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Abstract— We combine topological and geometric meth-
ods to construct a multi-resolution representation for a
function over a two-dimensional domain. In a prepro-
cessing stage, we create the Morse-Smale complex of
the function and progressively simplify its topology by
canceling pairs of critical points. Based on a simple notion
of dependency among these cancellations we construct a
hierarchical data structure supporting traversal and re-
construction operations similarly to traditional geometry-
based representations. We use this data structure to ex-
tract topologically valid approximations that satisfy error
bounds provided at run-time.

Index Terms— Critical point theory, Morse-Smale com-
plex, terrain data, simplification, multi-resolution data
structure.

I. INTRODUCTION

THE efficient construction of topologically and ge-
ometrically simplified models is a central problem

in visualization. This paper describes a hierarchical data
structure representing the topology of a continuous func-
tion on a triangulated surface. Examples of such data
are the distribution of the electrostatic potential on a
molecular surface or elevation data on a sphere (e.g.,
the Earth). The complete topology of the function is
computed and encoded in a hierarchy that provides fast
and consistent access to adaptive topological simplifica-
tions. Additionally, the hierarchy includes geometrically
consistent approximations of the function corresponding
to any topological refinement. In the special case of
a planar domain, the function can be thought of as
elevation and the graph of the function as a surface
in three-dimensional space. In this case our framework
creates a topology-based hierarchy of the geometry of
this surface.

A. Motivation

Scientific data often consists of measurements over
a geometric domain or space. We can think of it as a
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discrete sample of a continuous function over the space.
We are interested in the case in which the space is a
triangulated surface (with or without boundary).

A hierarchical representation is crucial for efficient
and preferably interactive exploration of scientific data.
The traditional approach to constructing such a represen-
tation is based on progressive data simplification driven
by a numerical error measurement. Alternatively, we may
drive the simplification process with measurements of
topological features. Such an approach is appropriate if
topological features and their spatial relationships are
more essential than geometric error bounds to understand
the phenomena under investigation. An example is water
flow over a terrain, which is influenced by possibly subtle
slopes. Small but critical changes in elevation may result
in catastrophic changes in water flow and accumulation.
Thus, our approach is distinctly different from one that
is purely driven by numerical approximation error. It
ensures that the topology of a function is preserved as
long as possible during a simplification process, which
is not necessarily the case with simplification methods
driven by approximation error.

B. Related work

The topological analysis of scalar valued scientific
data has been a long standing research focus. Morse-
theory-related methods have already been developed in
the 19th century [1], [2], long before Morse theory
itself was formulated, and hierarchical representations
have been proposed [3], [4] without making use of
the mathematical framework developed by Morse and
others [5], [6]. However, most of this research was lost
and has been rediscovered only recently. Most modern
research in the area of multi-resolution structures is
geometric and many techniques have been developed
during the last decade. The most successful algorithms
developed in that era are based on edge contraction
as the fundamental simplifying operation [7], [8] and
accumulated square distances to plane constraints as the
error measure [9], [10]. This work focused on triangu-
lated surfaces embedded in three-dimensional Euclidean
space, which we denote as

� 3 . We find a similar focus
in the successive attempts to include the capability to
change the topological type [11], [12].
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In the field of flow visualization, topological analysis
and topology based simplification originates with the
work of Helman and Hesselink [13]. They show how
to find and classify critical points in flow fields and
proposed a structure similar to the Morse-Smale complex
to analyze vector fields. Later methods to simplify this
complex based on different error bounds have been de-
veloped [14], [15], [16]. Unfortunately, computing such a
complex relies on numerical integration along inherently
unstable regions of the vector field and is therefore
limited to relatively small and clean data sets. For the
simpler case of piece-wise linear scalar valued functions
(whose gradients define a piece-wise constant flow-field)
we compute the topology in a symbolic manner which
is robust even in degenerate cases. Therefore, we can
compute Morse-Smale complexes for data sets with tens
of thousands of critical points compared to hundreds of
critical points in commonly used vector fields. Unlike
the method in [14] we maintain a consistent geometric
approximation of the topology. Furthermore, we avoid
creating higher-order criticalities as it is done in [15].
Additionally, our error bound is directly linked to the
approximation error, see Section V-A, and we provide
a multi-resolution hierarchy rather than a simplification
strategy.

To remove (spurious) topological features from all
level sets simultaneously, we interpret the critical points
of the function as the culprits responsible for topological
features that appear in the level sets [17], [18]. While
sweeping through the level sets we see that critical
points indeed start and end such features, and we use
the length of the interval over which a feature exists as
a measure of its importance. For the special case of two-
dimensional height fields this measure was first proposed
by Horman [19] and later adopted by Mark [20]. We
use the more general concept of persistence introduced
in [21], where the Morse-Smale complex of the function
domain occupies a central position. Its construction and
simplification is studied for 2-manifolds in [22] and for
3-manifolds in [23].

C. Results

We follow the approach taken in [22], with some
crucial differences and extensions. Given a piecewise
linear function over a triangulated domain, we

1. construct a decomposition of the domain into
monotonic quadrangular regions by connecting
critical points with lines of steepest descent;

2. simplify the decomposition by performing a se-
quence of cancellations ordered by persistence;
and

3. turn the simplification into a hierarchical multi-
resolution data structure whose levels correspond
to simplified versions of the function.

The first two steps are discussed in [22], but the third
step is new. Nevertheless, this paper makes original
contributions to all three steps and in the application of
the data structure to concrete scientific problems. These
contributions are

(i) a modification of the algorithm of [22] that con-
structs the Morse-Smale complex without handle
slides;

(ii) the simplification of the complex by simultaneous
application of independent cancellations;

(iii) a numerical algorithm to approximate the simpli-
fied function;

(iv) a shallow multi-resolution data structure combin-
ing the simplified functions into a single hierarchy;

(v) an algorithm for traversing the data structure that
combines different levels of the hierarchy to con-
struct adaptive simplifications; and

(vi) the application of our method to various data sets.
The hallmark of our method is the fusion of the ge-
ometric and topological approaches to multi-resolution
representations. The entire process is controlled by topo-
logical considerations, and geometric methods are used
to realize monotonic paths and patches. The latter play
a crucial but sub-ordinate role in the overall algorithm.

II. BACKGROUND

We describe an essentially combinatorial algorithm
based on intuitions provided by investigations of smooth
maps. In this section, we describe the necessary back-
ground, in Morse theory [6], [24] and in combinatorial
topology [25], [26].

A. Morse functions

Throughout this paper, � denotes a compact 2-
manifold without boundary and f : ���

�
denotes a

real-valued smooth function over � . Assuming a local
coordinate system at a point a ��� , we compute two
partial derivatives and call a critical when both are
zero and regular otherwise. Examples of critical points
are maxima ( f decreases in all directions), minima ( f
increases in all directions), and saddles ( f switches
between decreasing and increasing four times around the
point).

Using the local coordinates at a, we compute the
Hessian of f , which is the matrix of second partial
derivatives. A critical point is non-degenerate when
the Hessian is non-singular, which is a property that
is independent of the coordinate system. According to
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the Morse Lemma, it is possible to construct a local
coordinate system such that f has the form f � x1 � x2 ���
f � a ��� x2

1 � x2
2 in a neighborhood of a non-degenerate

critical point a. The number of minus signs is the index
of a and distinguishes the different types of critical
points: minima have index 0, saddles have index 1, and
maxima have index 2. Technically, f is a Morse function
when all its critical points are non-degenerate and have
pairwise different function values. Most of the challenges
in our method are rooted in the need to enforce these
conditions for given functions that do not satisfy them
originally.

B. Morse-Smale complexes

Assuming a Riemannian metric and an orthonormal
local coordinate system, the gradient at a point a of the
manifold is the vector of partial derivatives. The gradient
of f forms a smooth vector field on � , with zeroes at
the critical points. At any regular point we have a non-
zero gradient vector, and when we follow that vector
we trace out an integral line, which starts at a critical
point and ends at a critical point while technically not
containing either of them. Since integral lines ascend
monotonically, the two endpoints cannot be the same.
Because f is smooth, two integral lines are either disjoint
or the same. The set of integral lines covers the entire
manifold, except for the critical points. The descending
manifold D � a � of a critical point a is the set of points
that flow toward a. More formally, it is the union of
a and all integral lines that end at a. For example, the
descending manifold of a maximum is an open disk, that
of a saddle is an open interval, and that of a minimum
is the point itself. The collection of stable manifolds is
a complex, in the sense that the boundary of a cell is
the union of lower-dimensional cells. Symmetrically, we
define the ascending manifold A � a � of a as the union of
a and all integral lines that start at a.

For the next definition, we need an additional non-
degeneracy condition, namely that ascending and de-
scending manifolds that intersect do so transversally.
For example, if an ascending 1-manifold intersects a
descending one then they cross. Due to the disjointness
of integral lines, this implies that the crossing is a single
point, namely the saddle common to both. Assuming
that this transversality property is satisfied, we overlay
the two complexes and obtain what we call the Morse-
Smale complex, or MS complex, of f . Its cells are
the connected components of the intersections between
ascending and descending manifolds. Its vertices are the
vertices of the two overlayed complexes, which are the
minima and maxima of f , together with the crossing

points of ascending and descending 1-manifolds, which
are the saddles. Each 1-manifold is split at its saddle,
thus contributing two arcs to the MS complex. Each
saddle is endpoint of four arcs, which alternately ascend
and descend around the saddle. Finally, each region has
four sides, namely two arcs emanating from a minimum
and ending at two saddles and two additional arcs
continuing from the saddles to a common maximum. It
is generically possible that the two saddles are the same,
in which case two of the four arcs merge into one. The
region lies on both sides of the merged arc so it makes
sense to double-count and to maintain that the region has
four sides. An example is shown in the center of Fig. 1.

minimum

maximum

saddle

Fig. 1. The folded quadrangle in the middle of this MS complex
has two boundary arcs glued to each other.

C. Piecewise linear functions

Functions occurring in scientific applications are
rarely smooth and mostly known only at a finite set of
points spread out over a manifold. It is convenient to
assume that the function has pairwise different values
at these points. We assume that the points are the
vertices of a triangulation K of � , and we extend the
function values by piecewise linear interpolation applied
to the edges and triangles of K. The star of a vertex u
consists of all simplices (vertices, edges and triangles)
that contain u, and the link consists of all faces of
simplices in the star that are disjoint from u. Since the
surface defined by K is a 2-manifold, the link of every
vertex is a topological circle. The lower star contains all
simplices in the star for which u is the highest vertex, and
the lower link contains all simplices in the link whose
endpoints are lower than u. Note that the lower link is the
subset of simplices in the link that are faces of simplices
in the lower star. Topologically, the lower link is a subset
of a circle. Following [27], we define what we mean by
a critical point of a piecewise linear function based on
the lower link. As illustrated in Fig. 2, the lower link of
a maximum is the entire link and that of a minimum is
empty. In all other cases, the lower link of u consists of
k � 1 � 1 connected pieces, each being an arc or possibly
a single vertex. The vertex u is regular if k � 0 and a
k-fold saddle if k � 1. As illustrated in Fig. 2 for k � 2, a
k-fold saddle can be split into k simple or 1-fold saddles.
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minimum saddle maximum splitting of 2−fold saddleregular point

Fig. 2. Classification of a vertex based on relative height of vertices
in its link. The lower link is marked black.

D. Persistence

We require a numerical measure of the importance of
critical points that can be used to drive the simplification
of an MS complex. For this purpose, we pair up critical
points and use the absolute difference between their
heights as importance measure. To construct the critical
point pairs, we imagine sweeping the 2-manifold � in
the direction of increasing height. This view is equiva-
lent to sorting the vertices by height and incrementally
constructing the triangulation K of � one lower star
at a time. The topology of the partial triangulation
changes whenever we add a critical vertex, and it remains
unchanged whenever we add a regular vertex. Except for
some exceptional cases that have to do with the surface
type of � , each change either creates a component or an
annulus or it destroys a component (by merging two) or
an annulus (by filling the hole). We pair a vertex v that
destroys with the vertex u that created what v destroys.
The persistence of u and of v is the delay between the
two events: p � f � v ��� f � u � . An algebraic justification
of this definition and a fast algorithm for constructing
the pairs can be found in [21].

III. MORSE-SMALE COMPLEX

We introduce an algorithm for computing the MS
complex of a function f defined over a triangulation K.
In particular, we compute the ascending and descending
1-manifolds (paths) of f starting from the saddles, and
use them to partition K into quadrangular regions which
define the MS complex.

A. Path construction

Starting from each saddle, we construct two lines of
steepest ascent and two lines of steepest descent. We do
not adopt the original algorithm proposed in [22] and
follow actual lines of maximal slope instead of edges
of K. In particular, we split triangles to create new
edges in the direction of the gradient. We modify this
basic strategy to avoid regions with disconnected interior
and regions whose interior does not touch both saddles.
Without the modification such regions may be created
because f is not smooth and integral lines can merge.
Fig. 3(a) shows one such case, where paths merge at
junctions and disconnect the interior of a region into

two. The modification that eliminates the two undesired
configurations consists of disallowing two paths to merge
if they are of different type; see Fig. 3(b). Two paths are
still allowed to merge if they are both ascending or both
descending. If two paths are not allowed to merge we
split one edge of the triangulation and introduce a new
sample with function value that preserves the structure
of the MS complex but locally avoids the junction. Fig. 4
shows the repeated application of this strategy to avoid
a junction. Note that once two paths have merged they
never separate.

maximumminimum

saddle junction

Fig. 3. Portion of the MS complex of a piecewise linear function.
Since the gradient is not continuous, ascending (solid) and descending
(dotted) paths can meet in junctions and share segments. Left:
complex with no restrictions on sharing segments. The green region
touches only one saddle, and the red one is disconnected. Right:
only paths of the same type can meet. The interior of each region is
connected and touches both saddles.

Fig. 4. Triangle split to keep two paths separated. Solid red lines
indicate two portions of paths already computed. Left: the red circle
is the current extremum of a path that would follow the red dotted
line. Middle: the path is extended splitting a first triangle. Right: since
the two paths would still intersect, a second triangle is split.

After computing all paths, we partition K into quad-
rangular regions forming the cells of the MS complex.
Specifically, we grow each quadrangle from a triangle
incident to a saddle without ever crossing a path.

In degenerate areas of � , where several vertices may
have the same function value, the greedy choices of local
steepest ascent/descent may not work consistently. We
address this problem using the simulation of simplicity,
or (SoS) [28]. We orient each edge of K in the direction
of ascending function value. Vertex indices are used to
break ties on flat edges such that the resulting directed
graph has no cycles. This simulates a set of arbitrarily
small perturbations resolving all degeneracies. Using
these orientations, the search for the steepest path is
transformed to a weighted-graph search and function
values are only used as preferences. Thus, our algorithm
is robust even for highly degenerate data sets as the one
shown in Fig. 5.
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(a) (b)

Fig. 5. MS complex of degenerate data set. The “volcano” is created
by the rotational sweep of a function that is flat both inside the
“crater” and at the foot of the mountain. (a) Originally computed MS
complex. A large number of critical points is created by eliminating
flat regions using simulation of simplicity. (b) The same complex
after removing symbolic features with zero persistence.

B. Diagonals and diamonds

The central element of our data structure for the MS
complex is the neighborhood of a simple saddle or,
equivalently, the halves of the quadrangles that share the
saddle as one of their vertices. To be more specific about
the halves, recall that in the smooth case each quadrangle
consists of integral lines that emanate from its minimum
and end at its maximum. Any one of these integral lines
can be chosen as diagonal to decompose the quadrangle
into two triangles. The triangles sharing a given saddle
form the diamond centered at the saddle. As illustrated in
Fig. 8(a), each diamond is a quadrangle whose vertices
alternate between minima and maxima around the saddle
in its center. It is possible that two vertices are the same
and the boundary of the diamond is glued to itself along
two consecutive diagonals.

C. The algorithm

We compute the descending paths starting from the
highest saddle and the ascending paths starting from the
lowest saddle. Thus, when two paths aim for the same
extremum, the one with higher persistence (importance)
is computed first. The boundary of the data set is
artificially tagged as a path. The complete algorithm is
summarized in Fig. 6.

IV. HIERARCHY

Our main objective is the design of a hierarchical
data structure that supports adaptive coarsening and
refinement of the data. In this section, we describe such
a data structure and discuss how to use it.

A. Cancellations

We use only one atomic operation to simplify the
MS complex of a function, namely a cancellation that

Let T � �
F � E � V � be the triangulation of � ;

initialize the MS complex, M � /0;
initialize the sets of paths and cells, P � C � /0;
initialize SoS to direct the edges of T ;
S � FINDSADDLES � T � ;
S � SPLITMULTIPLESADDLES � T � ;
SORTBYHEIGHT � S � ;
forall s � S in ascending order do

COMPUTEASCENDINGPATH � P �
endfor;
forall s � S in descending order do

COMPUTEDESCENDINGPATH � P �
endfor;
while there exists untouched f � F do

GROWREGION � f � p0 � p1 � p2 � p3 � ;
CREATEMORSECELL � C � p0 � p1 � p2 � p3 �

endwhile;
M � CONNECTMORSECELLS � C � .

Fig. 6. Sequence of high-level operations used to create an MS
complex. When we grow a cell from a triangle f we encounter four
boundary paths, p0 to p3, which we incorporated into a half-edge
representation of the cell.

eliminates two critical points. The inverse operation that
creates two critical points is referred to as an anti-
cancellation. In order to cancel two critical points they
must be adjacent in the MS complex. Only two possible
combinations arise: a minimum and a saddle or a saddle
and a maximum. The two configurations are symmetric,
and we can limit the discussion to the second case, which
is illustrated in Fig. 7.

Fig. 7. Portion of the graph of a function before (left) and after
(right) cancellation of a maximum (red) and a saddle (green).

Let u be the saddle and v the maximum of the canceled
pair, and let w be the other maximum connected to u. We
require w �� v and f � w ��� f � v � ; otherwise, we prohibit
the cancellation of u and v. We view the cancellation
as merging three critical points into one, namely u,
v, w into w. All paths ending at either u, v, or w
are removed and we adapt the local geometry to the
new topology, as described in Section V. Subsequently,
all paths that were connected to either maximum are
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recomputed. In other words, we connect every saddle
on the boundary of the geometrically adapted region
to the unique maximum within the region. To avoid
excessive splitting of the triangulation we restrict the re-
computed paths to share edges of the triangulation. There
are several reasons for requiring f � w � � f � v � : it implies
that all recomputed paths remain monotonic and ensures
that we do not eliminate any level sets, except that the
ones between f � u � and f � v � are simplified. We may think
of a cancellation as deleting the two descending paths of
u and contracting the two ascending paths of u.

B. Node removal

We construct the multi-resolution data structure from
bottom to top. The bottom layer stores the MS complex
of the function f , or, to be more precise, the correspond-
ing decomposition of the 2-manifold into diamonds.
Fig. 8(b) illustrates this layer by showing each diamond

(a)

(b)

(c)

Fig. 8. (a) The portion of an MS complex (dotted) and the
portion of the corresponding decomposition into diamonds (solid).
(b) Portion of the data structure (solid) representing the piece of the
decomposition into diamonds (dotted). (c) Cancellation graph (solid)
of the decomposition into diamonds (dotted).

as a node with arcs connecting it to neighboring dia-
monds. Each node has degree four, but there can be loops
starting and ending at the same node. A cancellation
corresponds to removing a node and re-connecting its
neighbors. When this node is shared by four different
arcs we can connect the neighbors in two different ways.
As illustrated in Fig. 9, this operation corresponds to the
two different cancellations merging the saddle with the
two adjacent maxima or the two adjacent minima. There
is only one way to remove a node shared by a loop and
two other arcs, namely to delete the loop and connect
the two neighbors.

To construct the hierarchy by repeated cancellations,
we use the algorithm in [21] to match critical points

(A) (B)

(a)

(b) (c)

Fig. 9. The four-sided diamond (a) can be zipped up in two ways:
from top to bottom (b) or from left to right (c). A folded diamond
(A) can be zipped up in only one way (B).

in pairs � s1 � v1 � � � s2 � v2 � � ����� � � sk � vk � , with persistence in-
creasing from left to right. Let Q j be the MS complex
obtained after the first j cancellations, for 0

�
j
�

k.
We obtain Q j � 1 by modifying Q j and storing sufficient
information so we can recover Q j from Q j � 1. The
hierarchy is complete when we reach Qk. We call each
Q j a layer in the hierarchy and represent it by activating
its diamonds as well as neighbor and vertex pointers and
de-activating all other diamonds and pointers. To ascend
in the hierarchy (coarsen the quadrangulation) we de-
activate the diamond of s j � 1; to descend in the hierarchy
(refine the quadrangulation) we activate the diamond of
s j � 1. Activating and de-activating a diamond requires
updating of only a constant number of pointers.

C. Independent cancellations

We generalize the notion of a layer in the hierarchy to
permit view-dependent simplifications. The key concept
here is the possibility to interchanging two cancellations.
The most severe limitation to interchanging cancellations
derives from the assignment of extrema as vertices of the
diamonds and from re-drawing the paths ending at these
extrema. To understand this limitation, we introduce the
cancellation graph whose vertices are the minima and
maxima. Fig. 8(c) shows an example of such a graph. For
each diamond, there exists an edge connecting the two
minima and another edge connecting the two maxima.
There are no loops and therefore sometimes only one
edge per diamond. Zipping up a diamond corresponds
to contracting one of the edges and deleting the other, if
it exists. One endpoint of the edge remains as a vertex
and the other disappears, implying that the diamonds that
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share the second endpoint receive a new vertex. A special
case arises when a diamond shares both endpoints: the
connecting edge that would turn into a loop is deleted.

Two cancellations in a (possibly simplified) MS com-
plex are interchangeable when it is irrelevant in which
order the two operations are applied to the data structure.
For example, the two cancellations zipping up the same
diamond are not interchangeable since one preempts the
other. In general, two cancellations are interchangeable
when their diamonds share no vertex, a condition we re-
fer to as being independent. This notion of dependencies
is similar to methods used is view-dependent refinements
of polygon meshes [29], [30] applied to the MS complex.
Note that two interchangeable cancellations are not nec-
essarily independent. Even though independence is the
more limiting of the two concepts, it offers sufficient
flexibility in choosing layers to support the adaptation
of the representation to external constraints, such as the
biased view of the data.

When we can perform a relatively large number of
independent cancellations we have more freedom gener-
ating layers in the multi-resolution data structure. Ideally,
we would like to identify a large independent set and
iterate to construct a shallow hierarchy. However, in the
worst case, every pair of cancellations is dependent,
which makes the construction of a shallow hierarchy
impossible. As illustrated in Fig. 11(a), such a config-
uration exists even for the sphere and for any arbitrary
number of vertices. Nevertheless, worst-case situations
are unlikely to arise as they require a large number of
folded diamonds. Specifically, it is possible to prove that
every MS complex without folded diamonds implies a
linear number of independent cancellations.

V. GEOMETRIC APPROXIMATION

After each cancellation, we create or change the ge-
ometry that locally defines f . We pursue three objectives:
the approximation must agree with the given topology,
the error should be small, and the approximation should
be smooth.

A. Error bounds

We measure the error as the difference between func-
tion values at a point. It is convenient to think of the
graph of f as the geometry and this difference as the
(vertical) distance between the original and the simplified
geometry at the location of the point. The persistence
of the critical points involved in a cancellation implies
a lower bound on the local error. We illustrate this
connection for the one-dimensional case in Fig. 10(a).
Recall that the persistence p of the maximum-minimum
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(a) (b)
Fig. 10. Geometry fitting for paths: (a) One-dimensional cancellation
and several monotonic approximations. (b) Local averaging used to
construct smoothly varying monotonic approximations. Slopes of
neighboring edges are combined with the original slope, and the
function values are adjusted accordingly (edge normals are shown).

pair is the difference in their function values. Any
monotonic approximation of the curve between the two
critical points has an error of at least p

�
2. We can

achieve an error of p
�
2, but only if we accept a flat

segment for this portion of the curve, see the red curve
in Fig. 10(a). When it is allowed to exceed p

�
2, smoother

approximations without flat segments are possible, such
as the green curve in the same figure. Note that the
above describes only the error between the two functions
before and after the one cancellation. The error caused
by the composition of two or more cancellations is more
difficult to analyze and will not be discussed in this
paper.

B. Data fitting

...
...

(a) (b)

Fig. 11. (a) MS complex on the sphere with pairwise dependent
cancellations. (b) One-dimensional gradient smoothing with (blue)
error constraints and prescribed endpoint derivatives. Left: initial
configuration. Right: constructed solution.

We know that monotonic patches exist, provided we
are tolerant to errors. Our goal is therefore to find
monotonic patches that minimize some error measure.
A large body of literature deals with the more general
topic of shape-constrained approximation [31], [32]. The
general problem is to construct the smoothest interpolant
to a set of input data while observing some shape
constraints (e.g., convexity, monotonicity, and boundary
conditions). However, most published work uses penalty
functions instead of tight error bounds. Additionally, the
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techniques are typically described for tensor product set-
ting, and the definitions of monotonicity for the bivariate
case vary and differ from the one we use. We therefore
did not adapt standard techniques for our purposes and
instead decided to use a multi-stage iterative approach
to construct the geometry that specifies the simplified
representation of f . It provides a smooth C1-continuous
approximation within a specified error bound along the
boundaries of the quadrangular patches and a similar
approximation but without observing an error bound in
the interior of the patches. The paths are constructed
iteratively by smoothing the gradients along the edges
and post-fitting the function values, as illustrated in
Fig. 10(b). During each iteration, we first compute the
new gradient of an edge as a convex combination of its
gradient and the gradients of the adjacent edges. We then
adjust the function values at the vertices to realize the
new gradients. During an iteration, we maintain the error
bound at the vertices and make sure that the completed
path is monotonic. In addition, the gradient at the critical
points is set to zero.

The technique performs well in practice although it
converges slowly. Sample results are shown in Fig. 11(b).
The interior of the quadrangular patches are modified by
applying standard Laplacian smoothing to the function
values [33]. During each iteration, the value at a ver-
tex is averaged with those of its neighbors. Since the
boundaries are monotonic, this procedure converges to a
monotonic solution for the patch interior. We summarize
the steps of the geometry fitting process:

1. Find all paths affected by a cancellation;
2. use the gradient smoothing to geometrically re-

move the canceled critical points;
3. smooth the old regions until they are monotonic;
4. erase the paths and re-compute new paths using

the new geometry;
5. use one-dimensional gradient smoothing to force

the new paths to comply with the constraints; and
6. smooth the new regions until all points are regular.

The paths constructed in Step 4 are not guaranteed to
satisfy the claimed error bounds, which is the reason for
the repeated use of gradient smoothing in Step 5. We
iterate until the paths are monotone and satisfy the error
bounds. Experimentally, it takes only a constant number
of iterations to achieve both goals. In our software, the
fitting of the surface is currently the bottleneck due to
slow convergence iteratively solving a Laplacian system.

VI. REMESHING

While traversing the hierarchy we want to interactively
display geometry that agrees with the current topology

of the graph of f . Thus, we must determine a triangular
mesh within each quadrangular region. For maximal
flexibility, the triangulation for each region should not
depend on neighboring regions.

A. Path smoothing

Without modifications the algorithms used to compute
paths tend to create jagged paths on the 2-manifold,
as in Fig. 12(a). These are visually not pleasing and
difficult to approximate. We therefore slightly modify
the data to obtain smoother paths, again using Laplacian
smoothing. Special care has to be taken at junctions,
where we separately average the predecessor and the
successor vertices before updating the junction. This
strategy reduces the change in direction between the
incoming and outgoing edges rather than minimizing
the change of directions between all edges. The result
is a more “flow-like” structure, as shown in Fig. 12(c).
No vertex can leave its original triangle strip, and,
assuming a sufficiently dense base mesh, the overall
change in position is minor and critical points are never
moved. In practice, one or two iterations are sufficient
to significantly improve the layout of the paths.

��

��

1/2

1/4
1/3

1/3

1/3
1/4 1/2

1/2

��

original position

incoming/outgoing positions
intermediate averages of all 
new position

(a) (b) (c)

Fig. 12. Path smoothing: (a) A typical path structure without
smoothing. (b) Smoothing applied at junctions. (c) The path structure
of (a) after two smoothing steps.

B. Parametrization

To enable fast and versatile rendering of the data and
reduce memory requirements, we remesh each quadran-
gular region using a regular grid structure. First, we
compute a mapping of the boundary of the region to
the boundary of one or more unit squares, see below.
Then we use standard parametrization techniques such
as [34], [35] to extend the mapping to the interior. Next,
we sample the parameter space on a uniform grid and
use its preimage on � as a new mesh for the region. The
boundary parametrization is chosen such that the meshes
of neighboring regions agree geometrically along their
boundary.
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C. Boundary parametrization

The boundary of a region consists of critical points,
junctions, and standard path vertices. Independently of
the current approximation, the triangulation of a region
always contains its critical points and junctions. The
critical points represent the extremal function values of
a region. Junctions are created when two paths that flow
toward the same extremum merge. Therefore, each junc-
tion replaces a critical point for the region sharing both
these paths. To avoid cracks in the mesh, all adjacent
regions must contain the junction as well. As base-shape
in parameter space we use one or more unit squares,
and we choose the number depending on the ratio of
the eigenvalues of the principle component analysis of
all boundary vertices. Once the base-shape is known,
the critical points and junctions are fitted recursively
using arc-length parametrization. The complete process
is illustrated in Figure 13.

Fig. 13. Creating a parametrization for the boundary. Top-left:
original region and local coordinate system defined by the principal
component analysis. Top-right: region after transformation into the
new coordinate system. We use a single unit square as base-shape in
parameter space. The points with extreme projections onto the two
diagonals are mapped to the corners of the base-shape. Bottom-left:
regular mesh after the first level of recursively fitting the junctions.
Bottom-right: Final mesh.

To remesh the path segments between critical points
and junctions we apply midpoint subdivision based on
arclength. We permit T-junctions (hanging nodes) along
boundaries. In other words, our representation is not
a globally conforming triangulation of � but rather a
collection of patches. Each patch is triangulated with
a regular, conforming mesh. We call the collection
crack-free when the meshes agree geometrically along
boundaries. Nevertheless, pixel-wide cracks may appear
during rendering as polygons are rasterized at fixed
precision. A possible solution is to “fill-in” the cracks
during rendering as described by Balázs et al. [36].

TABLE I

DATA SETS USED FOR TESTING. THE FIRST THREE ARE TERRAINS.

resolution function values
Puget Sound 1025 � 1025 2 byte int

Needles 1201 � 1201 1 byte int
Dalles 1201 � 1201 1 byte int

Glucose-Ethane 5215 vertices float
Oil Spill 3231 vertices float

VII. RESULTS

We have applied our algorithm to terrain data con-
verted from digital elevation models1 and to isosurfaces
from two scientific data sets, all listed in Table I.
The Glucose-Ethane data set in Fig. 16 describes the
interaction energy between a ligand (glucose) and a
receptor (ethane) under the three translational degrees of
freedom. The domain is an isosurface of the electrostatic
potential and the function is the van der Waals energy.
The Oil Spill data set in Fig. 17 shows a ground
remediation process after an oil spill contamination.
The domain is an isosurface of the oil concentration,
reaching from the ground level at the top down into the
soil. The superimposed pseudo-colored function shows
the concentration of microbes consuming the oil and
performing the remediation process. In both cases the
hierarchical MS complex highlights regions of interest
such as good candidate bonding sites for molecular
interaction or regions of high microbe activity in the
ground remediation process.

The most basic application of our algorithm is removal
of topological noise without smoothing. This functional-
ity does not depend on the hierarchy and is implemented
by repeated cancellation of critical points with lowest
persistence. Our experience suggests that this step should
always be applied, even if only to remove the artifacts
caused by symbolic perturbation. We classify all features
with persistence below 0.1% of the total function range
as noise. Fig. 14 illustrate this procedure for the Dalles
data set. Removing the noise reduces the number of
critical points from 24,617 to 2,144. As one of the
main problem in topological data analysis is the large
number of spurious topological features this clean-up
is a valuable pre-processing step for many techniques
proposed in recent years.

We have tested three strategies for creating the hi-
erarchy: sequential, batched, and hybrid. The sequen-
tial strategy performs the cancellations in the order of
increasing persistence. The batched strategy removes a
maximal independent set of cancellations in one step,
collecting a batch greedily in the order of increasing
persistence. Finally, the hybrid strategy is the batched

1http://www.webgis.com
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TABLE II

STATISTICS ON THE HIERARCHIES FOR COMPARING THE THREE

CANCELLATION STRATEGIES.

depth avg dep max #p max #c avg deg
Puget Sound 49,185 original vs. 17.470 significant critical points

sequential 381 128 148 110 3.80
batched 157 118 131 112 4.28
hybrid 238 105 147 106 3.94
Dalles 24,617 original vs. 2,144 significant critical points

sequential 80 34 75 39 3.40
batched 54 31 82 43 3.88
hybrid 73 33 63 57 3.52

Needles 17,375 original vs. 3,772 significant critical points
sequential 177 68 111 87 3.60
batched 113 70 87 87 3.88
hybrid 149 62 124 101 3.68

strategy with the added restriction that the largest per-
sistence be at most twice the smallest persistence in
the same batch. We limit each strategy to critical points
whose persistence does not exceed 20% of the function
range.

Table II summarizes the collected statistics for the
hierarchies constructed from the three terrain data. For
each combination of data set and cancellation strategy,
it lists the maximum and average depth of the leaves,
the maximum number of parents and children of the
nodes, and the average degree, defined as the combined
number of parents and children of a node. As ex-
pected, the batched cancellation of critical points creates
more shallow hierarchies than the sequential strategy.
However, this is not always the case. In the Needles
data, the average depth created by batching exceeds
that created by sequential cancellation. This observation
can be explained by the existence of high-degree nodes
illustrated in Fig. 14 which shows the highest-resolution
MS complex of the Needles data, drawing each path as
a straight line from the saddle to the extremum. There
are very few minima in the data forcing a large average
degree and an uneven distribution of nodes over the
levels of the hierarchy.

The graphs in Fig. 15 show the number of nodes
per level for the Puget Sound and Dalles data set. The
batched strategies clearly produce superior results in
terms of overall shape of the hierarchy. However, this
does not necessarily translate into better performance in
practice. Fig. 15 also shows the number of critical points
in the MS complex depending on a uniform error. Even
though the hierarchy created by batched cancellation is
the most shallow it also contains significantly denser
meshes. The hybrid strategy combines the advantages
of the other two strategies and is therefore our method
of choice.

VIII. CONCLUSIONS

We have described a new topology-based multi-
resolution data structure for real-valued functions over
two-dimensional domains and demonstrated its use for
terrains. The hierarchy allows for the adaptive extraction
of geometry depending on given topological error. Due
to its robustness in the presence of noise and its well-
defined simplification procedures, the approach is ap-
pealing for applications that rely on topological analysis.
Examples are data segmentation and feature detection
and tracking in medical imaging or simulated flow field
data sets. Future work will be concerned with fitting the
complete geometry within a given error bound and the
extension to volumetric data.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U. S. De-

partment of Energy by University of California Lawrence Livermore

National Laboratory under contract No. W-7405-Eng-48. Herbert

Edelsbrunner is partially supported by the National Science Founda-

tion (NFS) under grants EIA-99-72879 and CCR-00-86013. Bernd

Hamann is supported by the NSF under contract ACI 9624034,

through the LSSDSV program under contract ACI 9982251, and

through the NPACI; the National Institute of Mental Health and the

NSF under contract NIMH 2 P20 MH60975-06A2; the Lawrence

Livermore National Laboratory under ASCI ASAP Level-2 Mem-

orandum Agreement B347878 and under Memorandum Agreement

B503159.

REFERENCES

[1] A. Cayley, “On contour and slope lines,” London, Edinburgh
and Dublin Phil. Mag. J. Sci., vol. XVIII, pp. 264–268, 1859.

[2] J. C. Maxwell, “On hills and dales,” London, Edinburgh and
Dublin Phil. Mag. J. Sci., vol. XL, pp. 421–427, 1870.

[3] J. Pfaltz, “Surface networks,” Geographical Analysis, vol. 8, pp.
77–93, 1976.

[4] ——, A graph grammar that describes the set of two-
dimensional surface networks. Springer-Verlag, Lecture Notes
in Computer Science, vol. 73, 1979.

[5] M. Morse, “Relations between the critical points of a real
function of n independent variables,” Trans. Amer. Math. Soc.,
vol. 27, pp. 345–396, 1925.

[6] J. Milnor, Morse Theory. New Jersey: Princeton Univ. Press,
1963.

[7] H. Hoppe, “Progressive meshes,” Comput. Graphics (Proc.
SIGGRAPH), vol. 30, pp. 99–108, 1996.

[8] J. Popovic and H. Hoppe, “Progressive simplicial complexes,”
Computer Graphics (Proc. SIGGRPAH), vol. 31, pp. 209–216,
1997.

[9] M. Garland and P. S. Heckbert, “Surface simplification using
quadric error metrics,” Comput. Graphics (Proc. SIGGRAPH),
vol. 31, pp. 209–216, 1997.

[10] P. Lindstrom and G. Turk, “Fast and memory efficient polygonal
simplification,” in Proc. IEEE Visualization, 1998, pp. 279–286.

[11] T. He, L. Hong, A. Varshney, and S. W. Wang, “Controlled
topology simplification,” IEEE Trans. Visual. Comput. Graph-
ics, vol. 2, pp. 171–184, 1996.



11

Fig. 14. Left: highest resolution MS complex of Needles data set. Middle: original Dalles data set containing 24,617 critical points. Right:
same data with 2,144 critical points after removing all with persistence less than 0 � 1% of height range.

0 100 200 300 400
level

0

100

200

300

# 
of

 n
od

es

pure persistence
indep. set + cut-off
max. indep. set

Puget Sound

0 0.025 0.05 0.075 0.1 0.125
uniform persistence

0

5000

10000

15000

# 
of

 c
ri

tic
al

 p
oi

nt
s

pure persistence
indep. set + cut-off
max. indep. set

Puget Sound

0 20 40 60 80
level

0

10

20

30

40

50

60

# 
of

 n
od

es

pure persistence
indep. set + cut-off
max. indep. set

The Dalles

0 0.025 0.05 0.075 0.1 0.125 0.15
uniform persistence

0

500

1000

1500

2000

2500

# 
of

 c
ri

tic
al

 p
oi

nt
s

pure persistence
indep. set + cut-off
max. indep. set

The Dalles

Fig. 15. Nodes distribution over the levels for three cancellation strategies and number of critical points in MS complex for the Puget
Sound and the Dalles data sets.

Fig. 16. Interaction energy between glucose and ethane under the three translational degrees of freedom. Left: isosurface of the electrostatic
interaction pseudo-colored with the corresponding van der Waals potential. Middle: full MS complex with 564 critical points. Right: simplified
MS complex with 166 critical points highlighting good candidate binding sites.

Fig. 17. Remediation process of contaminated ground. Left: the isosurface of the oil concentration in soil with a function in pseudo-color
measuring the density of microbes consuming the oil. Middle: full MS complex with 232 critical points. Right: simplified MS complex with
67 critical points highlighting the main activity sites of the microbes.



12

[12] J. El-Sana and A. Varshney, “Topology simplification for
polygonal virtual environments,” IEEE Trans. Visual. Comput.
Graphics, vol. 4, pp. 133–144, 1998.

[13] J. L. Helman and L. Hesselink, “Visualizing vector field topol-
ogy in fluid flows,” IEEE Comput. Graphics Appl., vol. 11, pp.
36–46, 1991.

[14] W. de Leeuw and R. van Liere, “Collapsing flow topology using
area metrics,” in Proc. IEEE Visualization, 1999, pp. 349–354.

[15] X. Tricoche, G. Scheuermann, and H. Hagen, “A topology
simplification method for 2d vector fields,” in Proc. IEEE
Visualization, 2000, pp. 359–366.

[16] ——, “Continuous topology simplification of planar vector
fields,” in Proc. IEEE Visualization, 2001, pp. 159–166.

[17] A. T. Fomenko and T. L. Kunii, Eds., Topological Modeling for
Visualization. Springer-Verlag, 1997.

[18] C. L. Bajaj and D. R. Schikore, “Topology preserving data
simplification with error bounds,” Computers and Graphics,
vol. 22, pp. 3–12, 1998.

[19] K. Hormann, “Morphometrie der Erdoberfläche,” Schrift. Univ.
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