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Abstract

The Jacobi set of two Morse functions defined on a common � -
manifold is the set of critical points of the restrictions of one func-
tion to the level sets of the other function. Equivalently, it is the
set of points where the gradients of the functions are parallel. For a
generic pair of Morse functions, the Jacobi set is a smoothly embed-
ded 1-manifold. We give a polynomial-time algorithm that com-
putes the piecewise linear analog of the Jacobi set for functions
specified at the vertices of a triangulation, and we generalize all
results to more than two but at most � Morse functions.

Keywords. Differential and computational topology, Morse func-
tions, critical points, level sets, Betti numbers, algorithms.

1 Introduction

This paper is a mathematical and algorithmic study of mul-
tiple Morse functions, and in particular of their Jacobi sets.
As we will see, this set is related to the Lagrange multiplier
method in multi-variable calculus of which our algorithm
may be viewed as a discrete analog.

Motivation. Natural phenomena are frequently modeled
using continuous functions, and having two or more such
functions defined on the same domain is a fairly common
scenario in the sciences. Consider for example oceanography
where researchers study the distribution of various attributes
of water, with the goal to shed light on the ocean dynamics
and gain insight into global climate changes [4]. One such
attribute is temperature, another is salinity, an important in-
dicator of water density. The temperature distribution is of-
ten studied within a layer of constant salinity, because water
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tends to mix along but not between these layers. Mathemat-
ically, we may think of temperature and salinity as two con-
tinuous functions on a common portion of three-dimensional
space. A layer is determined by a level surface of the salinity
function, and we are interested in the temperature function
restricted to that surface. This is a continuous function on
a two-dimensional domain, whose critical points are generi-
cally minima, saddles, and maxima. In this paper, we study
the paths these critical points take when the salinity value
varies. As it turns out, these paths are also the paths the crit-
ical points of the salinity function take if we restrict it to the
level surfaces of the temperature function. More generally,
we study the relationship between continuous functions de-
fined on a common manifold by analyzing the critical points
within level set restrictions.

Sometimes it is useful to make up auxiliary functions to
study the properties of given ones. Consider for example a
function that varies with time, such as the gravitational po-
tential generated by the sun, planets, and moons in our solar
system [18]. At the critical points of that potential, the grav-
itational forces are at an equilibrium. The planets and moons
move relative to each other and the sun, which implies that
the critical points move, appear, and disappear. To study such
a time-varying function, we introduce another, whose value
at any point in space-time is the time. The paths of the criti-
cal points of the gravitational potential are then the Jacobi set
of the two functions defined on a common portion of space-
time.

Results. The main object of study in this paper is the Ja-
cobi set �	�
����
�����
�������������
���� of �����! #" Morse func-
tions on a common " -manifold. By definition, this is the
set of critical points of 
�� restricted to the intersection of
the level sets of 
$� to 
%� . We observe that � is symmet-
ric in the �&�'� functions because it is the set of points
at which the �(�)� gradient vectors are linearly dependent.
In the simplest non-trivial case, we have two Morse func-
tions on a common 2-manifold. In this case, the Jacobi set
�(�*����
+�-,.���/�0�1,2��
3� is generically a collection of pairwise
disjoint smooth curves that are free of any self-intersections.
Figure 1 illustrates the concept for two Morse functions on



the two-dimensional torus. The Jacobi set of a generic col-
lection of � � � Morse functions is a submanifold of dimen-
sion � , provided " ��� ��� � . The first time this inequality
fails is for " � �(� � ��� . In this case, the Jacobi set is a
3-manifold except at a discrete set of points.

Figure 1: The two partially bold and partially dotted longitudinal
circles form the Jacobi set of �
	���
������ , where � is the torus
and � and � map a point ����� to the Cartesian coordinates of its
orthogonal projection on a plane parallel to the longitudes.

We describe an algorithm that computes an approximation
of the Jacobi set for � � � piecewise linear functions that are
interpolated from values given at the vertices. In the absence
of smoothness, it simulates genericity and differentiability
and computes � as a subcomplex of the triangulation. The al-
gorithm is combinatorial (as opposed to numerical) in nature
and reduces the computations to testing the criticality of the
� -simplices in the triangulation. Whether or not a simplex is
considered critical depends on its local topology. By using
Betti numbers to express that topology, we get an algorithm
that works for triangulated manifolds and runs in time that is
polynomial in the number of simplices. Assuming the links
have sizes bounded from above by a constant, the running
time is proportional to the number of simplices.

Related prior work. The work in this paper fits within the
general area of singularities of smooth mappings, which was
pioneered by Hassler Whitney about half a century ago; see
eg. [19]. In this body of work, the fold of a mapping from a
" -dimensional manifold ��� to a ��� �*��� -dimensional mani-
fold � ����� is the image of the set of points at which the matrix
of partial derivatives has less than full rank. In this paper,
we consider ��� ����� -tuplets of Morse functions, which are
special smooth mappings in which the range is the ��� � ��� -
dimensional Euclidean space, � ����� . The fold of such a spe-
cial mapping is the image of the Jacobi set. Our restriction
to Euclidean space is deliberate as it furnishes the framework
needed for our algorithm.

Whitney considered the case of a mapping between sur-
faces and studied mappings where " is small relative to � . A
classic theorem in differential topology is the Whitney Em-
bedding Theorem which states that a closed, orientable man-
ifold of dimension � can always be embedded in �! #" . Thom
extended the work of Whitney, studying the spaces of jets
(two functions have the same � -jet at $ if their partial deriva-
tives of order � or less are equal). The Thom Transversality

Theorem, together with the Thom-Boardman stratification of%'&
functions on � , give characterizations of the singular-

ities of generic functions [11]. Mather studied singularities
from a more algebro-geometric point of view and proved the
equivalence of several definitions of stability for a map (a
concept not used in this work). In particular he provided the
appropriate framework to reconstruct a map from its restric-
tions to the strata of the Thom-Boardman stratification.

In a completely different context, Nicola Wolpert used Ja-
cobi curves to develop exact and efficient algorithms for in-
tersecting quadratic surfaces in �)( [20]. She does so by re-
ducing the problem to computing the arrangement of the in-
tersection curves projected to �) . Any such curve can be
written as the zero set of a smooth function �* ,+-� , and
any pair defines another curve, namely the Jacobi set of the
two functions. Wolpert refers to them as Jacobi curves and
uses them to resolve tangential and almost tangential inter-
sections. To be consistent with her terminology, we decided
to modify that name and to refer to our more general concept
as Jacobi sets.

Outline. Section 2 reviews background material from dif-
ferential and combinatorial topology. Section 3 introduces
the Jacobi set of two Morse functions. Section 4 describes
an algorithm that computes this set for piecewise linear data.
Section 5 generalizes the results to three or more Morse func-
tions. Section 6 discusses a small selection of applications.
Section 7 concludes the paper.

2 Background

This paper contains results for smooth and for piecewise
linear functions. We need background from Morse theory
[15, 16] for smooth functions and from combinatorial and
algebraic topology [1, 17] for designing an algorithm that
works on piecewise linear data.

Morse functions. Let � be a smooth and compact " -
manifold without boundary. The differential of a smooth
map 
/.0�1+2� at a point 3 of the manifold is a linear
map 4 
�56.870�95:+;� mapping the tangent space at 3 to� . A point 3=<>� is critical if 4 
�5 is the zero map; oth-
erwise, it is regular. Let ?-�A@ be a Riemannian metric, i.e.
an inner product in the tangent spaces that varies smoothly
on � . Since each vector in 70�B5 is the tangent vector to a
curve C in � through 3 , the gradient D(
 can be defined by
the formula ?FEGCIHJEGK �AD(
L@ ��E0� 
NMOC��#HJEGK , for every C . It is
always possible to choose coordinates 3LP so that the tangent
vectors QQ 5SR �T3+� are orthonormal with respect to the Rieman-
nian metric. For such coordinates, the gradient is given by
the familiar formula

D(
 �U3+� �
V E3
EG33� �U3+� � E3
EG3  �T3+� ��������� E2
EG3 � �T32�XW �
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We compute in local coordinates the Hessian of 
 :

��� �U3+� �

���
�

Q�� �Q 5 � � �U3+� ����� Q�� �Q 5
	 Q 5 � �U3+�
...

. . .
...Q�� �Q 5 � Q 5�	 �U3+� ����� Q�� �Q 5 � 	 �U3+�

�
��
� �

which is a symmetric bi-linear form on the tangent space70� 5 . A critical point $ is non-degenerate if the Hessian
is non-singular at $ . The Morse Lemma states that near a
non-degenerate critical point $ , it is possible to choose local
coordinates so that the function takes the form


 �T3 � ��������� 3 � � � 
 � $2��� 3  � �*������� 3  � �
The number of minus signs is the index of $ ; it equals the
number of negative eigenvalues of

��� � $+� . The existence of
these local coordinates implies that non-degenerate critical
points are isolated. The function 
 is a called a Morse func-
tion if

(i) all its critical points are non-degenerate, and

(ii) 
 � $+���� 
 ���%� for all critical points $����� .
Transversality and stratification. Let � .���+�� be a
smooth map between two manifolds, and let ��� � be a
smooth submanifold. The map � is transversal to � if for
every ! <"� and every 3 <"�$# � �%! � , we have 4&� 5 �U7'� 5 ���7'�)( � 7'�*( . In words, the basis vectors of the image of the
tangent space of � at 3 under the derivative together with
the basis vectors of the tangent space of � at ! �+� �U3+� span
the tangent space of � at ! . The Transversality Theorem of
differential topology asserts that if � is transversal to � then�,# � �%� � is a smooth submanifold of � and the co-dimension
of � # � �%� � in � is the same as that of � in � [12].

A continuous family connecting two Morse functions nec-
essarily goes through transitions at which the function vio-
lates conditions (i) and (ii) of a Morse function. We are in-
terested in the minimum number of violations that cannot be
avoided. For this purpose, consider the infinite-dimensional
Hilbert space

% & �T� � of smooth functions � + � . There
is a stratification

%G& �U� �/� % �.- % �+- %  , in which% � � % � is the set of Morse functions,
% � � %  is the set of

functions that violate either condition (i) or (ii) exactly once,
and

%  is the set of remaining functions. The set
% � � % �

is a submanifold of co-dimension 0,
% � � %  is a subman-

ifold of co-dimension 1, and
%  has co-dimension 2. As an

illustration of how we use the stratification, take two Morse
functions 
 and , and consider the 1-parameter family of
functions /10 � 
 �32.,�. � + � . We can perturb one of the
functions such that4 
 and 
(� , are both Morse,4 all /10 belong to

% � � %  , and4 the 1-parameter family is transversal to
% �O� %  .

If follows that /10 belongs to
% � � %  for only a discrete

collection of values for 2 . We use this later to prove the
transversality of certain maps, which will then put us into
the position to apply the Transversality Theorem.

Triangulations. A � -simplex is the convex hull of � � �
affinely independent points. Given two simplices 5 and 6 ,
we write 6  75 if 6 is a face of 5 . A simplicial complex
is a finite collection 8 of simplices that is closed under the
face relation such that the intersection of any two simplices
is either empty or a face of both. A subcomplex of 8 is a
subset that itself is a simplicial complex. The closure of a
subset 9:�;8 is the smallest subcomplex <)=>9;�;8 that
contains 9 . The star of a simplex 66<+8 is the collection
of simplices that contain 6 , and the link is the collection of
faces of simplices in the closure of the star that are disjoint
from 6 : ?A@

6 � B�5 <C8EDF6  G5IH$�J�K 6 � B>L�<M<)=
?N@
6MD
LPOQ6 �SRNH �

The vertex set of 8 is denoted by TVUXW
@
8 . The underlying

space is the union of simplices: DDY8:DD �[Z]\A^`_35 . The inte-
rior of a simplex 5 is the set of points that belong to 5 but not
to any proper face of 5 . Note that each point of DDY8aDD belongs
to the interior of exactly one simplex in 8 . We specify a
piecewise linear continuous function by its values at the ver-
tices. To describe this construction, let b .cTVUXW

@
8 + � be

a function defined on the vertex set. Each point 3 <aDDY8:DD
has barycentric coordinates d�e �fdIe �U3+� <�� such thatg dIeih � 3 ,

g dje � � , and dIe �lk unless h is a ver-
tex of the simplex whose interior contains 3 . The linear
extension of b is the function 
 .mDDY8aDD + � defined by

 �T32� � g e d e �T3+�nb �T3+� . It is continuous because the mapsd e are continuous.

The simplicial complex 8 is a triangulation of a manifold� if there is a a homeomorphism DDY8aDD
+ � . In this case, the
link of every � -simplex triangulates a sphere of dimension
"!� � � � . We will extend the concept of a critical point from
smooth to piecewise linear functions using subcomplexes of
links. Assuming 
 ��h2�o��#
 ��p � for any two vertices hq��:p
in 8 , the lower star of h consists of all simplices in the star
that have h as their highest vertex, and the lower link is the
portion of the link that bounds the lower star. Note that both
the link and the lower link are always complexes.

Homology groups and Betti numbers. In the piecewise
linear case, we use the topology of the lower link to define
whether or not we consider a vertex critical, and we express
that topology using ranks of homology groups for r  coef-
ficients. To explain this, let 8 be a simplicial complex. A
� -chain is a subset of the � -simplices, and adding two � -
chains means taking their symmetric difference. The set of
� -chains together with addition forms the group of � -chains,
denoted as s0� . The boundary of a � -simplex is the set of its
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��� � ��� -simplices. This defines a boundary homomorphismE.��.cs�� + s � # � obtained by mapping a � -chain to the sum
of boundaries of its � -simplices. Since we aim at reduced ho-
mology groups, we extend the list of non-trivial chain groups
by adding s # � �qr  and defining the boundary of a vertex
as E � �%h3� � � . The boundary homomorphisms connect the
chain groups as illustrated in Figure 2. A � -cycle is a � -

12
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Figure 2: The chain complex formed by the chain groups and the
connecting boundary homomorphisms.

chain with zero boundary, and a � -boundary is the boundary
of a ��� � � � -chain. The corresponding groups are nested
subgroups of the group of � -chains:

� �  �� �  :s � . The
� -th reduced homology group is the quotient defined by the
� -cycles and the � -boundaries:

�� � ��� � D � � . The � -th re-
duced Betti number is the rank of the � -th reduced homology
group:

�� � � W	��
 K �� � . Since we add modulo 2, all groups
are finite and

�� � is the binary logarithm of the size of
�� � .

The reduced homology groups differ from the more common
non-reduced versions only in dimensions 0 and � � . Specif-
ically,

�� � is one less than the number of components, unless
the complex is empty, in which case

�� � �[k , and
�� # �(� k

unless the complex is empty, in which case
�� # � � � .

The main reason for preferring reduced over non-reduced
homology groups is their simpler correspondence to spheres.
The ��" �/� � -sphere is the set of points at unit distance from
the origin of the " -dimensional Euclidean space: � � # � �BS3�< �)� D�
�3�
 � � H . To triangulate � � # � we may take
the set of proper faces of a " -simplex. Note that � # � is the
empty set, which is triangulated by the empty complex. The
� " � ��� -sphere has only one non-zero reduced Betti number,
namely

�� � # � � � , and this is true for all "��+k . In contrast,
the reduced Betti numbers of a point all vanish.

3 Jacobi Sets of Two Functions
In this section, we consider the Jacobi set of a pair of Morse
functions defined on the same manifold.

Definition of Jacobi sets. Let � be a smooth " -manifold
and choose a Riemannian metric so that we can define gra-
dients. We assume "�� � and consider two generic Morse
functions, 
+� , . � + � . We are interested in the restric-
tions of 
 to the level sets of , . For a regular value K < � ,
the level set ���!� ,1# � �UK-� is a smooth � "9��� � -manifold,
and the restriction of 
 to this level set is a Morse function


�� . ���N+ � . The Jacobi set � � ��� 
+� , � is the closure of
the set of critical points of such level set restrictions:

� � � =`BS3 <9� D 3 is critical point of 
 � H�� (1)

for some regular value K8<B� . The closure operation adds the
critical points of 
 restricted to level sets at critical values K
as well as the critical points of , , which form singularities in
these level sets. Figure 3 illustrates the definition by showing
� for two smooth functions defined on the two-dimensional
plane. Think of the picture as a cone-like mountain indicated
by the (dotted) level curves of 
 , and imagine an animation
during which the (solid) level curves of , glide over that
mountain. For example, on the left we see a circle expanding
outwards on a slope, and we observe a maximum moving up-
hill and a minimum moving downhill from the starting point,
which is a minimum of , .

Figure 3: The functions � and � are represented by their dotted and
solid level curves. The Jacobi set is drawn in bold solid lines. The
birth-death points and the critical points of the two functions are
marked.

Consider the gradient of the two functions at a point 3 :D(
 �T3+� �AD ,3�T3+��< � � . Let K � ,2�U3+� . Then the gradient of

 � at 3 < � � �),1# � �UK-� is the projection of D(
 �T3+� onto the
tangent space of � � at 3 . It follows that D(
 � �U3+� �.k iff the
two gradient vectors are parallel. In other words,

� � BS3 <9� D�D(
 �T32� � 2 D ,3�T3+� �+k or2GD 
 �U3+�0�,D ,3�T3+� ��k H � (2)

for some 2 < � . The first relation in (2) misses the cases in
which D ,3�T32� � k and D(
 �T32� �� k . The only reason for the
second relation is to capture these cases. The description of
� in Equation (2) is symmetric in 
 and , : ��� 
+� , � � ��� ,+� 
3� .
We therefore call the points of � simultaneous critical points
of 
 and , . Note that D(
(� 2GD , is the gradient of the func-
tion 
 �Q2 , . Equation (2) thus implies yet another character-
ization of the Jacobi set:

� � BS3 <9� DJ3 is critical point of


(� 2., or of 2 
(�!, H � (3)

for some 2 <�� . This formulation should be compared with
the Lagrange multiplier method in which 2 is treated as an
indeterminant.
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Critical curves. Generically, 
 � has a discrete collection
of critical points, and these points sweep out � as K varies.
It follows that � is a one-dimensional set. We strengthen
this observation and prove that the Jacobi set is a smoothly
embedded 1-manifold in � . This follows form the stratifica-
tion of the Jacobi set described in [11], which we will sketch
in Section 5. For completeness, we give a direct proof that
avoids the more advanced concepts needed to prove the more
general result.

SMOOTH EMBEDDING THEOREM. Generically, the Jacobi
set of two Morse functions 
+� ,�.�� + � is a smoothly
embedded 1-manifold in � .

PROOF. Assume � is a " -manifold, for " � � , and consider
the functions � � � . �����:+ � � that map a point 3 < �
and a parameter 2 <B� to the gradients of 
 �P2., and 2 
 �(, :

� �T3�� 2+� � D(
 �T32��� 2 D ,3�T32� �� �T3 � 2 � � 2GD(
 �T3+�0�,D ,3�T32� �
By Equation (2), a point 3 belongs to � iff there is a 2�<� such that � �T3 � 2 � � k or

� �U3 � 2 � � k . Letting ��� ��,# � ��k � and ��� � � # � ��k � , we get � by projecting onto � :

� � � ���9�	 	
� � � � and

� � � �
�9�	 	
� � � � �

We have �*� ���
�&��� , where ��� is � minus the discrete
set of points where D ,3� $2�/� k , and ��� is � minus the
points where D 
 � $+� �lk . We prove that � is transversal
to 0 or, equivalently, that for every � $�� 2+� <a��# � ��k$� , the
derivative of � at � $ � 2+� has rank " . We compute 4c������� 0�� �� � � � 0��.� $2� � D ,3� $2��� , where the Hessian is a " -by- " matrix.
As mentioned in Section 2, we can assume that all func-
tions /10/� 
&�.2., are in

% �N� % � , except for a discrete
number, which are in

% � � %  . The former have only non-
degenerate critical points, so the Hessian itself already has
rank " . Let 2 � be a value for which / 0�� is not Morse. If
there are two critical points sharing the same function value,
then the Hessian is still invertible and there is nothing else to
show. Otherwise, there is a single birth-death point $ � , and
we write C ���a/10 � � $ ��� . There exist local coordinates such
that $ � � ��k � k ������� � k � , 2 � �+k , and

/10+� $+� � C � � 3 ( � ��2 32� � 3   �/�����
� 3  �
� 2�� � 32��� � �UC � � 3 ( � � 3   �*�����
� 3  � �

in a neighborhood of � $+��� 2 ��� . Note that this implies ,2� $+� �� 32� . We can write the Hessian and the gradient explicitly
and get

4&����� � � 0 � � �

����
�
k k ����� k � �k � � ����� k k
...

...
. . .

...
...k k �����E� � k

�
���
� �

This matrix has rank " . Since k < � � has co-dimension " ,
the Transversality Theorem now implies that ��� �.�,# � ��k �
is a smooth 1-manifold in � � � . We still need to prove
that the projection of this 1-manifold is smoothly embedded
in � . Let ! ."� � + � be defined by ! � $ � 2+� � $ . We show
that ! is one-to-one and 4#!������ 0�� ��qk for all � $�� 2+� <$� � . If
! � $�� 2+� �%! � $�&�� 2�& � then $ �/$�& and D(
 � $+� � 2GD ,3� $2� �D(
 � $+� � 2'& D ,2� $+� � k . Since D ,3� $2�P��[k on ��� , 2 � 2'&
so the projection is injective. To prove that the derivative 4#!
of ! is non-zero, note that the tangent line to �(� at � $�� 2+� is
the kernel of 4&������� 0�� � � � � � 0�� � $+� �AD ,2� $+�)� . If 4#! is zero at
� $�� 2+� , then this tangent line must be vertical, spanned by the
vector p�� ��k ������� � k ����� . But since D ,2� $+� �� k , p cannot be
in the kernel of 4&� � $ � 2+� .

By symmetry, everything we proved for � also holds for�
. This concludes our proof that generically, � is a smoothly

embedded 1-manifold in � .

4 Algorithm
In this section, we describe an algorithm that computes an
approximation of the Jacobi set of two Morse functions from
approximations of these functions. We begin by laying out
our general philosophy and follow up by describing the de-
tails of the algorithm.

General approach. In applications, we never have smooth
functions but usually non-smooth functions that approximate
smooth functions. We choose not to think of the non-smooth
functions as approximations of smooth functions. Quite
the opposite, we think of the non-smooth functions as be-
ing approximated by smooth functions. The relatively sim-
ple smooth case then becomes the guiding intuition in de-
signing the algorithm that constructs what one may call the
Jacobi set of the non-smooth functions. To be more spe-
cific, let 8 be a triangulation of a " -manifold � and letb �+* .iTVUXW

@
8 + � be two functions defined at the vertices.

We obtain 
+� , .*DD 8aDD!+ � as piecewise linear extensions
of b and * . We imagine that both piecewise linear functions
are limits of series of smooth functions: =-,/. "10 & 
 " � 
 and=-,/. "20 & , " � , . For each � , the Jacobi set � " � ��� 
 " �-, " �
is perfectly well defined, and we aim at constructing the Ja-
cobi set of 
 and , as the limit of the � " . Along the way, we
will take some liberties in resolving the ambiguities in what
this means exactly. As a guiding principle, we resolve am-
biguities in a way consistent with the corresponding smooth
concepts that arise in the imagined smooth approximations
of 
 and , . We call this principle the simulation of differ-
entiability and combine it with the simulation of simplicity
[9] to put ourselves within the realm of generic smooth func-
tions.

After constructing the Jacobi set of 
 and , , we may need
to resolve the result into something whose structure is con-
sistent with that of its smooth counterpart. Most importantly,
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the algorithm will generally construct a one-dimensional
subcomplex � of 8 in which edges have positive integer
multiplicities. We will prove that � can be unfolded into a
union of disjoint closed curves in which all edges have mul-
tiplicity one. In other words, we can indeed think of � �qDD��mDD
as the limit of a series of smoothly embedded 1-manifolds.

Edge selection. We compute � by tracing the critical points
of the 1-parameter family of functions / 0 �)
 �G2 , . In the
piecewise linear limit, the set of critical points is generically
a collection of vertices. With varying 2 , the critical points
move to other vertices and, in the limit, that movement hap-
pens along the edges of 8 and at infinite speed. Instead of
keeping track of the critical points and their movements, we
construct � as the union of edges along which the critical
points move. In other words, we decide for each edge how
many critical points move from one endpoint to the other,
and we let � be the collection of edges for which this num-
ber is positive. We then make � a subcomplex by adding the
endpoints of the edges to the set. Note that we do not have to
repeat the construction for the family 2+
 �!, . By definition,
the Jacobi set is the underlying space of this subcomplex:
� � DD���DD .

Let h1p be an edge of 8 , and let 2 � 2 e�� be the moment
at which the function values at h and p are the same. At
this moment, we have / 0 �%h3� � / 0 �%p.� and therefore 2 e�� �� 
 �%p.� � 
 ��h2�)�TH � ,3�%h3� � ,3�%p.� � . In order for a critical point to
travel along the edge from h to p or vice versa, the entire
edge must be critical for 2 �S21e�� . We express this condition
by considering the link of h , which is a triangulation of the
� " � � � -sphere. Let � be the restriction of / 0���� to that link.

CRITICAL EDGE LEMMA. The edge h p belongs to � iff p
is a critical point of � . Moreover, the multiplicity of h p
in � is the multiplicity of p as a critical point of � .

We describe shortly how we decide whether or not a vertex is
critical and, if it is critical, how we compute its multiplicity.
For both operations, it suffices to look at the lower link ofp in the link of h . Note that the link of p in the link of h
is the same as the link of h1p in 8 , and that � is defined at
all vertices of this link as well as at p . We can therefore
construct the lower link of h1p as the subcomplex induced by
the vertices � whose function values are smaller than that ofp . We denote this lower link as

J�K h p and note that it is the
same as the lower link of p in the link of h . This formulation
makes it obvious that the test of the edge h p is symmetric inh and p . We implement the Critical Edge Lemma as follows:

integer ISJACOBI � Edge h1p �2�� � 
 ��p � �!
 �%h3���UH � ,3�%h3� � ,3�%p.��� ;J�K h p(� B>69< J�K h pPD	�) 6 ��
 /10+��� ��
�/10 ��p � H ;
return ISCRITICAL � J K h1p � .

As described shortly, Function ISCRITICAL returns 0 if the
lower link of h1p is that of a regular point, and it returns the
multiplicity of the criticality otherwise.

Criticality and multiplicity. The smooth analogue of a
vertex link is a sufficiently small sphere drawn around a point3 of the manifold � . If � is a " -manifold the dimension of
that sphere is "�� � . The analogue of the lower link is the
portion of that sphere where the value of the function is less
than or equal to the value at 3 . assuming smoothness, the
topology of this portion is the same for all sufficiently small
spheres, and assuming a Morse function, it has either the ho-
motopy type of a point or that of a sphere. In the former case,3 is regular, and in the latter case, 3 is critical. The dimen-
sion of the sphere is one less than the index of 3 . This sug-
gests we use the reduced Betti numbers of the lower link to
classify vertices in a triangulation as shown in Table 1. The

������ ���� ���� ���� �����
regular 0 0 0 0

�����
�

1 0 0 0
�����

�
0 1 0 0

�����
�

0 0 1 0
�����

�
0 0 0 1

�����
����� ����� ����� ����� ����� �����

Table 1: Classification of vertices into regular points and simple
critical points (identified by their index) using the reduced Betti
numbers of the lower link.

multiplicity of a vertex h is the sum of reduced Betti numbers
of its lower link: ! �%h3� � g ��" � �� � # � . Table 1 shows only
the regular point, which has multiplicity 0, and the simple
critical points, which have multiplicity 1. All other points
may be thought of as accumulations of ! � � simple criti-
cal points. In small dimensions, it is easy to effectively un-
fold such a point into ! simple critical points. We illustrate
this for a vertex h in the triangulation of a 3-manifold. Its
link is a 2-sphere. We refer to the components of the lower
link as oceans and to the components of the complement as
continents. Because the multiplicity is at least 2, we have
! �%h3� � �� � �

�� � � � . There are
�� � � � oceans and

�� � � �
continents. As illustrated in Figure 4, we cut the link along
a circle that passes through exactly one ocean and one conti-
nent and meets each in a single interval. Next we replace h

uRuL

Figure 4: A 2-sphere with two (shaded) oceans and two continents
is cut to form two 2-spheres, whose structures are those of a simple
index-1 critical point on the left and a simple index-2 critical point
on the right.

by two vertices h$# and h�% and connect them to the respective
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side of the link and to each other. We have
�� ��#(� �� ��%!� �� �

and
�� � # � �� � % � �� � . To guarantee progress, we cut such that�� ��# � �� � # and

�� ��% � �� � % are both less than ! . This implies
that both are at least one, which is equivalent to avoiding the
creation of regular points and of minima and maxima. We
repeat the process until all vertices are simple critical points.
This happens after

�� � �
�� � ��� splits, which generate

�� � sim-
ple critical points of index 1 and

�� � simple critical points of
index 2. In summary, we compute the multiplicity of a vertex
by summing the reduced Betti numbers of its lower link:

integer ISCRITICAL � Complex 9 �
foreach ��� k do compute

�� � # � of 9 endfor;
return

g
��"+�

�� � # � .
To compute the reduced Betti numbers, we may use the
Smith normal form algorithm described in [17]. For coef-
ficients modulo 2, this amounts to doing Gaussian elimina-
tion on the incidence matrices, which takes a time cubic in
the number of simplices in 9 . Even for integer coefficients,
the worst-case running time is polynomial in the number of
simplices [13]. For manifolds of dimension "  �

, we get
the lower links as subcomplexes of spheres of dimension
"B� �  �� . For these we can use the significantly faster
incremental algorithm of [7], whose running time is ever so
slightly larger than proportional to the number of simplices
in the link.

Post-processing. The second step amounts to unfolding
the union of edges to a 1-manifold. Define the degree of
a vertex h as the number of edges in � that share h , where
we count each edge with its multiplicity. We use the fact that
every vertex has even degree. This is suggested by our anal-
ysis of � in the smooth case but needs a direct proof, which is
given below using an elementary parity argument. For good
piecewise linear approximations of smooth functions, most
vertices will have degree zero. If h has degree 2 or higher,
we glue the incident selected edges in pairs. For " � � , this
is done so that glued pairs do not cross at h .
EVEN DEGREE LEMMA. The degree of every vertex in � is

even.

PROOF. We consider a vertex h and the family of functions/10�� 
 ��2 , . For 2 � ��� , ! ��h2� is independent of 
 and
the same at both extremes. We increase 2 continuously from��� to ��� . Each time we pass a value 2 �.21e�� , the status
of the neighbor p changes from inside to outside the lower
link of h , or vice versa. The effect of this change on the
type of h depends on the type of p in the restriction of / 0
to
J�K h . Specifically, the multiplicity of h either increases or

decreases by the multiplicity of p in the lower link of h . For
example, if p is regular then the change has no effect, and if p
is a simple critical point then it either increases or decreases
! �%h3� by one. The number of operations, each counted with
multiplicity of p , is equal to the degree of h . Since we start

and end with the same multiplicity of h , we add and subtract
equally often, which implies that the degree is even.

5 Jacobi Sets of
�	��


Functions
We generalize the results of Sections 3 and 4 from two to
three or more functions defined on the same manifold.

Smooth case. Let � be a smooth " -manifold and choose
a Riemannian metric. Consider � � �  " Morse functions

 � � 
 � ������� ��
 � on � , and write �/� ��
 � � 
 � ����������
 � � .
� +� � ��� . The generic intersection of the level sets of 
  #"
of the 
JP is a � " ��
 � -dimensional smooth manifold. LetK � �TK �$�����������K������������ K-�%� be a � -vector of image values, where
the hat indicates that K�� is not in the vector. Generically, the
intersection of the corresponding level sets is a smooth � " �
� � -manifold: � � ��� P��� � 
 # �P �TK P � , and the restriction 
�� � of

�� to � � is a Morse function. We call a critical point of this
restriction a simultaneous critical point of � . The Jacobi set
� � ����� � is the closure of the set of simultaneous critical
points:

� � � =`BS3 <9� D 3 is critical point of 
 � � H$� (4)

for some index � and some � -vector K . Generically, the �
gradients D(
 P at a point 3�<9� � span the � -dimensional lin-
ear subspace of vectors normal to ��� at 3 , and 3 is a critical
point of 
�� � iff D 
����T32� belongs to this linear subspace. This
means that a direct definition of the Jacobi set is:

� � BS3 <B� D
W � 
 K 4�� 5  /�1H$� (5)

where 4��O5 is the " -by- ��� � ��� matrix whose columns are
the gradients of 
�� to 
%� at 3 . Equation (5) is symmetric in
the components of � , which implies that � is independent of
the ordering of the 
 P . The linear dependence of the �(� �
gradient vectors implies that for each 3 < � there is a gradi-
ent that can be written as a linear combination of the others:D(
����U3+� � g P��� � 2 P D(
 P �U3+� �7k . Since the combination of
gradients is the gradient of the corresponding combination
of functions, this implies

� � BI3 <�� D 3 is crit. pt. of 
��0��� P��� � 2 P 
 P H$� (6)

for some index � and some parameters 2 P . Generically, �
is swept out by a � -parameter family of discrete points. It
follows that � is a set of dimension � . Unfortunately, � is
not always a submanifold of � . Following [11], we define��� ��BI3�<=� D W	��
 K 4�� 5 � � � � �! AH . Clearly, � is
the disjoint union of the

�"�
for  � � . The Transversality

Theorem explained in Section 2 and the Thom Transversal-
ity Theorem [11, page 54] imply that

�"�
is a submanifold of� of co-dimension  .�# �� "8� �0� ��� for each  , not necessar-

ily a closed submanifold, however. Furthermore the closure
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of each
� �

is the union
� � � � � ��� � ����� , however it is not

necessarily a manifold. In particular, � � � = � � is a manifold
whenever

�  (and therefore every
�"�

for  � � ) is empty.
This happens as long as " 
  .�  �/"��	� �*� � , for  � � ,
since a negative co-dimension implies it is empty. This in-
equality is equivalent to " �6� � � � , and the first time it fails
is for a map from a � -manifold to � � .

Algorithm. Let 8 be a triangulation of the " -manifold �
and let b P .jTVUXW

@
8 + � be a function defined at the ver-

tices, for k) �  � . We obtain 
�P�.,DDY8:DD + � as the
piecewise linear extension of b)P , for each

�
. As in the case

of �&� � � � functions, we think of the 
 P as limits of
smooth functions and construct a � -dimensional subcomplex
� � 8 as the limit of the Jacobi sets of these smooth func-
tions. Specifically, we compute the multiplicity of every � -
simplex in 8 and define � as the collection of � -simplices
with positive multiplicity plus the collection of faces of these
� -simplices. By definition, the Jacobi set is the underlying
space of this subcomplex: � � DD��mDD .

As suggested by Equation (6), we introduce a � -parameter
family of functions / 0 � 
 � � g P��� � 2 P 
JP , where 2 �� 2 � ������� � �2 � ������� � 2 ��� . Next, we consider a � -simplex 5 with
vertices h � �nh � ���������nh � in 8 and let 2 \ be the � -vector such
that / 0�� ��h � � �./ 0�� ��h � � � ����� �S/ 0�� �%h � � . The link of 5 is
a triangulated � "O��� � ��� -sphere, and as before we construct
the lower link as the subcomplex induced by the vertices �
with function values smaller than those of the vertices of 5 .
Whether or not 5 belongs to � depends on the topology or,
more precisely, the reduced Betti numbers of the lower link:

integer ISJACOBI � � -Simplex 5 �
compute 2 �S2 \ ;J�K 5 � B>69< J�K 5�D	�  6 ��
 / 0 � � ��
�/ 0 �%h � � H ;
return ISCRITICAL � J K 5 � .

Function ISCRITICAL is the same as in Section 4. It is pos-
sibly surprising that the criticality test gets easier the more
functions we have, simply because the dimension of the link
decreases with increasing � .

6 Towards Applications

Different applications provide data in different ways and re-
quire different adaptations of the algorithm. To illustrate the
broad potential of the results presented in this paper, we dis-
cuss a few applications while emphasizing the diversity of
questions they raise.

Contours. Let � be a smoothly embedded 2-manifold in� ( and �B< �  an arbitrary but fixed viewing direction. The
contour is the set of points 3 <=� for which the viewing
direction belongs to the tangent plane: �B<�70��5 . We intro-
duce two functions, 
+�-, .�� + � , defined by 
 �T3+� �=?T3���� @

and ,2�U3+� � ?T3��#C @ , where � �AC�< �  are directions orthogo-
nal to � . Assuming CC�� ��� , 
 �U3+� and ,3�T32� are coordinates
of the projection of 3 along the viewing direction. As illus-
trated in Figure 1, the Jacobi set of 
 and , is exactly the
contour of � , and the projection of the contour is the fold of
the two maps. Note that �&� �0��
+� , � is a smoothly embed-
ded 1-manifold in � , whereas the fold can have singularities
such as cusps and self-intersections.

Suppose � is given by an approximating simplicial com-
plex 8 in � ( . The algorithm described in Section 4 amounts
to selecting the edges in 8 for which the plane parallel to
� that passes through the edge has both incident triangles on
one side. It has been observed experimentally that � approxi-
mates the contour geometrically but not necessarily topolog-
ically. Specifically, we can improve the geometric accuracy
of the approximation by subdividing 8 . In the process, spu-
rious cycles of the Jacobi set get smaller but they may not
disappear, not even in the limit [5]. This ‘topological noise’
is an artifact of the piecewise linear approximation and par-
ticularly common in hyperbolic regions, such as around the
inner longitudinal circle of the torus in Figure 1. We pose
the extension of the methods in [8] for measuring topologi-
cal noise to Jacobi sets as an open problem.

Protein interaction. An energy potential is a type of
smooth function common in the sciences. The correspond-
ing force relates to the potential like the gradient relates to
the smooth function. As an example, consider the forces that
are studied in the context of protein interaction, such as elec-
trostatics and van der Waals. The van der Waals potential
decays rapidly, possibly proportional to the sixth power of
the distance to the source, while the electrostatic potential
decays much slower, proportional to the distance. It is thus
believed that the electrostatic potential influences the inter-
action at an early stage, while the proteins are relatively far
apart, by steering them towards each other. Once in close
contact, the van der Waals force takes over, which may be
the reason why stable interactions require a good amount of
local shape complementarity [10]. It would be interesting to
put this hypothesis to a computational test in which we can
visualize the relationship between different energy potentials
through their Jacobi sets. Maybe the hypothesis is more true
for some and less for other proteins. On top of visualizing the
relationship, it would be useful to quantify the agreement and
disagreement between the potentials. It is not entirely clear
how to go about constructing such a test. The natural domain
for the mentioned potentials is �*( , but it might be more con-
venient to use two-dimensional domains, such as molecular
surfaces [6] and interfaces between proteins [2].

Solar system. Similar to the electrostatic potential, the
gravitational potential exerted by a heavenly body decays at
a rate that is proportional to the distance. At any moment
in time, the gravitational force acting on a point in our so-
lar system depends on its mass and the distance from the
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sun, the planets and the moons. Let � �=�)( ��� represent
space-time in our solar system and let ,6.*�-+ � be the
gravitational potential obtained by adding the contributions
of the sun, the planets and the moons. The function is smooth
except at the centers of the bodies, where , goes to infinity.
At a fixed time K , we have a map from �I( to � , which gener-
ically has four types of critical points. These points trace out
curves, which we model as the Jacobi set of , and a second
function 
 that maps every space-time point �T3 �#K-�0<B�)( �N�
to its time: 
 �U3 �#K-� �/K . Every level set of 
 is the gravita-
tional potential at some fixed moment in time, so it should
be obvious that ����
+�-,.� is indeed the 1-manifold traced out
by the critical points.

The Lagrange points used by NASA in planning the flight
paths of their space-crafts are related to these curves but
more complicated because they are defined in terms of the
interaction between the gravitational force and the momen-
tum of the moving space-craft. It would be interesting to see
whether the Lagrange points can also be modeled using the
framework of Jacobi sets.

7 Discussion

The main contribution of this paper is an algorithm that con-
structs the Jacobi set of a collection of piecewise linear con-
tinuous functions on a common triangulated manifold. The
crucial concept in the definition of the Jacobi set is the no-
tion of a critical point of a piecewise linear function. Our
decision to use reduced Betti numbers was in part guided
by computational convenience and feasibility. The weaker
definition based on the Euler characteristic of the lower link
used by Banchoff [3] is also possible but misses important
portions of the set. The stronger definition that requires the
thickened lower link of a regular point be homeomorphic to
a ball leads to an undecidable recognition problem for links
of dimension 5 or higher [14].

We conclude this section with a list of open questions
raised by the work presented in this paper. This list does
not include the questions stated in earlier sections.

4 The algorithm in Section 4 may be applied more gen-
erally than just to manifolds, such as for example to
homology manifolds. By definition, these cannot be
distinguished from manifolds if we classify links using
homology. What is the most general class of simplicial
complexes for which our algorithm is meaningful?4 Initial computational experiments indicate that coarse
triangulations lead to poor approximations of the Jacobi
set. This suggests we need an adaptive meshing method
that locally refines the triangulation depending on the
available information on the Jacobi set.4 Definition (5) of Jacobi sets extends to the case of � �
� � " Morse functions. According to [11], � has co-
dimension � �	" � � and thus dimension � "�� � � � .

What is the significance of the Jacobi set of � � � � "
Morse functions for scientific applications?4 Finally, it would be interesting to explore whether the
methods of this paper can be extended to more general
vector fields, in particular to smooth vector fields that
are not gradient fields.
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