � is unoccupied before � arrives.

COLLISION LEMMA. Let � be a collision-free N -cycle inU � �
 homologous to b . Then the index of the
youngest positive simplex in � is � � � � b � .

PROOF. Let @ � be the youngest positive simplex in � , and �
be the sum of the basis cycles, homologous to b . By defini-
tion, � ’s youngest positive simplex is @ � , where � � � � b � .
This implies that there are no cycles homologous to b inU �
�
 or earlier complexes, therefore � � � . We show �) �
by contradiction. If � � � , then � � �'c a , where a bounds
in
U � �
 . @ � [� � implies @ � � a , and as @ � is the youngest

in � , it is also the youngest in a . By assumption, � � � � is
unoccupied as � is collision-free. In other words, the cycle
created by @ � is still a non-bounding cycle in

U � �
 . Hence
this cycle cannot be a . Also, the cycle cannot belong to a ’s
homology class at the time a becomes a boundary. It fol-
lows that the negative � Nec Tl� -simplex that converts a into a
boundary pairs with a positive N -simplex in a that is younger
than @ � , a contradiction. Hence � � � .

The cycle search continues until it finds a collision-free
cycle homologous to b , and the Collision Lemma implies
that that cycle has the correct youngest positive simplex.
This proves the correctness of cycle search, and we may
now substitute � � YOUNGEST

� @�� � for line (*) in Function
PAIR-SIMPLICES.

Running time. Let b � k g��
 � @�� � and let @ � be the
youngest positive N -simplex in � � b � . The persistence of the
cycle created by @ � and destroyed by @�� is � �

� ��& ��&�T .
The search for @ � proceeds from right to left starting at � � � �
and ending at � � ��� . The number of collisions is at most the

7

number of positive N -simplices strictly between @ � and @�� ,
which is less than � � . A collision happens at � � � � only if @ �
already forms a pair, which implies its N -interval � � ��� � is
contained inside � � � �J� . We use the nesting property to prove
by induction that the N -cycle defined by � � is the sum of
fewer than � � boundaries of � N'c Tl� -simplices. Hence, � �
contains fewer than � N c �_� � � N -simplices, and similarly � �
contains fewer than � N c �H� � � � � N c �H� � � N -simplices.
A collision requires adding the two lists and finding the
youngest in the new list. We do this by merging, which
keeps the lists sorted by age. A single collision takes time at
most O(� �

� , and the entire search for @ � takes time at most
O(� ��). The total algorithm runs in time at most O(n � ��),
which is at most O(� �).

The running time of cycle search can be improved to al-
most constant for dimensions N � � and N � � using a
union-find data structure representing a system of disjoint
sets and supporting find and union operations [1, Chapter
22]. For N � � , each set is the vertex set of a connected
component. Each set has exactly one yet unpaired vertex,
namely the oldest one in the component. We modify stan-
dard union-find implementations in such a way that this ver-
tex represents the set. Given a vertex, the find operation
returns the representative of the set that contains this ver-
tex. Given an edge whose endpoints lie in different sets, the
union operation merges the two sets into one. At the same
time, it pairs the edge with the younger of the two represen-
tatives and retains the older one as the representative of the
merged set.

Cycle search is replaced by two find operations possibly
followed by a union operation. If we use weighted merging
for union and path compression for find, the amortized time
per operation is O(� �
 � � �), where � �
 � � � is the noto-
riously slowly growing inverse of the Ackermann function
[1, Chapter 22]. We may use symmetry to accelerate cycle
search for 2-cycles using the union-find data structure for
a system of sets of tetrahedra [2]. We cannot achieve the
same acceleration for 1-cycles using this method, however,
as there can be multiple unpaired positive edges at any time.
The additional complication seems to require the more cau-
tious and therefore slower algorithm described above.

5 Simplification

In this section, we use information about the persistence
of cycles to simplify filtrations. Simplification here means
reordering the simplices in such a way that only cycles
whose persistence is above some threshold appear in the
filtration. We get inspiration for reordering through an al-
gorithm for computing persistent Betti numbers.

Computing persistent Betti numbers. By the N -Triangle
Lemma in Section 3, the � -persistent N -th Betti number of

U
 is the number �
�� �g of N -triangles that contain the point� � � � � in the index-persistence plane. To compute these

[

13121110 14

[

17161593210 4 8765

sw uv
tw tuw

uw stwstusuw
w

s u suv

tu

st
t

suvsv

[
[

[[
[

)
)

)
)

index

)

persistence
Figure 10. The N -triangles that intersect the new axis at � � �
have persistence 2 or larger. The simplex pairs representing
cycles of persistence less than 2 are boxed.

numbers for a fixed � , we intersect the N -triangles with a
horizontal line at � . Figure 10 illustrates this operation by
modifying Figure 6. The algorithm for � -persistent Betti
numbers is similar to Function BETTI-NUMBERS given in
Figure 4. We go through the filter from left to right and
increase � �g whenever we encounter the left endpoint of aN -interval longer than � . Similarly, we decrease � �g when-
ever � positions ahead of us there is a right endpoint of aN -interval longer than � . Figure 11 shows the results of the
algorithm applied to our example filtration of Figure 3 forN � � .

3 4 5 6 7 8

2
0 1

9
1

0

1

2

3

4

2 index
persistence 76543

β 0

Figure 11. Persistent 0-th Betti numbers of the first ten com-
plexes in the filtration of Figure 3 and for persistence up to
7.

Migration. The intersection of the N -triangles and the
horizontal line at � is a collection of half-open intervals. We
interpret these intervals as N -intervals of a simplified ver-
sion of the original filtration. Our goal is to reorder the filter
so that this interpretation is valid, that is, we wish to obtain a

8

new filtration whose Betti numbers are the � -persistent Betti
numbers of the original filtration. For each pair � @ � � @�� � we
move @�� to the left, closer or all the way to @ � , as shown
in Figure 10. The new position of @�� is

� P��,/ � � � & ��8 . If��& �) � , then @�� and @ � no longer form an interval as
they both occupy the same index in the new filter. Here, we
extend the notion of a filter to allow a possibly empty set
of simplices at each index. We compute Betti numbers by
bringing all simplices of a set into the complex at once.

There is a complication in the reordering algorithm that
occurs whenever a negative simplex attempts to move past
one of its faces. To maintain the ordering as a filter, we
must move the face along with its coface. For example, if
we increase � to 4 in Figure 10, then
�� � will move to index
11 past its face � � at index 12. Moving a face along with a
simplex will not change any Betti numbers if the face rep-
resents a cycle whose persistence is less than � . At the time
we move it, the face is already co-located with its matching
negative simplex, and the two cancel each other’s contribu-
tions. We may then grab the pair and move it with the sim-
plex, moving the pair � � � � � ��� � with
�� � in our example.
For any moving simplex, however, we must also move all
the necessary faces and their matching negative simplices
recursively.

Conflicts. There is trouble if the face of a moving negative
simplex represents a cycle whose persistence is at least � .
For instance, when
�� � encounters the edge
 � , the triangle

 �#7 which is paired with
 � has not yet reached
 � . There
is a conflict between our two goals of maintaining the filter
property and reordering so the new Betti numbers are the
old � -persistent Betti numbers. Formally, a conflict occurs
whenever there are pairs � @ � � @�� � and � @ � � @�� � with � �
� � � � � , where @ � is a face of @ � , as shown in Figure
12. There are

�
 ��� ��� possible types of conflicts, each

jσσ hg iσ σ

Figure 12. Basic conflict configuration.

identified by the pair � R ��� @ � � R ��� @ � � of the dimensions of
the main participants. The pairs �
 � �
 �#7 � and � � � �
�� � � in
Figure 6 constitute a conflict of type � T � �_� and show that
conflicts do occur, although our experiments in Section 6
suggest that they are rather rare. We partially substantiate
this finding by the following lemma.

CONFLICT LEMMA. All conflicts have type � T � �H� .
PROOF. Suppose a conflict exists in pairs � @ � � @�� � and� @ � � @�� � , where @ � is a vertex. When @�� enters the filtra-
tion, it belongs to the same component as @ � , since @�� com-
pletes a chain whose boundary includes @ � . Vertex @ � , one

of the vertices of @�� , is unpaired and therefore represents
the component of @�� and @ � . Recall that any component
is represented by its oldest vertex, which implies that @ � is
older than all the vertices of @ � . By the filter property, @ � is
older than @ � , i.e. � � � , which contradicts the assumption
that � @ � � @�� � and � @ � � @�� � form a conflict. This proves there
are no conflicts of types � � � T � , � � � �_� , � � � i_� . By comple-
mentarity and duality, there are no conflicts of types � T � i:�
and � � � i_� .

Difficulties in reordering may also arise indirectly be-
cause of the recursive nature of any reordering algorithm.
For example, moving a negative triangle may require mov-
ing one of its edges. This edge holds on to its matching
triangle, which in turn grabs its needed faces. Some of
these faces may be unpaired, and to capture this situation
we define a recursive conflict to be a positive simplex that is
moved when it is not co-located with its matching negative
simplex. Extending the Conflict Lemma, we can show that
all recursive conflicts are edges. We again have a situation
as in Figure 12, except that @ � is not necessarily a face of@�� . However, the moving simplices all belong to the same
component as @�� : this is true for a face by definition, for a
matching negative simplex by the reason given in the proof
above, and for all moving simplices by transitivity.

Basic and recursive conflicts exist in practice, but are
rather rare, as shown in Section 6. When conflicts occur,
we view the maintenance of the filter property as inviolable,
and attempt to approximate our secondary goal, achieving
the correct Betti numbers. We do so through conflict reso-
lution or conflict diminution, as described below.

Conflict resolution. We may resolve a conflict by subdi-
vision. Here, we achieve the correct Betti numbers for a
refined complex and its corresponding filtrations. Suppose
pairs � @ � � @�� � and � @ � � @�� � form a conflict. Then, @ � � @ �
are edges, @�� � @�� are triangles, and @ � is a face of @�� . Let@ � � � a and @�� �
	 � a as drawn in Figure 13.

We resolve the conflict by starring from the midpoint "
of edge

� a , subdividing all simplices that share
� a as a com-

mon face. We replace each subdivided N -simplex by one� N &'T � -simplex and two N -simplices. For computing persis-
tence, the order of the three new simplices is important. As
shown in Figure 13, the order of the edges

� " � a " within the
new filter is the opposite of the triangles 	 a " � 	 � " . The per-
sistence algorithm produces new pairs �+" � � ",� and � 	 " � 	 a "#�
that have no effect on Betti numbers. After 	 a " enters, the
complex is homotopy equivalent to the old complex just be-
fore 	 � a enters. The edge a " replaces

� a and the triangle	 � " replaces 	 � a in the filter. Consequently, the algorithm
produces pairs � @ � � 	 � ",� and � a " � @�� � . As a " is not a face of	 � " , we have removed the conflict and preserved the Betti
numbers of a refined filtration.

9

before:

after:

c

a

starring
x

b b

c

a

. . . . abc

ax
acx
abx

g

. . . .

. . . .

bc

x
bx
cx

. . . .σ

σ

hσ

hσg

. . . .

Figure 13. The conflict exists between moving 	 � a towards@ � and keeping
� a ahead of 	 � a . We subdivide edge

� a and
order the new simplices to resolve the conflict.

Conflict diminution. Often times, simplices have struc-
tural meaning in a filtration, and conflicts signal properties
of the structure the simplices describe. We may not wish
to tamper with this structure through subdivision, as such
action may not have any meaning within our filtration. For
example, in alpha complex filtrations, simplices are ordered
according to a particular growth model. The ordering of the
new simplices specified by subdivision in Figure 13 might
not have a corresponding set of weighted balls that would
generate the filtration under the growth model.

We may attempt to reduce the effect of conflicts on Betti
numbers without eliminating the conflicts. Recall that a
simplex pair � @ � � @�� � defines a N -cycle which may be visual-
ized by a N -triangle, as in Figure 14. Whenever @ � occurs in
a conflict, we allow it to be dragged to a new location. This
clearly changes the Betti numbers of the reordered filtration,
so they no longer match the � -persistent Betti numbers of
the original filtration. We also allow @ � to move faster dur-
ing reordering, whenever @ � is moved. This method creates
a region of the N -cycle with the same area as the N -triangle,
as shown in Figure 14. Therefore, we allow each N -cycle
to have the same effect on Betti numbers as it would in the
absence of conflicts, but at different times.

i
σ
j

σ

index

persistence

Figure 14. Reordering with conflicts.

Lazy migration. We end this section by describing an al-
ternate method for reordering. Our motivation for formu-

lating persistent homology in Equation (3) was to eliminate
cycles with low persistence. As a consequence of the for-
mulation, the life-time of every cycle is reduced regardless
of its persistence, leading to the creation of N -triangles. A
possibly more intuitive goal would be to eliminate cycles
with low persistence without changing the life-time of cy-
cles with high persistence. In other words, we replace N -
triangles by N -squares as illustrated in Figure 15. In analogy

16

[

[

stus
0

t
17

suv stwsuwtuwuwwv
159 10 11 12

tu
13 1481

u
2 3 7654

[

su

[

[

st sw tw uv sv

[
[

[[
[

)

)

persistence

)

index

)
)

)
)

)

Figure 15. Alternative visualization of the result of Function
PAIR-SIMPLICES. The squares of
 and
�� � are unbounded
and not shown. The light squares represent 0-cycles and the
dark squares represent 1-cycles.

to � -persistent Betti numbers, we define �
�� �g as the num-
ber of N -squares that contain the point � � � � � in the index-
persistence plane. Figure 16 illustrates how these numbers
change as we increase persistence from � � � to 7. Note
that we can easily read off persistent cycles from the graph.
We may also simplify complexes using �
�� �g by only collaps-

0 1 2

6543

70

1

2

3
0γ

persistence

4

1

7

index
98

6

2 3 4 5

Figure 16. Numbers � � for the first ten complexes in the
filtration of Figure 3.

ing N -intervals of length at most � , leaving other N -intervals
unchanged.

6 Experiments

We have implemented the algorithms described in this
paper and created a prototype based on the Alpha Shapes

10

software of [3]. This section presents experimental timing
results and provides evidence for the claim that persistence
separates topological noise from features.

Data. We have applied the software to a variety of
datasets and show the results for five representative sets in
this section. Three sets represent molecular structures with
weighted points and two represent surfaces of macroscopic
shapes with unweighted points. In each case, we first com-
pute the possibly weighted Delaunay triangulation and then
the age filter of that triangulation. The data points become
vertices or 0-simplices of the triangulation. Table 1 gives
the sizes of the data sets, their Delaunay triangulations, and
age filters.

� -simplices
0 1 2 3

total

G 318 2,322 3,978 1,973 8,591
Z 1,296 11,401 20,098 9,992 42,787
D 7,774 60,675 105,710 52,808 226,967
B 42,311 346,664 608,445 304,091 1,301,511
S 54,262 438,134 766,893 383,020 1,642,309

Table 1. G is Gramicidin A, a small protein. Z is a portion
of a periodic zeolite structure. D is a portion of DNA. B is a
tiny cube of microscopic bone structure. S is a scanned and
resampled Buddha statue.

Timings. We time only the portion of the software that is
directly related to computing persistence. We distinguish
four steps: marking simplices as positive or negative, and
adding N -cycles for N � � � T � � . Recall that the computation
of persistence can be accelerated for N � � � � using a union-
find data structure. As substantiated in Table 2, this im-
provement subsumes adding 0- and 2-cycles in the marking
process, shrinking the time for these to steps to essentially
nothing. The results suggest a possible linear dependence of

add � -cycles totalmark
0 1 2 w/o UF w UF

G 0.03 0.01 0.03 0.01 0.08 0.06
Z 0.19 0.02 0.17 0.07 0.45 0.36
D 1.15 0.12 1.02 0.38 2.67 2.18
B 7.35 0.73 6.79 2.58 17.45 14.12
S 11.25 0.96 9.65 8.66 30.52 19.93

Table 2. Running time in seconds. All timings were done on
a Micron PC with a 266 MHz Pentium II processor and 128
MB random access memory, running the Solaris 8 operating
system.

the running time on the size of the data, which is substan-
tially faster than the cubic dependence proved in Section 4.

Of course, we need to distinguish worst-case from average
running time. After accelerating with union-find, the slow-
est portion of the algorithm is adding 1-cycles. We pose the
detailed analysis of the algorithm as an open problem, and
we also ask for a different and more efficient algorithm, if it
exists.

Statistics. Our cubic upper bound in Section 4 followed
from the observation that the N -cycle created by @ � goes
through fewer than � � collisions and the length of its list
built up during these collisions is less than � N'c �_� � � . We
can explain the apparently linear running time documented
in Table 2 by showing that the average number of collisions
and the average list length are both constant. Tables 3 and 4
provide evidence that this might indeed be the case. We do
not show statistics for 0-cycles in Table 4 as every 0-cycle
is represented by a list of length two.

0-cycles 1-cycles 2-cycles
max avg max avg max avg

G 17 0.58 31 0.19 91 0.13
Z 14 0.95 32 0.50 39 0.39
D 14 0.62 203 0.32 26 0.19
B 21 1.00 581 0.26 1,462 0.15
S 24 1.00 1,095 0.19 33,325 0.14

Table 3. Maximum and average number of collisions for the
five data sets.

1-cycles 2-cycles
max avg avgf max avg avgf

G 10 2.47 2.22 111 4.86 2.08
Z 46 3.91 2.52 46 2.96 2.05
D 125 3.85 2.21 15 2.26 2.02
B 1,719 9.46 2.50 510 8.15 2.07
S 4,993 19.61 2.47 7,486 374.06 2.04

Table 4. Maximum and average length of cycle lists, over all
lists (avg), and all final stored lists (avgf).

Recall that the number of collisions and the length of lists
is bounded from above by the persistence of cycles. Table
5 shows that the average persistence is considerably larger
than the average number of collisions and list length. Table
5 also gives evidence that conflicts are indeed rare.

Feature detection. We conclude this section by using per-
sistence for detecting features of the dataset G. This dataset
contains the time-averaged molecular dynamics structure
of Gramicidin A, a peptide that forms a channel for ion
and water movement across lipid membranes. The primary
topological feature of this data is a tunnel that runs through
the molecule, as shown in Figure 17. We show the graphs
in Figure 18 for comparison. While there is considerable

11

average persistence # conflicts
0-cycles 1-cycles 2-cycles basic recursive

G 320.36 55.35 4.47 0 0
Z 1,333.86 757.03 194.56 1 128
D 7,902.83 2,706.18 462.17 0 212
B 59,383.77 5,264.05 393.92 1 187
S 95,620.31 3,828.92 45.22 0 10

Table 5. Average persistence of cycles and number of con-
flicts in simplifying the filtration.

Figure 17. Side and top views of the molecular surface for
Gramicidin A, presenting the channel for ion transport.

topological noise at � � � , a simplification process which
eliminates 1-cycles of persistence less than 2,688 succeeds
in separating the tunnel from the remaining topological at-
tributes detected by measuring homology. We show this
simplification for three complexes in Figure 19.

7 Future Directions

We introduce the notion of topological persistence for a
filtration in � � in this paper and give algorithms for assess-
ing persistence and simplifying the filtration. We plan to
apply these ideas to the analysis of three types of datasets.

(i) Molecular data are naturally represented by the age fil-
ters of their Delaunay triangulations. While differen-
tiating topological noise from features is a generally
useful facility, we believe it is most significant for an-
alyzing the structure of molecules.

(ii) Simplifying shape while preserving features is at the
core of the surface reconstruction problem studied in
computer graphics, as well as computational geome-
try. We believe persistence can help in automatic re-
construction.

(iii) We plan to apply persistence to detect hierarchical
or other complex types of clustering in very large

0

1000

2000

3000

4000

5000

6000

7000

p

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

l

0
5

10
15
20
25
30
35
40

β1
l,p

0

1000

2000

3000

4000

5000

6000

7000

p

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

l

0
5

10
15
20
25
30
35
40

γ1
l,p

Figure 18. Graphs of �
�� �
 and �
�� �
 of Gramicidin A sampled
onto an 80 by 80 grid.

datasets, such as those expected from the current ef-
forts of measuring the locations of galaxies in the uni-
verse.

There is a fourth and less direct application to surface
reconstruction through iso-surface extraction. Iso-surfaces
are widely used in medical imaging where volume density
data is common. A smooth density function has finitely
many critical points of four types, corresponding to the four
different dimensions of simplices in a 3-dimensional com-
plex. We can use the persistence algorithm to measure the
significance of every critical point. A more difficult task is
using this information for automatic denoising the density
function and its iso-surfaces.

Acknowledgments

We thank Jeff Erickson and John Harer for helpful dis-
cussions during early stages of this paper. We also thank
Daniel Huson for the zeolite dataset Z, Thomas LaBean for

12

Figure 19. Side and top views of complexes
U��
�� � U

 �
 � U ����� � of Gramicidin A are shown in the left three columns. The

corresponding 2688-persistent complexes are shown on the right.

the DNA dataset D, and the Stanford Graphics Lab for the
Buddha dataset S. To generate the bone dataset B, we sam-
pled an iso-surface generated by Dominique Attali. The
volume data was provided by Françoise Peyrin from CNRS
CREATIS in Lyon and was issued from Synchrotron Radi-
ation Microtomography from the ID19 beamline at ESRF
in Grenoble. We generated Figure 17 using the Protein Ex-
plorer [5].

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, MA, 1994.

[2] C. J. A. Delfinado and H. Edelsbrunner. An incremental al-
gorithm for betti numbers of simplicial complexes on the 3-
sphere. Comput. Aided Geom. Design, 12:771–784, 1995.

[3] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha
shapes. ACM Trans. Graphics, 13:43–72, 1994.

[4] J. El-Sana and A. Varshney. Topology simplification for
polygonal virtual environments. IEEE Trans. Visualization
Comput. Graphics, 4:133–144, 1998.

[5] E. Martz. Protein explorer 1.80b. http://www.umass.edu-
/microbio/chime/explorer.

[6] J. McCleary. User’s Guide to Spectral Sequences. Publish or
Perish, Wilmington, Delaware, 1985.

[7] J. Milnor. Morse Theory. Princeton Univ. Press, New Jersey,
1963.

[8] J. R. Munkres. Elements of Algebraic Topology. Addison-
Wesley, Redwood City, California, 1984.

[9] J. A. Sethian. Level Set Methods. Cambridge Univ. Press,
Cambridge, England, 1996.

13

