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Abstract
Protein-protein interactions, which form the basis for most
cellular processes, result in the formation of protein inter-
faces. Believing that the local shape of proteins is crucial,
we take a geometric approach and present a definition of an
interface surface formed by two or more proteins. We also
present an algorithm and study the geometric and topological
properties of these surfaces, thus paving the way for future
biochemical studies of protein-protein interactions.

Categories and Subject Descriptors

G.2.1 [Discrete Mathematics]: Combinatorics — combina-
torial algorithms; I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling — geometric algo-
rithms; I.5.1 [Pattern Recognition]: Models — geometric;
J.2 [Computer Applications]: Physical Sciences and Engi-
neering — chemistry, physics; J.3 [Computer Applications]:
Life and Medical Sciences — biology and genetics.

General Terms

Algorithms, Theory.

Keywords

Protein interaction, interface surfaces, geometric and topo-
logical algorithms, Voronoi diagrams, filtrations.

1 Introduction
Protein-protein interactions form the basis for most cellular
processes including events intimately linked to human dis-
ease such as cell division and growth. Although protein-
protein interactions are ranked high on the list of unsolved
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problems, they remain poorly understood in regard to ba-
sic classification, specificity of recognition, and energetics
of binding. A comparison can be made between the current
state of the protein-protein interaction field and the field of
protein structure prior to the descriptors and classifications
that have now become part of the standard language. Specif-
ically, following the definition of � -helices and � -sheets and
the determination of numerous protein structures, it became
possible to visualize and classify proteins into families (e.g.

� -barrels or � - � - � sandwiches). These classifications have
led to important insights into protein function, protein fold-
ing mechanisms, protein structure prediction, and evolution-
ary relationships. Even today, efforts at defining the func-
tions of the many uncharacterized proteins in the human pro-
teome (about 50%) rely heavily on these descriptors. In an
analogous manner, descriptors of protein interfaces based on
geometry (shape) and physics (forces) that allow for visu-
alization, characterization, and classification, can be envi-
sioned as useful to the protein-protein interaction commu-
nity. For example, such studies of interfaces may reveal re-
gions of known importance such as binding hotspots, sites
where mutation of specific residues lead to significant loss in
binding energy. General interfacial features to be examined
include geometric characteristics such as distances, pockets,
wrinkledness and physical characteristics such as electrostat-
ics and hydrophobicity.

Prior work. Information that elucidates the driving forces
and pinpoints the specificity of protein-protein interactions
has been extremely difficult to obtain via either experimen-
tal or computational approaches. The most concrete insights
have come from experimental techniques. One popular tech-
nique, known as alanine scanning mutagenesis, involves
making alanine mutants for each of the interfacial residues of
interest and then assaying the mutants for a change in bind-
ing affinity. Alanine scanning studies performed by Wells
and collaborators [4, 28] on the hGH/hGHbp system have
resulted in the hot-spot theory of interactions. According
to this theory, although protein interaction surfaces are large
and complicated, only a few specific regions of the interface
are responsible for the majority of the interaction energy.



Similar studies performed on other protein-protein systems
have provided evidence for the general applicability of the
hot-spot theory [2, 23, 25]. To explain the association rate
of two proteins, a theory known as electrostatic steering has
been developed and appears to identify charged residues at
the periphery of the protein-protein interface as a major com-
ponent of long-range interactions for certain protein-protein
complexes [18, 24, 26].

Computational studies analyzing static crystal structures
of protein-protein complexes have historically provided a
rough view of general features found in protein-protein inter-
actions. Several surveys of interfaces have been performed
[15, 19, 29] and typically have the following format: in-
terfaces are defined by a distance threshold, the solvent ex-
cluded surface area, or a combination of the two, and statisti-
cal analyses of geometric and biochemical characteristics are
performed. Results from these studies include an average
buried area of protein-protein interfaces ( �����������
	���� Å

�
)

and the more hydrophobic nature of interfaces in compar-
ison to other protein surfaces. These studies have not fared
well when attempting to provide deeper insights into protein-
protein interactions. The key to using a computational ap-
proach for unlocking the information captured in crystal
structure data is the use of an appropriate model, which can
be either physical or geometric. Recently, Kortemme and
Baker [16] used a physical approach by applying a simple
force-field model of interactions to probe free energies at
protein-protein interfaces with relatively good success. The
only previous geometric approach to defining protein-protein
interfaces was described by Varshney et al. [27]. Their defi-
nition is asymmetric with respect to the molecules and yields
relatively fractured surfaces due to the use of absolute dis-
tance thresholds.

Methods and results. We use concepts developed in com-
putational geometry and topology [6] to define interface sur-
faces that are symmetric and avoid fracture through the use
of a relative distance threshold. The particular concepts we
base our work on are the Voronoi diagram whose applica-
tion to protein data has been pioneered by Richards [22], the
alpha shape representation of molecules introduced in [12],
the discrete flow on the Delaunay simplices used in the past
to define pockets [8] and to reconstruct surfaces [7], and the
assessment of the importance of topological features as de-
fined in [11]. Using these concepts, we deal with the difficult
and important problem of specifying interface boundaries.
In addition, we give a robust and efficient algorithm for con-
structing interface surfaces. Finally, we construct a level-of-
focus hierarchy that distinguishes protected from peripheral
regions. We have implemented the algorithm and use exam-
ples constructed with our software to illustrate the primarily
theoretical discussions. We also use the software to analyze
basic geometric and topological properties of interface sur-
faces and present some of our findings. A particularly tan-
talizing fact is the surprisingly high correlation between the
protected portions of the interface surfaces and the experi-

mentally determined hot-spot residues of protein-protein in-
teractions.

Outline. Section 2 introduces the definition of molecular
interface surfaces and presents the algorithm for constructing
them. Section 3 describes measures for analyzing interface
surfaces and preliminary biochemical applications. Section
4 discusses extensions of this work.

2 Definition and Algorithm

The definition of an interface surface combines two in-
tuitions, namely that the multi-chromatic part of the
Voronoi diagram is the best separation between complexed
molecules, and that the interesting portion of that separation
is protected by a relatively tight seal. In this section, we turn
the two intuitions into an unambiguous definition and an ef-
ficient algorithm.

Smooth inspiration. The unambiguous construction of an
interface surface is based on discrete data and is couched in
the language of discrete geometry and combinatorial topol-
ogy. We now describe an intuitive smooth process that mo-
tivates the discrete steps. Imagine a smooth map on space,
����������

. Assuming



is generic, we gain an understand-
ing of the function by looking at its critical points, which are
minima, saddles of index one and two, and maxima. We use
the critical points and their relationship to form a hierarchical
partition of space. This is more easily described in one di-
mension less, so imagine a generic smooth map on the plane,
���� � ���

, whose critical points are minima, saddles, and
maxima. Now flood the plane by continuously raising the
water level at all locations. Structurally significant events
happen when we reach critical points: a minimum starts a
lake, a saddles merges two lakes or forms an island, and a
maximum ends an island. An alternative way of flooding
the plane raises the water level without seepage. In other
words, the sea rises but minima do not automatically start a
lake when the water reaches their level. Water can invade
the land only by flowing over dams, which first happens at
saddles. Once the sea reaches a saddle, it can flow into the
basin on the other side, which is a recursive process. Flood-
ing starts at the lowest point of the basin until it reaches the
height of that same saddle, filling its own basins and creat-
ing its own islands in the process. In the end, the sequence
of floods defines a hierarchical partition of the plane deter-
mined by the relative position and height of the saddle points.
Returning to three dimensions, we obtain a similar hierarchi-
cal partition of space determined by the relative position and
height of the saddles of index one.

To relate this picture with interface surfaces, let



be
a generic smooth approximation of the (negative) local
distance to the nearest atom or sphere in a complex of
molecules. In a nut-shell, the hierarchy of interface surfaces
is the cross-section of the partition of space defined by the
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surface that separates the molecules from each other. Giv-
ing up the smooth picture and translating it into a discrete
construction turns out to be a major undertaking, but one
that is worthwhile as it leads to a stable and extremely ef-
ficient algorithm. In the translation we map critical points
to simplices in the Delaunay triangulation: minima to tetra-
hedra, index-one saddles to triangles, index-two saddles to
edges, and maxima to vertices. Continuous flooding with-
out flowing over critical points translates into a retraction,
which we describe as the composition of collapses. Finally,
a watershed event translates into the deletion of a tetrahe-
dron (the lowest point in the basin), a retraction (flooding of
the basin), and the deletion of a triangle (the saddle causing
the watershed). The retraction itself may have a complicated
recursive structure mimicking the recursive sequence of wa-
tersheds. This structure is rationalized by a pairing of the
critical points that mark the beginning and end of the water-
sheds.

Surfaces without boundary. We begin the discrete con-
struction by turning the first intuition on separating com-
plexed molecules using the multi-chromatic subcomplex of
the Voronoi diagram into a technical description. Consider�����

molecules, each represented by its space-filling di-
agram, which is a union of finitely many solid spheres or
balls in

� �
. Denote the collections of balls by ��� to �	� and

let ��

� ���� � � � . We introduce the (weighted) Voronoi di-
agram, which decomposes space into convex cells, one per
ball in � . Formally, ����������
������! "� � �!# � is the weighted
square distance of a point �%$ � � from a ball & with center
 '$ � � and radius #($ � , and the Voronoi cell of &)$*� is
the set of points � for which � � �+�"�-,.�"/0�+��� for all balls1 $2� . In the generic case, every Voronoi cell is either
empty or a convex polyhedron with non-empty interior. Sim-
ilarly, the intersection of two Voronoi cells is either empty
or a convex polygon, that of three is either empty or a line
segment, and that of four is either empty or a point. The
left picture in Figure 1 illustrates this definition for two col-
lections of disks in the plane. The color of a polyhedron
is the index of the collection � � that contains the generat-
ing ball. A Voronoi polygon belongs to exactly two polyhe-
dra and is therefore either mono-chromatic or bi-chromatic.
Similarly, a Voronoi segment or point can be either mono-
chromatic or multi-chromatic, and the latter occurs if and
only if it belongs to a bi-chromatic polygon. The inter-
face surface 34
�35���6� ��� � ��78787 ���9�:� consists of all multi-
chromatic Voronoi polygons, segments and points.

For
� 
 � molecules, each multi-chromatic segment be-

longs to exactly two bi-chromatic polygons, and each multi-
chromatic point belongs to a topological disk formed by
three or four bi-chromatic polygons. It follows the inter-
face surface is a 2-manifold without boundary, and because
it separates color-1 from color-2 polyhedra, it is necessarily
orientable. For

�<;=�
molecules we may have tri-chromatic

segments and tri- and four-chromatic points. After remov-
ing these segments and points from 3 , we get a (possibly

empty) orientable 2-manifold without boundary for each pair
of colors. These 2-manifolds fit together in triplets along tri-
chromatic curves and in six-tuplets around four-chromatic
points.

Growth and filtration. Before incorporating the second in-
tuition into the definition, we need to understand the evo-
lution of the space filling diagram as the balls grow. The
key concept here is the filtration of dual complexes. We be-
gin by introducing the (weighted) Delaunay triangulation >
obtained by dualizing the Voronoi diagram: for every col-
lection of Voronoi cells with non-empty common intersec-
tion we add the convex hull of the centers of the generating
balls to > . In the assumed generic case, the convex hulls are
simplices of dimension 0 to 3: vertices, edges, triangles and
tetrahedra. Similarly, we obtain the dual complex ? of the
space-filling diagram @A
 � � by dualizing the restriction
of the Voronoi diagram to the space-filling diagram: for ev-
ery collection of Voronoi cells whose common intersection
contains points of @ we add the convex hull of the centers
of the generating balls to ? . The right picture in Figure 1
illustrates this definition.

Now imagine we grow the balls simultaneously in such a
way that the Voronoi diagram does not change. Letting BC$ �
be time, we accomplish this by growing the ball & with center
 and square radius # � to the ball &ED with the same center  
and with square radius # ��F B at time B . (For negative time we
may have negative square radii, which correspond to imagi-
nary radii and balls.) The growth does not affect the Voronoi
diagram because it does not change the difference between
any two square radii. It follows that the Delaunay triangula-
tion does not change and the dual complex contains progres-
sively more simplices until it eventually equals the Delaunay
triangulation. We are interested in the detailed evolution.
Since there are only finitely many simplices, we have only
finitely many different dual complexes, which form a nested
sequence interpolating between the empty complex and the
Delaunay triangulation:

G 
H?�I6JK?L�9JM7�787NJK?POQ
Q>R7
We refer to this sequence as the filtration of dual complexes.
An elementary step in the evolution consists of adding the
simplices S'$'?PTU�V?PT+W � to ?PT�W � . In the generic case, this
happens when the (growing) space-filling diagram encoun-
ters a new Voronoi point, segment, polygon or polyhedron.
We distinguish between critical events in which there is only
one such simplex S and regular events in which ? T differs
from ? T+W � by two or more simplices. There are three par-
ticular types of events, two critical and one regular, that are
more relevant to the construction of the interface surface than
others:

Type 1. Four balls close in from all directions on a
Voronoi point. This corresponds to adding a single
tetrahedron to the dual complex.
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Figure 1: Left: the solid bi-chromatic Voronoi segments form the interface curve that separates the two collections of disks. The dotted mono-
chromatic segments complete the Voronoi diagram. Right: the dual complex of the union of disks and the shrunken and clipped interface
curve separating the two collections.

Type 2. Three balls close in from all normal directions
on a segment, eventually touching it at an interior point.
This corresponds to adding a single triangle to the dual
complex.

Type 3. Four balls close in on a Voronoi point, but they
leave a gap around one of the incident segments and en-
counter both at the same moment. This corresponds to
adding a triangle-tetrahedron pair to the dual complex.

A common representation of the filtration is the list of sim-
plices ordered by the time they join the dual complex. Sim-
plices that join at the same moment are ordered by dimen-
sion and remaining ties are broken arbitrarily. An algorithm
for constructing this representation can be found in [12], and
software is publically available in [30]. It first computes the
Delaunay triangulation, then determines the times the sim-
plices join the dual complex, and finally sorts the Delaunay
simplices by time and dimension. For biomolecular data,
the number of Delaunay simplices is typically some constant
times the number of balls, � , and the Delaunay triangulation
can be constructed in time O( � ����� � ), see eg. [6]. Deter-
mining the times and sorting the simplices takes again time
O( � ����� � ).

Boundary through retraction. We are now ready to incor-
porate the second intuition into the definition, namely that
the interesting portion of the interface surface is protected by
a relatively tight seal. Portions outside this seal are removed
by retraction, which can be understood as a reversal of the
growth process relaxed to a partial order [7]. We explain this
by considering the filtration of dual complexes. Re-index the
simplices in the corresponding sequence such that S T � is the�
-th new simplex in ? T . In the generic case, the simplices in
?PT��-?PT�W � form an abstract simplex: there are

���
simplices

S8T � , for � , � , �	� , and every S8T � is face of 
(
 S T ��� and has
 
 S8T � as a face. We write 
 ,%S�T � ,�
 to express the latter
property. For the time being, we are only interested in regular
events characterized by � � � . Adding the

���<; � simplices
to ? T�W � does not affect its homotopy type. We note that 


is free in ? T , by which we mean that it is face of the faces
of a single simplex, namely of 
 , but of no other simplex in
?PT . We refer to the operation that deletes 
 together with
all simplices that contain it as a collapse. In our algorithm,
we use only collapses for which 
 is a tetrahedron. Trian-
gles, edges and vertices that do not belong to any remaining
tetrahedron are deleted as soon as they arise. We also require
that a collapse deletes all and not just some simplices joining
the dual complex at the same moment. We define a retrac-
tion as a maximal sequence of collapses. In other words, it
applies collapses to a given complex until there is no further
collapse possible. In the implementation of this operation,
we maintain a stack of candidate pairs � 
 ��
�� , with new pairs
pushed on the stack when they appear. We may think of a
retraction as the process of successively deleting sinks from
an acyclic directed graph. It follows that the result of the
operation is independent of the sequence in which the col-
lapses are performed. We finally get a shrunken interface
surface as a side-effect of retaining only polygons that corre-
spond to bi-chromatic edges in the retracted complex. If this
is an interior edge then we retain the entire polygon, else we
clip the polygon and retain only the pieces that correspond
to incident tetrahedra in the retracted complex. Figure 2 il-
lustrates this idea by showing the retracted interface surface
of two complexed proteins on the far left.

Hierarchy through persistence. It remains to explore the
critical events characterized by � 
 � , that is, 
'
MS T � is the
only new simplex in ? T . We use the concept of topological
persistence to quantify how different 
 is from being regular.
Such a notion makes sense because the addition of 
 to ? T+W �
either creates or destroys a topological feature and, as shown
in [11], there is a unique critical matching simplex 
 that
earlier created what 
 destroys or that will later destroy what

 creates. We call the time-lag between the addition of 

and the addition of 
 the persistence of both. Suppose for
example we have a critical triangle 
 and a matching critical
tetrahedron 
 in quick succession. Then their persistence
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Figure 2: Four interface surfaces in the level-of-focus hierarchy of the barnase-barstar complex. The two colors distinguish clipped polygons
next to the boundary from unclipped polygons in the interior.

is small indicating that the pair is very similar to a regular
event in which 
 and 
 would join the dual complex at the
same moment. The algebraic justification of this definition
is beyond the scope of this paper and given in [11] along
with an algorithm that generates the matching pairs in worst-
case time O( �

�
), where � is the number of simplices in the

Delaunay triangulation. Our experimental results for protein
data suggest however that the running time is much better,
namely O( � ) or similar.

We now take the shrinking process beyond the initial re-
traction step. Let � 
 ��
�� be a matching critical triangle-
tetrahedron pair generated by the topological persistence al-
gorithm. In the forward direction of the filtration, the ad-
dition of 
 creates a void which is destroyed by the later
addition of 
 . We use the pair to define an extension of
the collapse operation, which we call a removal: assuming
 lies on the boundary of the remaining complex, we first
delete 
 and then retract around 
 . If the retraction reaches
far enough, then 
 gets deleted just because both its tetra-
hedra have been deleted. However, it can happen that the
retraction does not reach all the way, in which case we re-
curse for other pairs of simplices before deleting 
 . Think
of the retraction from 
 as creating a dome in the space be-
tween the molecules and the triangle 
 as the entrance or the
biggest gap in the seal surrounding the dome. We can now
interpret the times � and � when 
 and 
 join the dual com-
plex as the sizes of the entrance and the dome. We define the
seal value of � 
 � 
"� as


 ���������)
 �
� W � . To decide whether

or not to remove 
 and 
 in the first place, we require that
� and � are both positive and that


 �������"� exceeds a positive
constant threshold

	 I . Since 
 succeeds 
 in the filtration,
we have �

;
� and therefore


 ��������� ; � . The seal value
can be large for two reasons: because the difference in size
between the dome and the entrance is small or because the
entrance is large. The removal process is thus biased against
both. Note also that for ��
���
�
���
�
�� we have


 ����������


 ��� 
 ��� 
 �E7 (1)

This monotonicity property is important for the correctness

of our algorithm because if the retraction around 
 does not
reach 
 then this can only be because there is a triangle 
 

between 
 and 
 that split the void created by 
 before it was
destroyed by 
 . But then the other branch was destroyed by
a tetrahedron 
�
 preceding 
 in the filtration. In other words,
��
���
�
���
�
�� , where ��
 and ��
 are the times 
 
 and

�
 join the dual complex. Inequality (1) guarantees that the
simplices between 
 and 
 are deleted by recursive removals
so that 
 can eventually be deleted. The algorithm starts
with the Delaunay triangulation and ends with a subcomplex
that allows no further collapses or removals. Figure 3 gives
some insights into the shrinking process by showing the seal
values of the domes as they get deleted. The monotonically

Figure 3: Interface signatures displayed with the evolution of dele-
tions drawn from left to right. From top to bottom: the red graph
shows the seal values of the domes, the green graph tracks the min-
imum seal value and the blue and magenta graphs plot � and ����� .

non-increasing green graph plots the evolution of threshold
value that corresponds to the interface. The red graph above
the green shows how the deletion of a dome gives access to
domes with even higher seal values, which are then recur-
sively removed. The blue and magenta graphs display the
evolution of the two components of the seal function, � and
�)��� . These components help rationalize the occasional ap-
pearance of seemingly spurious specks of interface surface,
which tend to have negative values of � . Such occurrences
indicate clashes between the proteins and owe their existence
to measurement or interpretation errors in the structure de-
termination work. Figure 2 illustrates the result of shrinking
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with four steps in the much longer nested sequence of inter-
faces surfaces of the barnase-barstar complex. The running
time for constructing the hierarchy is constant per simplex in
the Delaunay triangulation and therefore O( � ).

3 Analysis
We believe that the primary use of molecular interface sur-
faces, as defined in this paper, will be to tease out useful
information about protein-protein interactions. This can ei-
ther be done directly, by studying the interface as a geometric
object in its own right, or by using it as a domain on which
functions expressing biochemical data are defined. An im-
portant component of these analyses is the visualization of
the interface surfaces. As an illustration we provide several
examples in Figure 6 to 10. All interface surfaces in this
section are generated using the coordinates of proteins taken
directly from crystal structure, and whose atomic radii are
set to the van der Waals parameters of the AMBER95 force
field [5].

Hot-spots in protected regions. The main reason for creat-
ing the level-of-focus hierarchy of the interface is its facility
to distinguish protected from peripheral regions. To demon-
strate the biochemical implication of this hierarchy, we show
that residues which have atoms involved in the late stages of
the hierarchy are somehow more critical for the interaction.
We do this by constructing a simple function which we then
use to distinguish hot-spot from neutral residues in the inter-
face. Letting � be a residue, ��I����"� �8787�7 ��� � its polygons in
the interface which are generated by its side-chain atoms, we
define

� ���6� 

��
T � I��	��
��

�
� T � �	��
����
���6�

�	��
�� �
� 3 �

where
����
����

��� ���
�	��
����

� 3 � is the fraction of the interface sur-
face that belongs to � , including �"T , at time B when ��T enters
the interface surface. We predict � as a hot-spot residue if� ���6� � � 7 ��� and as a neutral residue otherwise. This cutoff
is selected to equalize the percentages of correctly predicted
hot-spot and neutral residues (see Figure 4 and the results
below). For a baseline comparison, we also distinguish hot-
spot residues from neutral residues utilizing a measure com-
mon in protein structural studies, the solvent excluded sur-
face area ( ��� ��� ). The solvent accessible surface area ( ��� ��� )
of a protein is defined in [17], and is the area of the outer
envelope of a protein represented as a union of balls whose
radii are expanded by the radius ( � 7 	 Å) of a probe sphere.
The ��� ��� of a residue is the contribution of that residue’s
atoms to the total ��� ��� of the protein. Then the ��� ��� of a
residue for a protein involved in a protein-protein complex is

��� �������6� 
 ��� ����� ��� � � ��� �����	���6� �
where ��� ����� is the accessible surface area of the residue
in the isolated protein and ��� ����� is the accessible surface
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Figure 4: Fraction of hot-spot and neutral residues predicted cor-
rectly by ��� �"! with varying cutoffs. The fraction of correctly pre-
dicted hot-spots is the sensitivity and the fraction of correctly pre-
dicted neutrals is the specificity of the test.

area of the residue in the complex. We predict a residue to
be a hot-spot residue if ��� ��� ���6� � ��� Å

�
, meaning that

at least ��� Å
�

of the residue’s surface area is buried upon
complex formation. Using the alanine scanning data for the
nineteen protein complexes studies in [16] and setting the
threshold for a hot-spot residue at

� 7 � kcal/mol, we employ
both tests to predict hot-spot and neutral residues. With

� ���6�
we correctly identify # � 7$#�% of the hot-spot and # � 7$��% of the
neutral residues. This compares favorably against ��� ���"���6�
which correctly identifies ��	 7 ��% of the hot-spot and � 	 7 ��%
of the neutral residues. It is important to note that we have
limited both functions to side-chains, as opposed to main-
chains, in an effort to be consistent with the nature of alanine
scanning experiments. More precisely, we account for the
area associated with each residue’s interactions through its
side-chain atoms, but do not directly account for the area as-
sociated with interactions through its main-chain atoms. The
function

� ��� � is similar in predictive power to the physical
model of [16], which achieves slightly better percentages,
#'&�% for hot-spot and �	(�% for neutral residues, for a thresh-
old of � 7 � kcal/mol and worse percentages for the threshold
of
� 7 � kcal/mol we use.
While preliminary, these results testify to the potential of

the interface surface in rationalizing biochemical processes
that define protein interactions. We note for example that
the level-of-focus hierarchy is a geometric concept similar
to the O-rings which Bogan and Thorn [1] conjecture sur-
round hot-spots in protein interactions, or to the protection
phenomena of wrapped hydrogen bonds [13]. In this physi-
cal analogy the seal value becomes a measure of how diffi-
cult it is to break into a dome. For example, since proteins
are immersed in water, one can imagine that the seal value
indicates the degree of difficulty for water to enter a dome.
However, at present we still lack an understanding of the in-
timate biochemical details of what the level-of-focus hierar-
chy captures, and are working towards this goal.

Global measures. One goal of our research is the classi-
fication of interfaces into types that correspond to different
kinds of protein-protein interactions. We seek global mea-
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surements that are likely to have biochemical significance.
For example, it is generally acknowledged that for interfaces
it is important to have a good geometric fit between the pro-
teins. Here we focus on topological and geometric assess-
ments of how contorted interfaces are.

We begin with topological characteristics, restricting our-
selves to the relatively simple bi-chromatic case, in which the
interface is an orientable 2-manifold with boundary. Topo-
logically, a such connected manifold is completely character-
ized by its genus and its number of holes or boundary cycles
[20]. Most interfaces we have examined thus far have genus
zero, but there are exceptions. One is the interface created by
vipoxin complex, a phospholipase A � bound to its protein in-
hibitor, shown in Figure 9. It has genus three, indicating the
existence of three pairs of linking cycles that lock the two
proteins together, consistent with the high biochemical sta-
bility of this complex in solution. In the bi-chromatic case,
having the number of holes that exceeds one is possible. For
example, a portion of the Delaunay triangulation may shrink
from a mono-chromatic triangle on its boundary and in this
way punch a hole in the interface.

An interface can be highly contorted despite having zero
genus. To get a handle on this phenomenon, we measure
the average curvature and the variation from that average.
A useful result in this context is the Gauss-Bonnet theorem
that states the total Gaussian curvature is an invariant of a
closed orientable 2-manifold, namely equal to 	 � times one
minus the genus [14]. Interfaces are not smooth so we need
an equivalent piecewise linear concept. For a vertex � , we
call � � 
 � �!����� � its angle deficiency, where � � is the
angle of the

�
-th interface polygon at � . The total angle defi-

ciency is the sum of angle deficiencies over all � 
��
���
�	�

interior vertices: 
�
�� �
��� � � . Following the convention
from non-Euclidean geometry, we classify 3 as elliptic, flat
or hyperbolic depending on whether 
 is positive, zero or
negative. We use the average angle deficiency as a baseline
and measure the root-mean-square variation as

� 

���� �
�

�
�
��� � � � � 
��� �

and call it the wrinkledness of 3 . It is straightforward to
compute the total angle deficiency and the wrinkledness in
time proportional to the number of vertices of the interface.

To gain an intuition for several of the geometric global
measures, we compute them for interface surfaces gener-
ated after the initial retraction from a set of seventy pairwise
protein-protein complexes taken from [3]; see Table 1. The
area of 3 ranges from 397 to 2408 Å

�
with a mean of 963

Å
�
. The interfacial solvent excluded surface area ( ��� ��� ) as

computed in [3] is a two-sided measure, with comparable ar-
eas ranging from 930 to 4430 Å

�
with a mean of 1906 Å

�
.

There is an approximate linear correlation between ��� ��� and
interface surface area of � 7 	 � with a correlation coefficient
of �N7 (�� .

Name Area AD Name Area AD

Protease-Inhibitor
2ptc 575 0.436 1mct 694 3.358
1avw 1011 3.713 3tpi 643 1.166
1tgs 734 2.734 1cho 736 0.289
1acb 717 3.751 1cbw 653 0.059
1ppf 900 -0.628 1fle 546 2.088
2kai 776 1.357 1hia 847 2.781
3sgb 462 1.778 1cse 745 3.167
2sic 717 0.713 2sni 869 -0.924
1stf 718 -1.781 4cpa 672 1.228

Large protease complexes
1bth 871 2.819 4htc 1035 1.020
1tbq 1477 -3.923 1toc 1386 -2.334
1dan 1859 2.857

Antibody-antigen
1jhl 638 0.609 1vfb 585 0.642
1mlc 510 0.194 3hfl 719 3.690
3hfm 825 1.528 1fbi 617 3.701
1mel 502 4.792 1dvf 775 -0.401
1nfd 904 -0.110 1ao7 866 -0.197
2jel 638 1.372 1nca 1308 -1.793
1nmb 921 -0.764 1nsn 1089 1.418
1osp 747 -2.164 1qfu 1307 -0.641
1iai 1000 0.545 1kb5 1151 -0.293

Enzyme complexes
2pcc 580 -2.609 1gla 712 -1.150
1brs 703 -4.176 1udi 906 -0.125
1dhk 1686 -0.717 1fss 728 3.702
1ydr 783 -0.349 1dfj 1795 -0.668

G-proteins, cell cycle, signal transduction
1a0o 397 1.647 1gua 617 1.272
1a2k 966 -0.801 1agr 1278 -0.646
1tx4 1219 -1.921 1gg2 1788 -1.921
1got 1550 -2.017 2trc 2408 3.758
1fin 1533 4.321 1aip 1639 2.705
1efu 2205 -2.961

Miscellaneous
1ak4 409 0.821 1igc 498 0.700
1efn 488 -1.827 1fc2 604 -0.029
1seb 1081 1.486 1atn 796 -2.109
1ycs 560 1.137 2btf 1048 0.642
1hwg 2022 4.995 1dkg 1662 1.613

Table 1: Area and total angle deficiency (AD) of 70 protein com-
plexes grouped into six functional categories. AD is calculated for
the second interface surface in the hierarchy.

The total angle deficiency results show that interfaces are
contorted and span the entire range from hyperbolic (-4.176
radians) to elliptic (4.995 radians); see Table 1. This is in
clear contrast to the classical view of the protein-protein in-
terface that has only a small (

� 7 ( Å) mean deviation from
planarity [3, 15]. This discrepancy in results can be ex-
plained by the planarity measure in these previous studies
which first group atoms into subsets by a heuristic and then
take the root-mean-square distance of each subset of atoms
against their least-square planes. This generates an averaged
local measure, as opposed to our global measure of total an-
gle deficiency. In contrast to total angle deficiency, the wrin-
kledness has little variance with a mean value of approxi-
mately �N7 � for the set of protein-protein complexes consid-
ered. Perhaps not surprisingly, the wrinkledness notably in-
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creases when hydrogens are added into the structures (data
not shown).

Local measures. We are interested in local measures or
maps that can be used in detailed studies of protein-protein
interfaces. A simple example is the weighted distance func-
tion �

� 3 � �
that maps every point � of the interface

surface 3 to the weighted distance from the closest ball. By
construction, that ball is ambiguous since � has at least one
closest ball from either color. We may visualize this map
using level lines, as in Figure 5. The minima, saddles and

Figure 5: Level line visualization of the weighted distance map over
the interface surface of the barnase-barstar complex.

maxima of this map are of particular interest. Thinking
of � as measuring the local thickness or distance between
the two proteins, the minima and maxima become local ex-
tremas of interface thickness. According to smooth Morse
theory [21], there are necessarily saddle points between the
extrema, around which the sign of the change in local thick-
ness changes four times. We can now explain the connec-
tion between the seal function and the local thickness map:
each dome has a unique point � of locally maximum thick-
ness, and we have �M
�� � �+��� . Similarly, each seal has a
point � of locally maximum thickness, which is a saddle of
� , and we have �%
�� � ���N� . Now we just need to recall
the pairing mechanism provided by topological persistence
algorithm and we get the seal values as ratios �'�N� �P� � � .

The method of defining continuous maps over the inter-
face and analyzing them using ideas from Morse theory is
general. We envision defining maps that express electro-
static and hydrophobic potentials, to name two, and to an-
alyze them in terms of their critical points and their gradient
flows. We refer to [10] for methods needed to cope with the
difficulties that arise in the application of Morse theoretic
ideas to piecewise linear data, and to [9] for concepts use-
ful for comparing two or more maps defined over the same
interface.

4 Conclusion
Given two or more proteins in complex, each represented
by a space-filling diagram, we present a rigorous mathemat-
ical definition for an interface surface between them. This
surface provides a more detailed view of the interaction re-
gion than traditional methods. Taking the interface surface
as an independent entity, we may study it by defining geo-
metric and topological measures over it and map properties
of both proteins on it. Additionally, we define a level-of-
focus hierarchy which decomposes the interface surface into
protected regions that appear to be biochemically important.
This hierarchy may be studied on its own or incorporated into
measures defined over the interface surface to enhance their
analysis. Our novel representation of the interface surface
will allow for new insights and discoveries in the study of
protein-protein interactions. The generality of the interface
surface definition also opens up other possibilities, such as
studying water at protein-protein interfaces or internal pack-
ing of proteins. We might ask how different structural motifs
within a single protein form internal surfaces, or geometri-
cally characterize subtle structural rearrangements crucial to
the functioning of proteins. In closing, we note that although
we focus on applications in protein interactions, the interface
concept itself is general and there are other areas, such as
nanostructures, in which interfaces arise and our geometric
ideas are useful.
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Figure 9: On the left, a view of the interface between human angiogenin and a placental ribonuclease inhibitor. The interaction between
these proteins is extremely tight (femtomolar) and the interface exhibits both a very large surface area and an interesting overall bent shape.
Generated from pdb file 1A4Y. On the right, a view of interface in the neurotoxic vipoxin complex from Western Sand Viper consisting of
phospholipase A2 and its inhibitor. A rather unusual interface with genus 3. Generated from pdb file 1JLT.

Figure 10: Four views of the interface in HIV-1 protease, a homo-dimeric protein complex. This enzyme has been an important target for drug
development against AIDS. The interface is fairly complex, in part due to the ‘flaps’ involved in the interaction between the two subunits.
Generated from pdb file 3AID.
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