L ocal Search Heuristic
for Rigid Protein Docking *

V. Choi**, P. K. Agarwal* **, H. Edelsbrunnert and J. Rudolph?

Duke University, Durham, North Carolina

Abstract. We give an algorithm that locally improves the fit between two pro-
teins modeled as space-filling diagrams. The algorithm defines the fit in purely
geometric terms and improves by applying a rigid motion to one of the two pro-
teins. Our implementation of the algorithm takes between three and ten seconds
and converges with high likelihood to the correct docked configuration, provided
it starts at a position away from the correct one by at most 18 degrees of rota-
tion and at most 3.0A of translation. The speed and convergence radius make
this an attractive algorithm to use in combination with a coarse sampling of the
six-dimensional space of rigid motions.

1 Introduction

Protein interactions are the molecular basis for many essential components of life. In
this paper we contribute to the growing body of work on protein docking, which is the
computational approach to predicting protein-protein interactions.

Field of protein docking. The reliable prediction of protein interactions from three-
dimensional structures alone is one of the grand challenges in computational biology.
There is ample experimental evidence from X-ray crystallography and other structure
determination methods that interactions require proteins to exhibit extensive local shape
complementarity. Nevertheless, the precise mechanism that brings about interactions is
poorly understood. The observed shape complementarity of docked proteins suggests
we start with the geometric structures of individual proteins and search for a good local
fit. This raises intriguing but hard questions about the relative importance of physical
forces (e.g. van der Waals interactions, hydrogen bonds, ion pairs, etc.) and shape, par-
ticularly as to the precise meaning of shape when objects are not rigid.

The known structures of protein complexes form a benchmark for computational
tools and the attempt to reassemble proteins to their observed, native configurations is
referred to as bound protein docking. Even if we ignore physical forces and focus exclu-
sively on shape, the high dimension of the search space makes this a difficult problem.

* All authors are supported by NSF under grant CCR-00-86013. VVC, JR, and HE are also sup-
ported by a BGT Postdoc Program from Duke University. JR and HE are also supported by
NIH under grant R01 GM61822-01. PA is also supported by NSF under grants EIA-01-31905
and CCR-02-04118 and by the U.S.-Israel Binational Science Foundation.

** Departments of Computer Science and Biochemistry.
*** Departments of Computer Science and Mathematics.
t Departments of Computer Science and Mathematics, and Raindrop Geomagic.
* Departments of Biochemistry and Chemistry.

Following the policy of small steps, it thus makes sense to simplify the problem by as-
suming rigidity. The task in rigid protein docking is to find a motion that positions one
rigid protein relative to the other into the correct docked configuration. The dimension
of the search space is still high, three for translations plus three for rotations. Imple-
mentation of a fast and accurate rigid docking algorithm would allow for future meth-
ods that add the higher dimensionality of conformational changes seen in real docking
problems. Possible approaches to flexibility include tolerance to collisions [8, 14] and
pre-calculation of multiple residue conformations [16].

Prior work. Many different approaches have been taken to solving the rigid docking

problem and we refer to several survey articles in the general area [7, 10, 13]. All of

these methods consist of essentially two parts. First, one creates a scoring function

that discriminates correctly docked conformations from incorrect ones. The scoring

is based primarily on shape recognition but often includes electrostatics or hydrogen

bonds. Because of the size of the search space and the number of atoms for each protein,

simplifications or data reduction methods are often employed. Second, one creates a
search algorithm that finds the correct solution using the scoring function. Many rigid
protein docking algorithms based primarily on shape have been implemented using

diverse approaches to search the space of rigid motions, including cube coverings, fast

Fourier transforms, spherical harmonics, and geometric hashing. One major limitations

in these methods is that they can yield anywhere from a few to thousands of false

positives, incorrect configurations that have a higher score than the native configuration.
Thus, a re-ranking of the docked configurations is usually implemented based on a
wide variety of methods including solvation potentials, empirical atom-atom or residue-

residue contact energies, optimal positioning of hydrogen bonds, etc. Bespamyatnikh et

al. developed a shape-based docking algorithm and demonstrated that it correctly docks

a diverse set of 25 protein complexes without any false positives [3]. This result was

achieved using a scoring function that approximates the van der Waals interactions by

counting pairs of atoms and by high-resolution sampling of the space of rigid motions.

The major limitation of this method is the amount of computation time needed, with

even a modest size problem taking a day on a cluster of 100 processors. This does not

allow for facile experimentation or implementation of flexibility.

Local search. We envision a more efficient algorithm that first uses a coarse sampling
in the space of rotations to generate a set of possible solutions with at least one not

too far from the correct docking configuration. The second step is a rapid search for
the solution using a local improvement method. Based on our previous results [3], the

correct docking configuration will yield the highest score following this second step. A
multistage local search method for rigid protein docking has been recently reported that

mimics the physical events of protein binding [5]. Starting from complexes as much

as 10A root-mean-square-distance from the native configuration, the method guides
protein docking, first with desolvation and electrostatics, then adding partial van der
Waals potentials as the proteins come closer together. This energy funnel method was

shown to work well with a set of eight different complexes, but appears computationally

expensive.

Our results. As in [5], we do not explicitly address the generation of initial configura-
tions in this paper. Instead the main question we pursue is the convergence radius of

our local search heuristic. In other words, how far away from the native configuration
can we start and still have a good chance to recover (a good approximation of) the na-
tive configuration? For the time being, we do not have any theoretical results and our
approach to finding answers is purely experimental and restricted to the case of known
structures of docked proteins.

We performed computational experiments using the barnase-barstar complex whose
structure can be found in the protein databank [2]. Our findings show that the chances
of recovering the correct, native configuration are about 80% provided we start with
a configuration generated by a local perturbation with rotation angle at most 18 and
translation distance at most 3.0A. We extended the experiments to nineteen additional
protein complexes and found that the bounds on the local perturbation are about the
same and perhaps universal for protein complexes.

Outline. Section 2 introduces the geometric and algorithmic background used in this
paper. Section 3 presents the local search heuristic. Section 4 describes the results of
the computational experiments that test the performance of the heuristic. Section 5 sum-
marizes our findings and points toward future directions.

2 Background and Definitions

In this section, we introduce the notation and the main geometric and algorithmic con-
cepts used in the design of our local search heuristic.

Notation and assumptions. We use solid spheres to represent atoms and space-filling
diagrams to model proteins as unions of such spheres. Writing a; for the center and r;
for the radius of the i-th sphere, we let A = {A; = (a;,7;) | 1 < i < m} be the set of
spheres defining the first protein. Similarly, we let B = {B = (b;,s;) | 1 < j < n}
be the set of spheres defining the second protein. Following the work of Bespamyatnikh
et al., we say A; and B; collide if the two spheres overlap, and they score if they are
within a pre-specified distance but do not overlap. Formally,

0,1 if ||a,~—bj|| <r;+sj,
score(i, j), collision(i, j) = < 1,0 ifr; +s; < la; = bjl| < i+ 85+ A,
0,0 ifr;i+s;+X<|la;—bjll,

where the constant is experimentally set to A = 1.5A [3]. The total score and the
total collision number are Score(A,B) = 3}_, . score(i, j) and Collision(A, B) =
> . collision(4, 7). Using a second constant, x, we can now formally define the rigid
doc’léing problem as finding a rigid motion y that maximizes the total score between A
and u(B) while keeping the number of collisions at or below . The second threshold
is experimentally set to x = 5 [3]. Using van der Waals radii for the spheres, physics
dictates that there are no collisions at all, but in order to compensate for measurement
errors and other modeling inaccuracies, we allow for a small number of violations of
that dictum. We make two assumptions on the geometric input data motivated by the
application to organic molecules. To state them, let § be the minimum distance between
centers of any two spheres in .4 or in B, and let Rpmin and Rpmax be the minimum and
maximum radii of the spheres in these sets.

I. There are constants ¢ < C such that Rpax/C < § < Rmin/c.
Il. The difference between the extreme radii satisfies Rynax — Rmin < A

We note that Assumption 11 is implied by Assumption | and C' — ¢ < /4, requiring
that the two constants in | are not too different. Our algorithm crucially depends on
Assumption I, and it makes use of Assumption I1, but that dependence could be avoided.
In the data retrieved from the protein databank [2], we observe § = 1.18A4 and get
¢ = 1.14 and C = 1.60. In our experiments, we use only five different radii, between
1.348A and 1.880A, which clearly satisfy Assumption II.

Preprocessing. Consider a sphere B with radius s = (Rmin + Rmax)/2. It scores with
a sphere A; iff its center b lies in the shell centered at a; whose inner and outer radii
are r; + s and r; + s + A, respectively. Consistent with the terminology introduced
above, we define the score of B equal to the number of shells that contain b. Each
sphere in A4 defines a shell, giving an arrangement of 2m (non-solid) spheres that de-
compose R? into cells of constant score, as considered in [6]. The arrangement is useful
for distinguishing desirable from undesirable positions for the sphere B but it has two
drawbacks, namely it suggests regions and not specific positions, and not all spheres in
B have radius s. We remedy both by replacing the shell around a; by its mid-sphere,

A
Si = {#€® [lp—all=ri+s+5}

By Assumption Il, S; lies within the shell around a; defined for each radius r in
[Rmin, Rmax]- The mid-spheres intersect pairwise in circles and triplewise in points,
the latter being the vertices of the arrangement. We use some of these vertices as target
positions for the spheres B; in B, as illustrated in Figure 1. We compute and evaluate
these vertices in a preprocessing step, which we now describe.

Step 1. Compute the set of vertices of the arrangement of mid-spheres.

Step 2. For each vertex u, compute the score of B, = (u, s) and the number of
collisions between B!, = (u, s + 7) and spheres in A.

Step 3. Leti be the set of vertices u for which B!, has zero collisions and there is
no vertex v € U nearby that dominates « in terms of scoring.

The constant 7 used in St ep 2 will be discussed shortly. St ep 1 is greatly helped
by Assumption I, which implies that each mid-sphere intersects only a constant number
of other mid-spheres. It follows that the number of vertices is only O(m), and using
the grid data structure of Halperin and Overmars [9] we find them in time O(m log m).
Using the same data structure, we compute the scores and collision numbers of the
spheres B,, and B., in time O(m logm).

The purpose of the vertices is to act as target locations for the spheres in B. It thus
makes sense to eliminate vertices u for which the enlarged sphere B;, has non-zero
collisions with spheres in A. We use the experimentally determined constant = = 0.2
for the enlargement. Of the remaining vertices, we keep only the ones with locally
maximum score. More specifically, we remove a vertex u for which there is a vertex v
at distance at most A /2 such that the set of spheres A; scoring with B, is a proper subset
of the set scoring with B,,. Although the vertices do not observe a constant separation

oy P

e

coonigy)
el

Fig. 1: The dotted circles represent mid-spheres. The vertices formed by the mid-spheres are black
or white depending on whether a sphere centered at that vertex forms a near collision or not. The
region of scoring, non-colliding positions is shaded.

bound, it is easy to prove from Assumption | that there are only a constant number of
vertices within a constant distance from any point in space. We can therefore use the
same grid data structure to implement St ep 3 within the same time bound as the first
two steps. It follows that all three preprocessing steps together take time O(m log m).
We note that instead of one we may use several arrangements, each catering to a small
range of radii of spheres in B. In our implementation, we use five arrangements, one
each for the five different radii in our data sets. As long as the number of arrangements
is a constant, the running time is not affected by more than a constant factor.

Least squarerigid motion. In the local search heuristic, we will repeatedly compute lo-
cal rigid motions by solving a least-square optimization problem. An instance is given
by a subset G = {g1,92,---.,9¢} Of the vertices in U, a subset Z = {z1,22,...,2¢}
of the centers of spheres in B, and a bijection between G and Z specified by shared
indices. The objective is to find a rigid motion p that minimizes the sum of square
distances, Zf;zl llgr — 1(zx)||>. The problem of computing y is known as the abso-
lute orientation problem in computer vision. Every rigid motion can be written as a
translation followed by a rotation about the origin. Assuming the centroid of the ver-
tices is the origin, Eizl gr = 0, the translational component of the optimal motion
necessarily moves the centroid z = %Eiﬂ 2, to the origin. It remains to compute
the optimal rotation for the points z; — z, which reduces to solving a small eigenvalue
problem. The matrix for this problem can be computed in time O(¢) from the sets G and
Z, using either the formalism of rotation matrices [15] or that of quaternions [11]. We
remark that the reduction to an eigenvalue problem allows for more general correspon-
dences between G and Z than bijections, and it can be modified to use a set of weights
W = {ws,ws, ..., we}. Inother words, we can compute in time O(¢) the rigid motion

1 = OptRM(G, Z, W) that minimizes Y%, wi|lgr — p(z1)|”-

3 Local Search Heuristic

In this section, we describe the algorithm that locally improves the fit between the space-
filling representations of two proteins. We begin by explaining the overall structure of
the algorithm and follow up by detailing its loops.

High-level structure. Given sets of spheres A and B, we aim at finding a local rigid
motion that we can apply to B to improve the fit. By a local rigid motion we mean a
rigid motion that is small, and we will be specific in Section 4 about how small. Here,
we focus on the structure of the algorithm, which repeatedly solves one of two types of
weighted least-square problems. The types are distinguished by the intended effect on
the fit:

— score-improving instances are prepared and solved in the outer loop, and
— collision-reducing instances are prepared and solved in the inner loop.

The success of the algorithm crucially depends on how we define these instances. We
follow two intuitions:

1. worthwhile target positions for spheres in 13 are collision-free and locally maximize
the score;

2. an effective collection of target positions is approximately congruent to the config-
uration of corresponding sphere centers.

We satisfy the first intuition by using the vertices in ¢/ and the second intuition by
limiting our attention to spheres and vertices that are near each other. Letting Z be the
set of centers of spheres in B that have a vertex in their neighborhood, we define a
bijection between Z and a subset G of the vertices; we refer to G as the set of tentative
goals. Assuming a set of weights, W, and a bijection between Z and G, we can now
describe the algorithm.

for #outer timesdo
prepare a score-improving instance of the least-square problem,
compute u = OptRM(Z, G, W), and let B = u(B)
whi | e Collision(.A, B) > x and u is not negligible do
prepare a collision-reducing instance of the least-square
problem, compute 4 = OptRM(Z, G, W), and let B = u(B)
endwhi | e
endf or; return best fit encountered during the iteration.

We cannot prove, and indeed do not expect, that the algorithm always successfully finds
a fit with sufficiently high score and small collision number. We therefore implement the
algorithm with a constant limit, #;nner, ON how often the inner loop can be repeated. the
outer loop #outer times and return the best fit encountered during any of the iterations.

Score-improving outer loop. We describe how to prepare an instance of the weighted
least-square problem that aims at improving the score of the fit. We define a distance
threshold, D;, for each sphere B; in B, and we let the corresponding tentative goal of
B; be avertex u; inlU within distance D; from b; that maximizes the score as computed
in the preprocessing step. If there is no vertex within distance D; from b;, the tentative
goal of B; is undefined. We let Z be the set of centers of spheres with tentative goals,
and G the corresponding set of tentative goals. Finally, we set all weights to one.

It remains to describe how we choose the distance threshold D; = min{D,d;},
where D is a general and d; is an individual threshold. The general threshold depends
on the current fit between .4 and B and gets smaller as the fit gets better. The individual

threshold depends on whether or not B; collides with a sphere in A. Let A; € A be the

sphere that minimizes ||b; — a;|| — s; — ;. If A; and B; are disjoint then we choose

d; small enough so that moving b; within this limit avoids a collision. Otherwise, we
choose d; large enough to give B; a chance to undo the collision:

4 {”bj_ai”_sj_Ti if|lbj — asl| > 5 + 74,

J ||bj—ai||—|—sj +7+ A If||bj—a,~||<sj + ;.

When we compute the sphere A; of B;, we do not have to look farther than distance
D + 5+ Rmax from b;. Since this is a constant, we can again use the grid data structure
and explore the neighborhood of b; in constant time. After collecting Z and G, we
compute the optimal rigid motion, i, and apply it to B. We expect that the total score
increases but there is no guarantee that this really happens. Simultaneously, the total
collision number may also increase.

Collision-reducing inner loop. This brings us to the preparation of instances of the
weighted least-square problem that aim at reducing the number of collisions. We distin-
guish spheres B; with and without collisions. If B; collides with at least one sphere in
A then we find the closest collision-free position in ¢/ within distance D + s; from b;
and let it be the tentative goal of b;. If B; scores and has no collision then we encourage
it to stay put by setting its tentative goal equal to its own center, b;. Let Z contain the
centers of all spheres B; that receive tentative goals, and let G' be the corresponding
set of tentative goals. Finally, we use weights to counterbalance the usual relative abun-
dance of collision-free spheres. Letting F' C Z be the subset of centers of collision-free
spheres, we set the weight of a sphere center z; € Z equal to

w . {1 if 2, € F,
T \w/llek — gl iz e Z-F,

with weight factor w. Initially, we setw = |F|/|(Z — F)|, butif this leads to an increase
in the number of collisions we adjust the weight factor as explained shortly. After com-
puting Z, G, and W, we determine the optimal rigid motion, u, and apply it to B. We
expect that the total number of collisions decreases but there is no guarantee that this
really happens. Simultaneously, the total score may decrease although we counteract
that tendency by including collision-free scoring spheres in the weighted least-square
problem.

Adjusting the weight factor. If the rigid motion u = OptRM(Z, G, W) leads to an
increase in the number of collisions, then we adjust the weight factor, w, and redo the
step in the inner loop. Recall that the rigid motion y = OptRM(Z, G, W) minimizes

2 2
Error(y') = Z ' (2) — 2ll” + Z wi ||l (1) — grll”,

zr€F z2r€Z—F

where the minimum is taken over all rigid motions u'. We set

now = S M) —al? /X (l_M)

2
zr€EF 2y €EZL—F ||zk _gk”

We then set w = wney and repeat the computations unless Collision(A, u(B)) <
Collision(.4, B). Experimentally, the adjustment is not always needed, and if necessary
it seems to take at most four iterations. In our implementation, we limit the number of
iterations to at most a constant #.. If the iteration ends with higher collision number
for 1(B) than for B then we set p = id.

Implementation and running time. We complete the description of the algorithm by
defining the constants we used but have left unspecified. Most importantly, we use a dis-
tance threshold D in the preparation of various least-square problems. In the inner loop,
we use D = 2A for the collision reducing instances. The situation is more complicated
in the outer loop, where D depends on the current fit. Assuming Score(A, B) > 180,
we set

2R if Collision(A4, B)
D = 3A if 5 < Collision(A, B)
4A if 15 < Collision(A, B)

I/\I/\I/\
c.nm

We set D = 4.5A if Collision(.A, B) > 30 or Score(A, B) < 180. The other constants
we use are the upper bounds on the number of iterations, #inner = 20, F#outer = 13,
and #w¢ = 5. In each case, the search for the tentative goal of a sphere B; is limited
to a constant size neighborhood. Assumption I implies that there are only a constant
number of spheres and vertices to consider, which takes only constant time. The total
amount of time needed for an iteration of either loop is therefore bounded by O(n).
However, the constant number of spheres and vertices searched for each B; can be
rather large, warranting the implementation of a hierarchical search structure, e.g., the
kd-tree, assisting the grid data structure. The total number of iterations is again at most
a constant. It follows that the running time of the entire algorithm is O(n), not including
the time for preprocessing, which has been accounted for in Section 2.

We have implemented the algorithm in C++ and refer to the software as LILAC.
Depending on the protein complex, LiLAC takes between half a minute and five minutes
for the preprocessing step, and between three and ten seconds for a local search, on a
PC with a Pentium I11 processor with clock speed of 929 MHz and memory of 600 MB.
Our main focus is on accelerating the search since we are interested in applications in
which the preprocessing time can be amortized over a potentially large number of local
searches.

4 Experimental Results

We applied the software to a number of known protein-protein complexes. In this sec-
tion, we describe these experiments and analyze the results we obtain.

Satement of questions. We test the effectiveness of the local search heuristic by running
LiLAc on a number of protein-protein complexes with known structure. For each such
complex, we generate two sets of spheres, Anat and Bpat, 0ne for each protein. We then
perturb the native configuration by applying a local rigid motion 7 to the second set
and use the local search heuristic on A = Ap.¢ and B = 7(Bnat), Obtaining another
rigid motion, p. Define C = u(B) = p(n(Bias)). In the ideal case, p is the inverse of

and C = Bpag- In general, we measure how different C is from By, and use this infor-
mation to distinguish successful from unsuccessful applications of the search heuristic.
Letting B}, C Bnat be the set of scoring spheres in the native configuration, we define

C* = u(w(B},.)) and compute the root-mean-square-distance between corresponding
centers,

RMSD® = RMSD(5;,,C) = |7 3 Iy — n(x(b)II
b €B 4,
where £ = |B,.|. Recall the main question formulated in Section 1, which we can now
rephrase to asking how much the native configuration can be perturbed so we still have
a good chance to recover the complex using our local search heuristic. To approach this
question, we let b* be the centroid of the centers of the spheres in B, and we write
each rigid motion, , as a rotation about b* followed by a translation. We measure the
rotation and the translation separately, letting 6(r) be the angle of the rotation and ()
be the distance of the translation. Using oriented rotation axes, we may assume that
both the angle and the distance are non-negative. A local rigid motion is one for which

6 and ¢ are small. We can now rephrase our main question again.

QUESTION A. What are the largest thresholds © and T" such that for a perturbation
with (7) < © and t(7) < T we have a good chance the local search heuristic
recovers a good approximation of the native configuration?

We also address several related, more detailed questions, such as whether or not the
success rate of the search heuristic is influenced by the angle between the rotation axis
and the translation vector, or by the number of collisions in the perturbed starting con-
figuration. The second main question addresses the variation over different complexes.

QUESTION B. Does the behavior or the search heuristic depend significantly on the
protein complexes or are there universal thresholds 7" and © that apply to all or
most complexes?

Statistical results of the experiments aimed at answering the two questions are now
presented.

Convergence thresholds. Our first experiment explores the dependence of the perfor-
mance of the local search heuristic on the size of the initial perturbation. We use the
experimentally well-studied barnase-barstar complex (LBRS) as a test case. In this com-
plex, the ribonuclease (barnase) exhibits extensive geometric surface complementarity
docked to its natural protein inhibitor (barstar). The interaction surface is large, measur-

ing about 800&2, and contains many of the features typically seen at protein interfaces,
including a few hot-spot residues that contribute the majority of the interaction energy,
electrostatic interactions, buried water molecules and the lack of a deep binding groove
that characterizes small molecule binding. To define a perturbation, we select two direc-
tions u, v € S2, an angle 6 and a distance ¢. The thus specified perturbation first rotates
by 6 around the oriented axis passing through b* in the direction u and second translates
by adding ¢v. We note that a uniform sampling of directions, angles, and distances fa-
vors small over large rigid motions. While generally undesirable, this bias is acceptable

in our application, which focuses on local rigid motions. We sample the space of per-

turbations using 32 directions (defined by the vertices and face normals of the regular
icosahedron), 10 angles (0°,3°,...,27°), and 10 lengths (0A,0.5A, . ,4.52\). This

gives a total of about one hundred thousand perturbations or trials. For each trial, we

compute the score, collision number, RMSD* of the native, perturbed, and computed

configurations. We declare a trial successful if the computed configuration has score at
least some fraction of the native score and small RMSD*. To be specific, we consider
the computation of C from 7(B) a successiif

Score(A,C) > p-Score(A, Byat) and
RMSD(B;,;,C*) < e,

where we use p = 0.9 and e = 1.5A. We note that Collision(A,C) < x is under-
stood since this is the threshold used in the search heuristic. The results of this exper-
iment are displayed in Figure 2. Using these results, we set © = 18° and T' = 3.0A.

100 —
95
90
85
80+

75

Success Rate

70

65

60

Translation Distance

Rotation Angle

Fig. 2: The success rate of the local search heuristic as a function of the rotation angle and trans-
lation distance. Each prism corresponds to a pair 6, t and represents 1,024 trials. Of course for
0 = t = 0.0 all rigid motions are the same. The height of a prism gives the percentage of
successes within the corresponding collection of trials.

For convenience, we introduce a norm to measure the size of a perturbation, ||7|| =
[(8(7)/©)? + (t/T)?]*/2. We use it to display the experimental results with graphs of
one-dimensional functions, such as in Figure 3. We looked into the question of whether
or not the search heuristic performs better for some perturbations than others. Compar-
ing the RMSD* caused by rotations versus by translations it seems that the algorithm
is about twice as sensitive to the rotational part of the perturbation. We did not find any

correlation between the success rate and the angle formed by the directions defining the
rotation and the translation. We also did not find any correlation between the success
rate and the number of collisions in the initial, perturbed configuration.

Universality of convergence thresholds. We repeated the same computational experi-
ment for nineteen additional protein complexes to test the applicability of our algorithm
to a diverse set of protein-protein complexes. The types of interactions tested include
some that fall into commonly observed classes such as protease-inhibitor complexes
or antibody-antigen complexes, and some that are one-of-a-kind complexes, often with
broad featureless interfaces that have historically been harder to dock by computational
methods. We used the same thresholds, © = 18° and 7' = 3.0A to define the norm of
a perturbationand p = 0.9 and e = 1.5A to distinguish successful from unsuccessful
trials. As shown in Figure 3, the results exhibit the same trend as those for 1BRS. The
search heuristic was more successful for twelve and less successful for seven of the
additional complexes. The answer to Question B is therefore that the thresholds © and
T appear to be universal for protein complexes. Of course, this applies only to bound,
rigid structures.

(09,15 ——

Fig. 3: Left: comparison of success rates obtained for different root-mean-square thresholds ¢ =
0.5,0.75, 1.0, 1.5A. Right: comparison of success rates for different complexes, while setting
p=09ande =1.5A.

5 Discussion

The main contribution of this paper is a local improvement algorithm for rigid protein
docking and an experimental study of its performance. Comparison of our algorithm to
other docking methods is beyond the scope of this paper as we have presented here only
a local improvement step, not an overall docking method. The results are encouraging
but we hope to improve them through additional tests and fine-tuning of the various
steps in the algorithm. We plan to use this algorithm to accelerate the exhaustive search
method of Bespamyatnikh et al. [3] using a coarse sampling of rigid motions that relates
to the observed convergence radius. We also plan to use the algorithm in combination
with more sophisticated strategies for coarse sampling that are based on protein shape
measurements [1].

The most important new research direction is the inclusion of flexibility in protein
docking. This can be approached in a variety of ways, including the use of rigidity anal-
ysis of protein structures [12], normal mode analysis [4], and ensembles of alternative
configurations [16]. The experimental results reported in [3] suggest that a successful
prediction of protein interaction is possible based on geometric criteria only but re-
quires a fine sampling of the space of rigid motions and careful accounting of details.
Any method incorporating flexibility will sacrifice some of the specificity we find in
rigid docking and will need to balance speed and specificity.

References

1. P. K. AGARWAL, H. EDELSBRUNNER, J. HARER AND Y. WANG. Extreme elevation on a
2-manifold. In “Proc. 20th Ann. Sympos. Comput. Geom., 2004”, 357-365.

2. H. M. BERMAN, J. WESTBROOK, Z. FENG, G. GILLILAND, T. N. BHAT, H. WEISSIG, I.
N. SHINDYALOV AND P. E. BOURNE. The protein data bank. Nucleic Acid Res. 28 (2000),
235-242.

3. S. BESPAMYATNIKH, V. CHOI, H. EDELSBRUNNER AND J. RUDOLPH. Accurate bound
protein docking by shape complementarity. Manuscript, Dept. Comput. Sci., Duke Univ.,
Durham, North Carolina, 2003.

4. B. R. BROOKS AND M. KARPLUS. Harmonic dynamics of proteins: normal modes and
fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. 80 (1983), 3696—
3700.

5. C.J. CAMACHOAND S. VAJDA. Protein docking along smooth association pathways. Proc.
Natl. Acad. Sci. 98 (2001), 10636-10641.

6. V. CHolI AND N. GOYAL. A combinatorial shape matching algorithm for rigid protein dock-
ing. To appear in “Proc. 15th Ann. Sympos. Combin. Pattern Matching, 2004”.

7. A.H.ELcock, D. SEPT AND J. A. McCAMMON. Computer simulation of protein-protein
interactions. J. Phys. Chem. 105 (2001), 1504-1518.

8. J. FERNANDEZ-RECIO, M. TOTROV AND R. ABAGYAN. Soft protein-protein docking in
internal coordinates. Protein Sci. 11 (2002), 280-291.

9. D. HALPERIN AND M. H. OVERMARS. Spheres, molecules, and hidden surface removal.
Comput. Geom. Theory Appl. 11 (1998), 83-102.

10. I. HALPERIN, B. MA, H. WoLFSON AND R. NussiNov. Principles of docking: an
overview of search algorithms and a guide to scoring functions. Proteins 47 (2002), 409—
443.

11. B. K. P. HORN. Closed-form solution of absolute orientation using unit quaternions. J. Opt.
Soc. Amer. A 4 (1987), 629-642.

12. D.J.JAcoBs, A. J. RADER, L. A. KUHN AND M. F. THORPE. Protein flexibility predic-
tions using graph theory. Proteins 44 (2001), 150-165.

13. J. JANIN AND S. J. WODAK. The structural basis of macromolecular recognition. Adv. Pro-
tein Chem. 61 (2002), 9-73.

14. F. JIANG AND S.-H. Kim. “Soft-docking”: matching of molecular surface cubes. J. Mol.
Biol. 219 (1991), 79-102.

15. W. KaBscH. A discussion of the solution for the best rotation to relate two sets of vectors.
Acta Crystallogr. Sect. A 34 (1978), 827-828.

16. D. M. LORBER, M. K. UDO AND B. K. SHOICHET. Protein-protein docking with multiple
residue conformations and residue substitutions. Protein Sci. 11 (2002), 1393-1408.

