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Abstract

We define the Morse-Smale complex of a Morse function
over a 3-manifold as the overlay of the descending and as-
cending manifolds of all critical points. In the generic case,
its 3-dimensional cells are shaped like crystals and are sepa-
rated by quadrangular faces. In this paper, we give a combi-
natorial algorithm for constructing such complexes for piece-
wise linear data.
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densities, triangulations, combinatorial algorithms.

1 Introduction

Morse functions are used by differential topologists to study
the topology of manifolds [12, 13]. We use their results but
pursue a different goal, namely that of studying topological
features in natural phenomena.

Motivation. A three-dimensional Morse function is a
generic smooth map from a 3-manifold to the real line. There
is an abundance of natural phenomena that can be modeled
by such functions. In oceanography, we study the distribu-
tion of temperature and other measurements over the Earth’s
oceans. In medical imaging, we reconstruct the inside of a
living body from density distributions measured by MRI and
other sensing technology. In x-ray crystallography, we deter-
mine the conformations of proteins and other molecules from
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electron densities derived from x-ray diffractions. In each
case, essential information is obtained from variations of the
density over the space. Morse theory offers the basic math-
ematical language to reason qualitatively and quantitatively
about this variation. In oceanography, we might be interested
in the temperature extrema and how they change over time.
In medical imaging, we use sharp changes in density to seg-
ment the body into bone, tissue and other constituents. In
x-ray crystallography, we reconstruct geometric structure by
following ridges connecting maxima in the electron density.

Related work. Three-dimensional densities are commonly
visualized by drawing one or several level sets. In three-
dimensional Euclidean space, such a set is generically a 2-
manifold, often referred to as an iso-surface, which divides
the space into inside and outside. The 1-parameter family of
iso-surfaces sweeps out each cell in the Morse-Smale com-
plex in a predictable manner, starting at the minimum and
proceeding towards the opposite maximum while crossing
the boundary everywhere at a right angle. The most popular
method for computing an iso-surface is the marching cube
algorithm, which assumes the density is given by its values
at the vertices of a regular cubic grid [11]. Extensions and
improvements of this algorithm can be found in [9, 23].

The marching cube algorithm visits the entire grid, which
implies a running time proportional to the number of grid
cells. A significant improvement in performance can be
achieved by limiting the traversal to those cells that have
a non-empty intersection with the constructed iso-surface.
Starting at a ‘seed edge’, the algorithm traverses the cells
following the component of the iso-surface as it is uncov-
ered [2]. A minimal collection of seed edges that touches
each component of every level set is provided by a minimal
covering of the Reeb graph [17], stored for quick access in
a hierarchical data structure referred to as the contour tree
[22]. The Reeb graph is a compressed representation of the
components, but it has no geometric information related to
the gradient flow as expressed by the Morse-Smale complex.
Extensions and improvements of the original algorithm for
constructing contour trees can be found in [3, 16, 21].

Another concept related to Morse-Smale complexes is the



medial axis of a shape in three-dimensional Euclidean space.
As introduced by Blum [1], it is the set of centers of spheres
that touch the boundary of the shape in at least two points
without crossing it. Medial axes are used in a wide variety
of applications, including shape representation [4, 18], mesh
generation [19], geometric modeling [20], motion planning
[10], image processing [15] and computer vision [24]. If
the boundary is an orientable 2-manifold embedded in three-
dimensional Euclidean space, we may define the signed dis-
tance as a function over the space. The medial axis then con-
sists of arcs and quadrangles in the Morse-Smale complex.

Results. A fundamental difficulty in applying Morse theo-
retic ideas to scientific problems is the lack of smoothness in
real data. Most commonly, information is gathered by point
probes, and to turn these probes into a generic smooth func-
tion is a formidable task. We argue that the construction of
such a function is also a questionable step if the goal is to
compute and study topological features in the data, mostly
because understanding the latter seems necessary to success-
fully do the former. Instead, we take a combinatorial ap-
proach and simulate smoothness to the extent necessary to
make things work. The main results of this paper are combi-
natorial and algorithmic in nature:

(i) the introduction of quasi Morse-Smale complexes as
combinatorial analogs of the CW complexes defined
by the descending and ascending manifolds of smooth
functions;

(ii) a combinatorial algorithm for constructing a quasi
Morse-Smale complex with guaranteed structural cor-
rectness.

We believe that these results lay the ground-work for a large-
scale application of Morse theoretic ideas to data sets in the
sciences, engineering and medicine.

Outline. Sections 2 and 3 present the necessary back-
ground from Morse theory and combinatorial topology. Sec-
tions 4 to 7 describe the algorithm for constructing a quasi
Morse-Smale complex for three-dimensional piecewise lin-
ear density data. Section 8 concludes the paper.

2 Smooth 3-Manifolds

In this section, we introduce the Morse theoretic concepts
used in this paper. We refer to [12, 13] for further back-
ground.

Morsefunctions. Let M be a smooth compact 3-manifold
without boundary. Examples are the 3-sphere, which con-
sists of all points at unit distance from the origin in R*, and
the 3-torus, which can be obtained by identifying opposite
square faces of a three-dimensional cube. Let f : M — R be

a smooth map. The differential of f ata pointp € Misa lin-
ear map from the tangent space at pto R, df, : TM, — R
Apointp € M is critical if d f, is the zero map, otherwise it
is regular. Given a local coordinate system, the Hessian at p
is the matrix of second order partial derivatives:
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A critical point p is non-degenerate if the Hessian at p is
non-singular. The function f is called a Morse function if all
critical points are non-degenerateand f(p) # f(gq) whenever
p # q are critical. The Morse Lemma states that if p is non-
degenerate we can choose local coordinates and signs such
that

f($17$27$3) = f(p):i:a:%:l:x%:l:m%

in a local neighborhood of p. Note this implies that non-
degenerate critical points are isolated. The number of mi-
nuses is the index of the critical point. It is independent of the
coordinate system and equals the number of negative eigen-
values of H(p).

In three dimensions, there are four types of non-degener-
ate critical points: minima have index 0, 1-saddles have in-
dex 1, 2-saddleshave index 2, and maxima have index 3. We
get intuitive local pictures by drawing a small sphere around
the point p. The level curve of points z with f(z) = f(p)
decomposes the sphere into oceans, consisting of points x
with f(z) < f(p), and continents, consisting of points z
with f(z) > f(p). Figure 1 shows the local pictures of a
regular point and of the four types of non-degenerate critical
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Figure 1: The local pictures with shaded oceans and white conti-
nents of a regular point, a minimum, a 1-saddle, a 2-saddle, and a

maximum. Take notice of the symbols used to mark the different
types of vertices at the centers of the spheres.

Descending and ascending manifolds. Given a Rieman-
nian metric on M and a local coordinate system with or-



thonormal tangent vectors %(p), the gradient of f at p is
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It is the zero vector iff p is critical. Anintegral liney: R —
M is a maximal path whose velocity vectors agree with the
gradient: g—;’(s) = Vf(y(s)) forall s € R. Each integral
line is open at both ends, and we call orgy = lim,_, o, y(s)
the origin and dest v = lim,_,, ¥(s) the destination of ~.
Both are necessarily critical points of f. Integral lines are
pairwise disjoint. We consider each critical point as an inte-
gral line by itself, and with this stipulation the integral lines
partition M. We use them to decompose M into regions of
similar flow patterns. The descending and ascending mani-
folds of a critical point p are
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D(p) = {p}U{zeM|z€imy,desty=p},
Alp) = {ptu{zeM|ze€imy,orgy = p},

where im -y is the image of the path v on M. If z and y are
points different from p that belong to the descending and the
ascending manifolds of p then f(z) < f(p) < f(y). This
implies that D(p) N A(p) = p. The descending manifolds
of f are the ascending manifolds of — f and, symmetrically,
the ascending manifolds of f are the descending manifolds
of —f. This implies that the two types of manifolds have
the same structural properties. Specifically, the descending
manifold of a critical point p of index ¢ is an open cell of
dimension dim D(p) = 4. Since the integral lines partition
M, so do the descending manifolds. Moreover, they form a
complex as the boundary of every cell is the union of lower-
dimensional cells that are its faces. The ascending mani-
folds form a dual complex: for critical points p and ¢ of f,
dim D(p) = 3 — dim A(p), and D(p) is a face of D(q) iff
A(q) is aface of A(p).

Morse-Smale complexes. A Morse function f is Morse-
Smale if the descending and ascending manifolds intersect
only transversally. Suppose D(p) and A(q) have non-empty
common intersection. If dim D(p) = 2 and dim A(g) = 1
then the transversality assumption implies D(p) N A(q) =
p = ¢. In the more interesting case in which both are 2-
manifolds, A(p) and D(q) are faces of A(q) and D(p) and,
as illustrated in Figure 2, the common intersection is a sim-
ple path connecting the two critical points. Following [7], we
define the cells of the Morse-Smale complex as the compo-
nents of the sets D(p) N A(q), over all critical points p and ¢
of f. By definition, each cell of the Morse-Smale complex is
a union of integral lines that all share the same origin ¢ and
the same destination p. The dimension of the cell is then the
difference between the two indices. We call the cells of di-
mension 0 to 3 nodes, arcs, quadrangles, and crystals. Each
two-dimensional cell is indeed a quadrangle, but its bound-
ary may be glued to itself. The prototypical case of a crystal
is a cube, which we imagine standing on its tip, but more
interesting cases are possible.

Figure 2: The dotted line is the common intersection of the de-
scending 2-manifold of p and the ascending 2-manifold of q.

3 PiecawiseLinear 3-Manifolds

We are interested in algorithms that work for piecewise lin-
ear functions obtained from point measurements. In this sec-
tion, we introduce the necessary terminology, and we discuss
some of the difficulties that arise when we transport concepts
from the smooth to the piecewise linear category.

Triangulation. Let K be a simplicial complex that trian-
gulates the 3-manifold M. This means there is a homeo-
morphism between M and the underlying space of K, but to
simplify the discussion, we assume that M is the underlying
space. The complex consists of simplices of dimension 0 to
3, which we refer to as vertices, edges, triangles and tetra-
hedra. The star of a simplex o consists of all simplices that
contain o as a face, including o itself, and the link consists
of all faces of simplices in the star that are disjoint from o

Stc = {reK|oCr},
Lko = {veK|vCTE€Sto,uno=0}

For example, if o is a vertex then the link is a triangulation
of the 2-sphere. Let f : M — R be a continuous function
that is linear on every simplex of K. To say this more for-
mally, we note that every point z in a simplex is a unique
convex combination of its vertices ug: = = ), Adgug With
1 =23, and X, > 0 forall £. Assuming f is given at the
vertices, we have f(z) = >, A¢f(ue). We will refer to f as
a height function and feel free to use relative terms such as
‘higher’ and “highest’. It will be convenient to assume that
no two vertices have the same height, which can be justified
computationally by simulating a perturbation, as described
in [6, Section 1.4]. The lower star (upper star) of a vertex
u contains all simplices in the star for which v is the highest
(lowest) vertex, and the lower link (upper link) contains all
simplices in the link that are faces of the lower star (upper
star):

St_u = {reStulzer= f(z) < f(u)},
Sttu = {reStu|zerT= f(z) > f(u)},
Lk_u = {velku|vCTe€St_u},
Lktu = {velku|vCrTeSttu}.

As in the smooth case, we draw the level curve of points z
with f(z) = f(u) to decompose the link into oceans and



continents. Each ocean retracts to a homotopy equivalent
component of the lower link, and each continent retracts to a
homotopy equivalent component of the upper link.

Critical vertices. Strictly speaking, critical points of f are
not defined, but we may use small bump functions and think
of f as the limit of a series of smooth maps. This is the
intuition we use to transport concepts and results from the
smooth to the piecewise linear category. We use lower links
and their reduced Betti numbers to distinguish regular from
critical vertices and to classify the latter. The reduced Betti
numbers are denoted as 3;. They are the same as the com-
mon un-reduced Betti numbers, except that By = By — 1
for non-empty lower links, and 3_; = 1 for empty lower
links [14]. Since lower links are two-dimensional, only 3_;
through 3, can be non-zero. As shown in Table 1, the simple
critical points are the ones that have exactly one non-zero re-
duced Betti number, which is equal to one. A multiple saddle

[ B-1 Bo B B
regular 0 0 0 O
minimum 1 0 0 O
1-saddle 0 1 0 0
2-saddle 0 0 1 0
maximum 0 0 0 1

Table 1: The classification of regular and simple critical points us-
ing reduced Betti numbers.

is a vertex that falls outside the classification of Table 1 and
therefore satisfies 3_; = B, = 0 and By + 1 > 2. It can
be unfolded into simple 1-saddles and 2-saddles. One way
to do that is to repeatedly cut the link along a circle that in-
tersects the level curve separating the oceans and continents
in exactly two points. The reduced Betti numbers on the two
sides add up to the original ones: B; = Bz + Brr, for
k = 0,1. We can always choose the circle such that the sum
of the reduced Betti numbers are non-zero on both sides. It
follows that the reduction ends after 3, + 31 — 1 cuts and
generates 3, 1-saddles and 3, 2-saddles.

Quas Morse-Smale complex. We construct a complex
that is structurally indistinguishable from the Morse-Smale
complex by taking open manifolds made up of simplices in
K. It is a decomposition of space into crystals in which the
boundary of each crystal is a quadrangulation. The func-
tion f has its critical points at the nodes of this complex and
is monotonic within all the arcs, quadrangles and crystals.
It differs from the Morse-Smale complex because the arcs
and quadrangles may not be those of maximal ascent and de-
scent. Let U, V, X and Y be the sets of minima, 1-saddles,
2-saddles and maxima of f, let R, S and T' be the sets of arcs
that connect minimato 1-saddles, 1-saddles to 2-saddles, and
2-saddles to maxima respectively, and let P and @ be the sets
of quadrangles with nodes from U, V, X,V and V, X, Y, X

in that order, respectively, around the boundary. We define
a quasi Morse-Smale complex of f as a decomposition of M
into open cells that satisfies the following properties:

(i) all nodes are from U UV U X UY, all arcs are from
R U S UT,and all quadrangles are from P U @,

(i) there are no critical points within the arcs, quadrangles
and crystals, and

(iii) each arc in S is on the boundary of four quadrangles,
which in a cyclic order alternate between P and Q.

Note that a quasi Morse-Smale complex can be split into
complexes defined by U, P and Y, Q. These are complexes
that are structurally indistinguishable from those of the de-
scending and ascending manifolds.

Simulating digointness. Integral lines are not well de-
fined for piecewise linear manifolds. So, following [7], we
construct monotonic curves and surfaces that never cross.
These curves and surfaces can merge together and fork later.
When a curve or surface merges with another curve or sur-
face, we pretend that they remain infinitesimally close to
each other without crossing until they either fork or reach
a common critical point.

4 Algorithm

In this section, we give an overview of the algorithm and
describe some of the fundamental operations. Detailed de-
scriptions of how we construct the descending and ascending
manifolds will be given in Sections 5, 6 and 7.

Overview. A quasi Morse-Smale complex is constructed
during two sweeps over the 3-manifold. The first sweep is in
the order of decreasing function value or height and com-
putes the descending manifolds. The second sweep is in
the order of increasing height, which is the preferred order
for computing the ascending manifolds. However, instead
of computing the two collections independently, we use the
structure provided by the descending manifolds and add the
ascending manifolds accordingly.

Step 1. Constructthe complex formed by the descending
manifolds.

Step 2. Construct the ascending manifolds in pieces in-
side the cells formed by the descending manifolds.

Some routing decisions in Step 1 require rudimentary struc-
tural information about the ascending 2-manifolds, so we
compute that already in Step 1. We compute the intersec-
tions between the descending and the ascending 2-manifolds
before we construct the latter. It is in fact easier to com-
pute these intersections first and then widen them into the
ascending 2-manifolds. To streamline our description of the
various steps in the algorithm, we denote the vertices of K

by p1,p2, ..., pn assuming f(p1) > f(p2) > ... > f(pn)-



Links and critical vertices. We assume a data structure
for the triangulation K of M that connects neighboring sim-
plices so that a local walk can be performed in constant time
per visited simplex. An example of such a representation is
the edge-facet data structure described in [5]. It stores or-
dered triangles linked into rings around shared edges. To
illustrate the functionality of this data structure, consider the
computation of the link of a vertex p = p;. Letting puv be
one of the triangles that share that vertex, we use depth-first
search to traverse all triangles in the star. For each visited
triangle pxy, the edge xy belongs to the link of p and so do
the triangles that precede and succeed pzy in the ring around
zy. Given the initial triangle puv, the search takes time pro-
portional to the number of edges in the link.

With an additional test of the vertex heights, we can iden-
tify the lower link as a subcomplex of the link. As discussed
in Section 3, we use the reduced Betti numbers of the lower
link to classify the vertex p as regular, minimum, 1-saddle,
2-saddle, maximum or multiple saddle. We get the reduced
Betti numbers by keeping track of the components in the
lower link. If there are no components then 5_; = 1 and
By =0forall k #—1, S0 p is a minimum. If the lower link
is equal to the link then 3, = 1 and ﬁk =0forallk # 2,50p
is @ maximum. Otherwise, 5_; = 3> = 0 and j, is one less
than the number of components. We get /3; from /3, and the
Euler characteristic y = so — s1 + s2, where sy is the num-
ber of k-simplices in the lower link of p: ,81 Bo+1—
According to Table 1, p is regular if Bo = By = 0and it |s
a multiple saddle combining (3, 1-saddles and 3; 2-saddles,
otherwise.

Running time. By choice of the data structure represent-
ing the triangulation K of the manifold, the link of p; can
be computed in time proportional to its size. Similarly, the
classification of p;, which reduces to counting the simplices
and the components in the lower link, can be done in time
proportional to that size. By definition, the size of the link is
the number of simplices it contains, and because it is a two-
dimensional sphere, this is 3t; + 2, where ¢; is its number
of triangles. Each triangle belongs to only two links, which
implies that the total size of all vertex links is

n
> 3ti+2 = 3t/2+2n,
i=1
where n is the number of vertices and ¢ is the number of tri-
angles in K. As we will see later, the above time analysis
applies to most steps taken by our algorithm. Indeed, we
typically work inside a vertex link and compute simple sub-
structures, such as shortest-path trees and circles separating
oceans and continents from each other. We will see that with
the assumption of unit length edges both tasks and miscel-
laneous others can be performed in time proportional to the
size of the link and, in total, proportional to the size of K.
Besides computing vertex links, the algorithm constructs
descending and ascending manifolds, which intersect to form

the quasi Morse-Smale complex. Even though these mani-
folds are made of simplices in K, their total size can exceed
the size of K by any arbitrary amount. This is because the
manifolds may fold onto themselves and onto each other. A
simplex in K can therefore belong to several manifolds and it
can belong several times to a single manifold. Whatever the
situation, the time needed to add simplices to the description
of the quasi Morse-Smale complex is only proportional to
the total size of its description.

In summary, the running time of the algorithm is bounded
from above by a constant times n log n (for sorting the ver-
tices) plus the input size (for constructing and analyzing the
vertex links) plus the output size (for describing the quasi
Morse-Smale complex).

5 Descending Manifolds

We compute the descending 1- and 2-manifolds simultane-
ously during one sweep. To simplify the presentation, we
first discuss them separately and restrict our attention to sim-
ple critical points.

Descending 1-manifolds. Each descending 1-manifold is
an open interval that belongs to a 1-saddle p = p;. It con-
sists of two descending arcs and we call p the root of the
1-manifold and of its arcs. As illustrated in Figure 3, the
1-manifold descends from its root on both sides and, by sim-
ulation of the Morse-Smale condition, ends at minima of f.
It is possible that the two arcs end at the same minimum,
but because they do not contain that minimum, their union is
still an open interval and not a closed circle. In the Morse-

Figure 3: The descending 1-manifold rooted at a 1-saddle. The
spheres sketch the links of the root, a regular point, and one of the
two minima.

Smale case, all vertices of the 1-manifold except for its root
are regular, but in the piecewise linear case it is also possi-
ble that the 1-manifold passes through a 2-saddle or 1-saddle
pj. We have j > ¢ because p; is necessarily lower than the
root. For an arc it makes little difference whether it passes
through a regular or a critical point. However, since p; starts
its own descending manifold, we need to make sure that the



arcs descending from p; and p; are consistent in the sense of
simulated digointness. In most cases, this consistency will
be automatic because we extend each arc by adding the edge
from the current endpoint to the lowest vertex in its lower
link. This choice of extension implies, for example, that once
two arcs merge, they go together until they both end at the
same minimum.

We distinguish between three operations in the construc-
tion of the descending 1-manifolds: starting, expanding and
gluing. The same three operations also occur in the con-
struction of descending 2-manifolds, and they are processed
within the same logical structure. The starting operation ap-
plies if p is a 1-saddle and starts the two arcs of the corre-
sponding 1-manifold using edges from p to the lowest vertex
in each ocean of the link. The expanding operation contin-
ues all descending arcs ending at p by adding an edge from
p to the lowest vertex in its lower link. An exception to this
rule occurs if p is a 1-saddle. In this case, we (will later)
start an ascending 2-manifold and we extend each descend-
ing arc to the lowest vertex in the specific ocean that is not
separated from the arc by that 2-manifold. The gluing op-
eration applies if p is a minimum, which it declares a node
of the Morse-Smale complex, and glues the descending arcs
ending at p to each other.

Structure of a 2-manifold. The construction of the de-
scending 2-manifolds is considerably more complicated that
that of 1-manifolds. We begin by discussing their structure
and by formulating an invariant maintained by the algorithm.
Each descending 2-manifold is an open disk that belongs to
a 2-saddle, which we call its root. The disk descends from
the root, which is its highest vertex. Its boundary is a cir-
cle consisting of descending 1-manifolds that meet at shared
minima. The circle might be partially glued to itself along
one or more arcs. Note that this is fundamentally different
from the case in which the disk folds onto itself: the folding
can be simulated away since it does not happen for smooth
functions, while the boundary gluing is an inherent feature of
descending 2-manifolds. It is important that the descending
2-manifold does not contain its boundary, else it would not
necessarily be a disk. In the most extreme case, the bound-
ary circle is a single vertex so that the closure of the disk is a
sphere. This gives the disk the appearance of a pouch.

Beyond being an open disk which descends from its root,
we require that the restriction of f to the descending 2-
manifold has no critical points other than the maximum at
its root p = p;. This property is guaranteed by an invari-
ant maintained during the construction. At any moment, we
have an open disk whose boundary is partially final or frozen
and partially unfrozen. The frozen boundary grows from the
empty set to a collection of open segments, which eventually
merge to form a complete circle. The unfrozen boundary
shrinks from a complete circle to a collection of closed seg-
ments, until it eventually disappears.

DISK INVARIANT. Let g be a vertex in the unfrozen portion

of the boundary of a disk and let gu be an interior edge.
Then u is either an interior vertex or a frozen boundary
vertex, and f(u) > f(q).

Note that the Disk Invariant prohibits interior edges that con-
nect two unfrozen boundary vertices. This implies that as
long as the entire boundary is unfrozen, there are no interior
edges connecting two boundary vertices, and all edges de-
scend from the interior to the boundary. Figure 4 illustrates
the resulting structure of a descending disk. A regular ver-
tex w in the restriction of f to the disk is characterized by a
non-empty connected lower link. In other words, the edges
in the star change between descending from v to descending
towards u exactly twice around u. The disk is extended at

Figure 4: A portion of the triangulation of a partially constructed
descending 2-manifold. The edges are oriented from the higher to
the lower endpoints.

the highest unfrozen vertex g; it either lies in the interior of
an unfrozen boundary segment or is the endpoint of a frozen
boundary segment. In the former case, all interior edges de-
scend towards ¢g. We maintain the Disk Invariant by extend-
ing the disk such that all newly added edges descend from q.
It follows that the only new interior vertex, which is g itself,
is a regular point of f restricted to the disk. In the latter case,
we maintain the Disk Invariant by again extending the disk
such that all newly added edges descend from q.

Starting a 2-manifold. We start a descending disk at ev-
ery 2-saddle, and we extend descending disks at all unfrozen
boundary vertices. Let p = p; be a 2-saddle, as shown in
Figure 5, and let ¢ be the lowest vertex in its link. By as-
sumption, the lower link is a retract of the belt-like ocean
around the link, and ¢ belongs to that ocean. We start the
corresponding descending disk by constructing a circle in the
lower link, making sure that circle contains ¢ as one of its
vertices. Even though we call it a circle, it may fold onto
itself, and sometimes such folding is unavoidable. There
are many ways to construct such a circle. Our particular al-
gorithm finds a shortest such circle using the shortest-path
tree from ¢ that spans the lower link. Assuming unit edge
lengths, such a circle minimizes the number of edges. After
constructing the tree, we classify non-tree edges in the lower



Figure 5: The disk rooted at p starts by connecting p to a circle in
the belt-like ocean that passes through the lowest vertex q.

link depending on whether or not they separate the two con-
tinents. The circle is then defined by the separating non-tree
edge in the lower link whose two endpoints minimize the
sum of distances to ¢g. Returning to the classification, we
note that the tree cuts the link open but keeps it connected.
If we cut along a non-tree edge, we split the link into two
disks. If the edge does not separate then one of the disks
contains both continents while the other is contained inside
the ocean. The latter disk is triangulated and, by construc-
tion, its triangulation has all vertices on the boundary. We
can therefore remove the triangles from the disks by repeated
collapsing: at each step remove a triangle that has both edges
on the boundary and declare the third edge a new boundary
edge. The classification of non-tree edges in the lower link
thus proceeds by repeated collapsing, which marks all non-
separating edges and leaves all separating edges unmarked.

Expanding a 2-manifold. The interior vertices of a disk
are typically regular points of f, although they can also be
1-saddles and 2-saddles. We first consider a regular point
p = p; and assume it belongs to the boundary of a descend-
ing disk. Since we visit the vertices in the order of decreasing
height, p is the highest boundary vertex adjacent to at least
one unfrozen boundary edge. Figure 6 illustrates the two
possible cases: one in which there are two neighbors, a and
b, connected to p by unfrozen boundary edges, and the other
in which there is only one such neighbor, ¢. The algorithm
treats both cases similarly and simultaneously. Specifically,
it constructs a shortest-path tree from the lowest vertex ¢ in
the lower link of p. The points a and b belong to the lower
link and are therefore vertices of the tree. We connect a to ¢
along the unique path in the tree and extend the correspond-
ing disk by connecting p to the edges of that path. We do the
same for b and for all other vertices that are connected to p
by unfrozen boundary edges. It is possible that some paths
fold onto each other or themselves, and we must keep track
of sidedness as before.

There is no essential difference in the computations if p is
a 2-saddle, except that p itself starts an additional descend-
ing disk. By using the same tree for starting disks and for

Figure 6: Two descending disks that touch p and intersect the link
in a path each. One path starts and ends in the ocean while the other
starts in the continent and ends in the ocean.

expanding disks we avoid intersections, but as usual, fold-
ing on themselves or each other is allowed. The case of a
1-saddle p can be more interesting. If the two neighbors of
p along the boundary of the disk belong to opposite polar
oceans in the link then we do the same computations within
both oceans. The point p remains on the boundary, but its
two neighbors change to the vertices that are adjacent along
the descending 1-manifold rooted at p. Before continuing,
we declare p and the two incident boundary edges frozen for
the descending disk.

6 Simultaneous Construction

As mentioned earlier, the descending arcs and disks are re-
ally constructed simultaneously, in a single sweep over the
3-manifold. To get a flavor of how this is done, we discuss
a multiple saddle p = p; characterized by By + 1 > 2. Its
link has 3y + 1 oceans and 3; + 1 continents. We process p
in five steps:

Step 1.1. Start3; descending disks.

Step 1.2. Prepare j, ascending disks.

Step 1.3. Extend descending disks that touch p.
Step 1.4. Start 3, descending 1-manifolds.
Step 1.5. Extend descending arcs that touch p.

The main difficulty is the coordination of the descending and
ascending discs and arcs in such a way that they all intersect
in a locally and globally consistent manner.

Familiesof circles. In Steps 1.1and 1.2, we start one fam-
ily of disks and prepare the starting of a second family. Each
disk intersects the link of p in a circle, so we need two fam-
ilies of circles, one for the descending and the other for the
ascending disks. The former are contained in the oceans and
separate the continents, while the latter lie on the continents
and separate the oceans, as illustrated in Figure 7. We ex-
tend the algorithm described in Section 5 to construct the first
family of circles. As before, we begin with the shortest-path



Figure 7: We draw 8; = 2 (dotted) circles to separate the three
continents and 3o = 1 (dashed) circle to separate the two oceans.
The descending disks that start at p intersect the link in the dot-
ted circles, and the ascending disk intersects the link in the dashed
circle.

tree from the lowest vertex ¢ in every component of the lower
link, and we classify non-tree edges in the lower link depend-
ing on whether or not they separate the continents into two
non-empty sets. Once we have selected a separating edge,
we add it to the tree of its endpoints (which now is a graph
with one cycle), and we continue using collapses to eliminate
edges that separate the continents in the same way. We re-
peat until we added 3, edges to the collection of trees. These
edges define the /3; circles required in Step 1.1. We then re-
peat the same algorithm in the upper link of p, thus switching
the roles of oceans and continents. This gives the j3, circles
required in Step 1.2. We note, however, that the construction
of the second family is complicated by the presence of paths
at which descending disks started at earlier vertices intersect
the link. We next describe these complications and how we
cope with them.

Transversal intersections. At the time we start descend-
ing disks and prepare ascending disks all rooted at p = p;,
we already have information on descending disks rooted at
vertices p;, with j < 4. Among these disks, the ones that
pass through p influence the construction of the circle fam-
ilies. Circles that start descending disks are unproblematic
because the use of the shortest-path tree, both for starting
and for expanding, implies non-crossing descending disks.
We need some precautions to make sure that the prepared
ascending disks either do not cross the descending disks or
cross them transversally. In particular, if a descending disk
meets the link of p in two different oceans then that disk
has got to cross every ascending disk started by a circle that
separates the two oceans. We cope with this difficulty by
modifying the continents before drawing the circles. Each
relevant descending disk meets the link of p in a path con-
necting the two vertices adjacent to p along its boundary.
The Disk Invariant maintained for the descending disk im-
plies that this path intersects at most two oceans and one
continent. Clip the path to within that continent and let x
and y be the endpoints of the clipped path. We distinguish
between four cases:

(i) both z and y lie in the continent (e.g. dy in Figure 8);

(if) z lies in the continent and y lies on the boundary of the
continent (ds, ds and dy);

(iii) z and y lie on a common boundary component (ds);
(iv) z and y lie on different boundary components (dg).

Figure 8: Some of the descending disks passing through p form bar-
riers in our effort to draw circles preparing ascending disks within
the continents. The squares are gateways at which the dashed circle
may cross the paths.

In each case, we cut the continent open along the interior of
the path from z to y. In other words, we form a barrier that
prohibits a circle in the second family from crossing the path.
Technically, we create this barrier by duplicating each edge
and each vertex in the interior of the path. The two copies
of a duplicated edge or vertex lie on different sides of the
barrier and are connected to the simplices in the star that lie
on the same side. When descending disks share a common
descending arc they meet the link in paths that share a com-
mon endpoint in the continent. An example of this situation
is the vertex shared by the paths d2, ds and d4 in Figure 8.
Letting & be the number of such paths, the neighborhood of
the shared vertex is cut into k& wedges. We replace the vertex
by k copies, one connected to each wedge. A path of type
(iv) would prohibit any circle going around the continent as
required. We thus designate the highest interior vertex as a
gateway at which a circle may cross the path. We cut the
continent along the rest of the path but not at the gateway.
A similar situation arises when paths of type (ii) connect at
shared endpoints and collectively cut a continent all the way
from one ocean to another. Consider a connected component
of such paths. It touches at least two oceans and we single
out the one whose lowest vertex is the lowest among them.
On every path in the component that connects to an ocean,
other than the one we singled out, we designate the high-
est vertex as a gateway. After modifying the continents as
described, we construct the shortest-path trees and rout the
circles as explained before.

Descending arcs and spikes.  For each ascending disk we
start a (dual) descending 1-manifold that crosses the disk at
p. Instead of determining the two oceans separated by that
ascending disk and by no others, we start a descending arc by



connecting p to the lowest vertex in each ocean and thereafter
pair the arcs to form the descending 1-manifolds.

The starting circles of ascending disks are also used in
an essential way when we extend descending arcs that pass
through p. Each such arc enters p from a continent and we
extend it into the unique ocean that is not separated by any
circle from the entry point. A complication arises when two
or more descending disks share a common descending arc,
such as the disks that meet the link in paths ds, d3 and dy in
Figure 8. Let z be the vertex at which the arc meets the link
of p and consider a disk that meets the link in a path con-
necting z to a vertex y on the boundary of some ocean. In
the easy case, the arc gets extended into the same ocean, but
if the vertices y of these descending disks lie on two or more
boundary components, then this cannot be the case for all of
them. To resolve the apparent conflict, we attach a spike to
each descending disk that expands into an ocean separated
from that of the arc. This spike is an infinitesimally thin strip
of the descending 2-manifold that is squeezed between two
infinitesimally close descending 1-manifolds in its boundary.
Note that the disks that get spikes are exactly the ones whose
paths in the link receive gateways.

7 Ascending Manifolds

The construction of the ascending manifolds is similar to that
of the descending manifolds, except for the complications
caused by the fact that the latter already exist. The added
constraints are expressed in terms of barriers formed within
vertex links. We construct the ascending manifolds during a
sweep of the 3-manifold in the direction of increasing func-
tion value. After computing the intersection curves between
the descending and the ascending 2-manifolds and adding
the ascending arcs connecting the 2-saddles with the max-
ima, we fill in the ascending 2-manifolds one quadrangle at
atime.

Intersection curves and ascending arcs. Recall that for
a Morse-Smale function on a 3-manifold, the intersection
between a descending 2-manifold D and an ascending 2-
manifold A is either empty or a curve connecting their two
roots. From D’s point of view, the curve starts at a 1-saddle
on its boundary and monotonically increases until it ends at
its root. The Disk Invariant maintained during the construc-
tion of the descending disks implies that the restriction of
f to D has no critical points other than the maximum at its
root. To construct the curve, we thus start at the 1-saddle and
repeatedly extend the path by connecting its endpoint to the
highest adjacent vertex in the triangulation of D. The curves
started at the various 1-saddles in the boundary may meet but
they never cross and eventually all end at the root of D. Two
curves in different descending 2-manifolds may also meet,
but this intersection will be resolved when the descending
2-manifolds get resolved by simulation of an infinitesimal
separation.

Next we construct the ascending 1-manifolds. Specifi-
cally, we start the two arcs of an ascending 1-manifold at
every 2-saddle. The algorithm is similar to the one for de-
scending 1-manifolds, except that now the primary concern
in starting and expanding a 1-manifold is to avoid cross-
ing any of the already established descending 2-manifolds.
To understand these constraints consider the components of
the link of a vertex p that are cut out by the descending 2-
manifolds passing through p. Call these components the
dabs of p and their intersections with the oceans and the
continents the lower and upper slabs, respectively. When
we start the ascending arcs we connect p with the highest
vertices in the two upper slabs that are separated by the de-
scending disk rooted at p but by none of the other descending
disks that happend to pass through p. When we extend an as-
cending arc at p, we add the edge connecting p to the highest
vertex in the slab from which the arc approached p.

Ascending disks. The intersection curves and ascending
arcs decompose the ascending 2-manifolds into quadrangles.
The lowest point of a quadrangle is the 1-saddle at which the
2-manifold is rooted. This 1-saddle is connected to 2-saddles
by two continuous intersection curves emanating from the 1-
saddle, and the 2-saddles are connected to a common maxi-
mum along ascending arcs. We now construct the individual
quadrangles, which then fit together to form the ascending 2-
manifold. Each quadrangle is constructed in a process sim-
ilar to that for the descending disks. In this case, the frozen
part of the boundary occurs when the boundary of the quad-
rangle meets either an intersecting curve or an ascending arc.
Edges and vertices on these curves and arcs are frozen, ex-
cept for the vertices where we transition from frozen to un-
frozen edges, which are considered unfrozen. The process
also maintains a property similar to the Disk Invariant with
the inequality reversed.

The starting of an ascending quadrangle has already been
prepared in the descending step. Let p = p; be a 1-saddle.
The ascending disk at p meets the continent in a circle, this
circle is cut into a collection of segments by the descending
disks that pass through p, and the cone of p over each seg-
ment is the initial portion of a quadrangle. The endpoints
of these segments lie on intersection curves. To discuss the
expansion of an ascending quadrangle, suppose that p is the
lowest point on its unfrozen boundary. In this case, the pic-
ture is dual to that of Figure 6: the two adjacent points on
the boundary of the quadrangle either both lie in the conti-
nent of p or one lies in the continent and the other is frozen
in the ocean. These points all lie in a single slab. In the
first case, connect both points to the highest point in the slab
that contains them, using the same algorithm that we used
in the descending case. In the latter case, connect the single
point to the point of the slab where the ascending arc or in-
tersection curve emerges in the continent. Clearly, for this
to be possible, we have to choose the intersection curves and
ascending arcs carefully. We discuss this next.



Simultaneous construction. As in the descending case,
we may actually construct intersection curves, ascending
arcs and ascending quadrangles all in a single pass from bot-
tom to top without resolving multiple saddles into simple
ones. To see how this goes, consider a multiple saddle p = p;
with By + 1 oceans and 3, + 1 continents. We process p in
six steps:

Step 2. 1. Start3; ascending 1-manifolds.

Step 2. 2. Startintersection curves.

Step 2.3. Start 3, ascending disks.

Step 2. 4. Extend ascending arcs that touch p.

Step 2.5. Extend intersection curves that touch p.
Step 2. 6. Extendascending quadrangles that touch p.

In Step 2.1, we choose one arc for each continent and pair
these ensuring that each pair of arcs is dual to a unique de-
scending disk that we started at p. In Step 2.2, we start as-
cending intersection curves by connecting p to the gateways
in its link. Due to paths and circles folding onto each other,
several paths may cross several circles at one and the same
gateway, and we start an intersection curve for each pair.
Two contiguous gateways along a circle delimit the starting
segment of an ascending quadrangle. In Step 2.3, we start
the quadrangle by forming the cone of p over the segment.
To do Step 2.4, we note that each ascending arc that passes
through p enters the lower link in either a single slab or on
the boundary between two slabs, which is necessarily part
of a descending disk. We continue the arc by choosing the
highest point in the corresponding slab or the highest pointin
the boundary between the two slabs. In the former case, we
maintain simulated disjointness from the descending disks
and in the latter we maintain tangency. To do Step 2.5, we
continue the intersection curve by choosing the highest point
in the upper link of p that lies on the correct descending disk.
Step 2.6 is now clear, following the procedure for expanding
an ascending quadrangle described above.

8 Discussion

This paper introduces the Morse-Smale complex for a func-
tion over a 3-manifold as a decomposition of the 3-manifold
into crystals with quadrangular faces. It also gives an algo-
rithm to construct a quasi Morse-Smale complex for a piece-
wise linear function that guarantees structural correctness.
Letting n be the number of vertices in the input triangulation,
the running time is proportional to n log n plus the size of the
input triangulation plus the total size of the output manifolds
describing the quasi Morse-Smale complex.

Many interesting issues still remain open. We can trans-
form the quasi Morse-Smale complex into the Morse-Smale
complex by applying a sequence of operations called han-
dle slides. As described for 2-manifolds in [7], using this
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approach we obtain a Morse-Smale complex that is numer-
ically as accurate as the local rerouting operations used to
control handle slides. For 3-manifolds, it is unclear how to
find and order the handle slides that bring us closer to the
Morse-Smale complex. It is also useful to have a hierarchi-
cal representation of the Morse-Smale complex while work-
ing with large data sets. We can create such a hierarchy by
performing a sequence of cancellations of pairs of critical
points ordered by persistence [8]. The details of this simpli-
fication process as applied to a quasi Morse-Smale complex
still have to be investigated.

References

[1] H. BLum. Models for the Perception of Speech and Visual
Form. MIT Press, Cambridge, 1967, 362-380.

C.L.BAJAJ, V. Pascuccl AND D. SCHIKORE. Fast isocon-
touring for improved interactivity. In “Proc. IEEE Sympos.
Vol. Viz., 1996”, 39-46.

(2]

[3] H. CARR, J. SNOEYINK AND U. AXEN. Computing con-
tour trees in all dimensions. In “Proc. 11th Ann. SIAM-ACM

Sympos. Discrete Algorithms, 2000, 918-926.
(4]

T. CULVER, J. KEYSER AND D. MANOCHA. Accurate com-
putation of the medial axis of a polyhedron. In “Proc. ACM

Sympos. Solid Model. Appl., 1999”7, 179-190.

D. P. DOBKIN AND M. J. LASzLoO. Primitives for the ma-
nipulation of three-dimensional subdivisions. Algorithmica 4
(1989), 3-32.

(5]

(6]

H. EDELSBRUNNER. Geometry and Topology for Mesh Gen-
eration. Cambridge Univ. Press, England, 2001.

H. EDELSBRUNNER, J. HARER AND A. ZOMORODIAN. Hi-
erarchical Morse-Smale complexes for piecewise linear 2-
manifolds. Discrete Comput. Geom., to appear.

[7]

[8] H. EDELSBRUNNER, D. LETSCHER AND A. ZOMORO-
DIAN. Topological persistence and simplification. Discrete

Comput. Geom. 28 (2002), 511-533.

A. GUEZIEC AND R. HUMMEL. Exploiting triangulated sur-
face extraction using tetrahedral decomposition. IEEE Trans.
Visualization Comput. Graphics 1 (1995), 328-342.

(9]

[10] L. GuiBAS, R. HOLLEMAN AND L. E. KAVRAKI. A proba-
bilistic roadmap planner for flexible objects with a workspace
medial axis based sampling approach. In “Proc. IEEE/RSJ

Intl. Conf. Intell. Robots Systems, 1999”, 254-260.

[11] W. E. LORENSEN AND H. E. CLINE. Marching cubes: a
high resolution 3D surface construction algorithm. Comput.

Graphics 21, Proc. SIGGRAPH 1987, 163-169.

[12] Y. MATSuUMOTO. An Introduction to Morse Theory. Trans-
lated from Japanese by K. Hudson and M. Saito, Amer. Math.

Soc., 2002.

[13] J. MILNOR. Morse Theory. Princeton Univ. Press, New Jer-

sey, 1963.



[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

J. R. MUNKRES. Elements of Algebraic Topology. Addison-
Wesley, Redwood City, California, 1984.

R. L. OGNIEWICZ. Skeleton-space: A multi-scale shape
description combining region and boundary information. In
“Proc. Comput. Vision Pattern Recogn., 1994”, 746-751.

V. PAscuccl AND K. COLE-MCLAUGHLIN. Efficient com-
putation of the topology of level sets. Algorithmica, to appear.

G. REEB. Sur les points singuliers d’une forme de Pfaff
complétement intégrable ou d’une fonction numérique.
Comptes Rendus de L’Académie ses Séances, Paris 222
(1946), 847-849.

D. SHEEHY, C. ARMSTRONG AND D. ROBINSON. Shape
description by medial axis construction. IEEE Trans. Visual-
ization Comput. Graphics 2 (1996), 62-72.

A. SHEFFER, M. ETZION, A. RAPPOPORT AND M. BER-
COVIER. Hexahedral mesh generation using the embedded
\Voronoi graph. Engineering Comput. 15 (1999), 248-262.

D. STORTI, G. TURKIYYAH, M. GANTER, C. LIM AND
D. STAL. Skeleton-based modeling operations on solids. In
“Proc. ACM Sympos. Solid Model. Appl., 19977, 141-154.

S. TARASOV AND M. N. VYyALI. Construction of contour
trees in 3D in O(n log n) steps. In “Proc. 14th Ann. Sympos.
Comput. Geom., 1998”, 68-75.

M. VAN KREVELD, R. VAN OOSTRUM, C. BAJAJ, V. PAS-
cuccl AND D. SCcHIKORE. Contour trees and small seed sets
for iso-surface traversal. In “Proc. 13th Ann. Sympos. Com-
put. Geom., 19977, 212-220.

J. WILHELMS AND A. VAN GELDER. Topological consider-
ation in iso-surface generation. ACM Trans. Comput. Graph-
ics 24 (1990), 57-62.

A.Y.Wu, S. K. BHASKAR AND A. ROSENFELD. Compu-
tation of geometric properties from the medial axis transform
in O(n1g n) time. Comput. Vision, Graphics, Image Process.
34 (1986), 76-92.

11



