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ABSTRACT
The persistence diagram of a real-valued function on a topological
space is a multiset of points in the extended plane. We prove that
under mild assumptions on the function, the persistence diagram is
stable: small changes in the function imply only small changes in
the diagram. We apply this result to estimating the homology of
sets in a metric space and to comparing and classifying geometric
shapes.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Geometrical problems and
computations, Computations on discrete structures; G.2.1 [Discrete
Mathematics]: Combinatorics—Counting problems

General Terms
Algorithms, Theory

Keywords
Combinatorial topology, continuous functions, homology groups,
persistence, stability

1. INTRODUCTION
In this paper, we consider real-valued functions on topological

spaces and use the concept of persistence to study their qualitative
and quantitative behavior. More specifically, we encode the topo-
logical characteristics of a function in what we call its persistence
diagram and study the stability of this encoding.

Motivation. Topological spaces and functions on them are com-
mon types of data in all disciplines of the natural sciences and en-
gineering and their computational treatment is of central concern in
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support areas, such as visualization. However, much of the data that
is currently available is too large and detailed for direct human con-
sumption. Moreover, measurement errors and discretization prob-
lems inherent to any acquisition process add irrelevant complexity
to the data. A crucial problem is therefore the assessment of the
importance of a feature, one goal being the emphasis of dominant
features and the suppression of all others. This problem immedi-
ately raises two questions, namely: “what is a feature?” and “how
do we measure the relative importance of features?”. We argue that
the importance and the stability of a feature are overlapping, if not
identical concepts, as importance can be quantified in terms of the
amount of change necessary to eliminate a feature.

Results and prior work. The main result of this paper is the stabil-
ity of the persistence diagram of a function on a topological space.
The persistence diagram, introduced by Edelsbrunner, Letscher and
Zomorodian [11], is a point set in the extended plane that encodes
the difference in the homology of the sub-level sets of the func-
tion. Each point corresponds to a feature and quantifies its impor-
tance by the absolute difference between the point’s two coordi-
nates. Measuring the distance between two functions,f andg, by
theL∞-norm and that between the corresponding persistence di-
agrams,D(f) andD(g), by the bottleneck distance, the stability
result bounds the latter distance by the former:

dB(D(f),D(g)) ≤ ‖f − g‖∞. (1)

The assumptions required for this result are mild and are satisfied
by Morse functions on compact manifolds, piecewise linear func-
tions on simplicial complexes, and more. The bottleneck distance
is based on a bijection between the points and is therefore always
at least the Hausdorff distance between the two diagrams. We use
diagram-chasing methods from algebraic topology to prove (1) for
the Hausdorff distance and approximation by piecewise linear func-
tions together with linear interpolation to strengthen (1) from Haus-
dorff to bottleneck distance.

The authors believe that (1) can be used to shed new light on nat-
ural phenomena through improvements of our analysis capabilities.
To provide evidence for this claim, we apply the inequality to two
specific problems. The first is the estimation of the homology of a
closed subset of a metric space from a finite point sample. A few
years ago, Robins proved an algebraic tool we call the Quadrant
Lemma [19]. We use it to show that under some assumptions on
the sampling density, the persistent homology of the point sample,
for parameters related to the sampling density, is the same as the
homology of the subset. Somewhat surprisingly, this result does
not require the full power of our stability result, not even the Haus-
dorff version, which we prove using the Quadrant Lemma but also
the more powerful Box Lemma. The same result on homology es-



timation has independently been obtained by Chazal and Lieutier
[6]. Their methods are limited to subspaces of Euclidean space,
but extend beyond homology to fundamental groups. The second
problem is the comparison and classification of geometric shapes.
Due to its practical importance, it has been studied extensively in
a number of areas including morphology [2] and image process-
ing [20]. Recently, Carlsson et al. introduced barcodes, which are
persistence diagrams (drawing points in the plane as intervals) for
the curvature function of a certain derived space of the shape [3].
We use (1) to make concrete statements about the stability of these
barcodes. As an additional application, not described in this pa-
per, we established that under fairly mild assumptions it is possible
to estimate the total mean curvature of a smooth surface inR

3 by
the discrete analog of that measure defined for a piecewise linear
approximation of the smooth surface [7].

Outline. Section 2 introduces the mathematical concepts used in
this paper. Section 3 proves the stability of persistence diagrams,
focusing on Hausdorff distance in Section 3.2 and on bottleneck
distance in Section 3.3. Section 4 presents two applications of the
stability result. Section 5 concludes this paper.

2. BACKGROUND AND DEFINITIONS
In this section, we review background from topology, in particu-

lar homology groups, and we introduce the setting for our results.

Homology and tame functions.We refer to [17] for an introduc-
tion to homology that is both mathematically rigorous and accessi-
ble to non-specialists. Given a topological spaceX and an integer
k, we denote thek-th singular homology groupof X by Hk(X),
and thek-th Betti numberby βk(X) = dim Hk(X). In this paper,
we will work with modulo2 coefficients, so that homology groups
are vector spaces overZ2 = Z/2Z. We recall that a continuous
functionf between two topological spacesX andY induces linear
mapsfk : Hk(X) → Hk(Y) between the homology groups. Also,
if f : X → Y andg : Y → Z are two continuous functions, then
the linear map induced by the composition is the composition of
the induced linear maps:(g ◦ f)k = gk ◦ fk. In what follows, we
will only consider the special case in whichX is a subspace ofY
andf is the inclusion ofX into Y.

The results of this paper apply to a fairly general class of func-
tions which we refer to as tame. We begin by extending the classi-
cal notion of critical values to real functions on topological spaces,
without further restriction.

DEFINITION. Let X be a topological space andf a real function
on X. A homological critical valueof f is a real numbera for
which there exists an integerk such that for all sufficiently small
ε > 0 the mapHk(f−1(−∞, a − ε]) → Hk(f

−1(−∞, a + ε])
induced by inclusion is not an isomorphism.

In words, the homological critical values are the levels where the
homology of the sub-level sets changes. Iff is a Morse function
on a smooth manifold, then Morse theory implies that its homo-
logical critical values coincide with its classical critical values,i.e.
its values at critical points [16]. For (generic) PL functions de-
fined on simplicial complexes, homological critical values form a
subset of the function values at the vertices. Both examples are
special cases of Morse functions on Whitney-stratified spaces [14],
which include a large class of piecewise smooth functions defined
on smooth manifolds. For such a function, homological critical
values form a subset of the critical values of the restriction of the
function to the strata.

DEFINITION. A function f : X → R is tameif it has a finite
number of homological critical values and the homology groups
Hk(f

−1(−∞, a]) are finite-dimensional for allk ∈ Z anda ∈ R.

In particular, Morse functions on compact manifolds are tame, as
well as PL functions on finite simplicial complexes and, more gen-
erally, Morse functions on compact Whitney-stratified spaces. We
end this paragraph with an observation about homological critical
values. LetX be a topological space andf : X → R. Assum-
ing a fixed integerk, we writeFx = Hk(f

−1(−∞, x]), and for
x < y, we letfyx : Fx → Fy be the map induced by inclusion of
the sub-level set ofx in that ofy.

CRITICAL VALUE LEMMA. If some closed interval[x, y] con-
tains no homological critical value off , thenfyx is an isomorphism
for every integerk.

PROOF. Lettingm = (x + y)/2, we havefyx = fym ◦ fmx . If
fyx is not an isomorphism then at least one offmx andfym is not an
isomorphism either. By induction we obtain a decreasing sequence
of intervals whose intersection is a homological critical value inside
[x, y], contradicting our assumption.

Persistence diagrams.Using the same notation as above, we write
F yx = im fyx for the image ofFx in Fy. By convention, we set
F yx = {0} wheneverx or y is infinite. The groupsF yx , calledper-
sistent homology groupin [11], are key objects in the study of topo-
logical persistence. Whereas the groupsFx tell us about the topol-
ogy of the sub-level sets off , persistent homology groups contain
information about the topological relationships between these sub-
level sets.

We now show that the set of all persistent homology groups of a
tame function can be encoded in a planar drawing, which we call a
persistence diagram. As we will see later, persistence diagrams are
but another representation of thek-intervals introduced in [11] and
extended in [4]. Letf : X → R be a tame function,(ai)i=1..n its
homological critical values, and(bi)i=0..n an interleaved sequence,
namelybi−1 < ai < bi for all i. We setb−1 = a0 = −∞ and
bn+1 = an+1 = +∞. For two integers0 ≤ i < j ≤ n + 1, we
define themultiplicity of the pair(ai, aj) by

µji = β
bj
bi−1

− β
bj
bi

+ β
bj−1
bi

− β
bj−1
bi−1

,

whereβyx = dimF yx denotepersistent Betti numbersfor all−∞ ≤
x ≤ y ≤ +∞. To visualize this definition, considerβyx as the value
of a functionβ at the point(x, y) ∈ R̄

2, whereR̄ = R ∪ {−∞,∞}.
Then µji is the alternating sum ofβ on the corners of the box
[bi−1, bi] × [bj−1, bj ], depicted in Figure 1. Observe that ifx and
x′ lie in the open interval(ai, ai+1) andy andy′ lie in (aj−1, aj),

thenβyx = βy
′
x′ . Indeed, it follows from the Critical Value Lemma

that F yx andF y
′

x′ are isomorphic. The multiplicitiesµji are thus
well-defined and we will see later that they are always non-negative.
We now introduce the main object of study.

DEFINITION. Thepersistence diagramD(f) ⊂ R̄
2 of f is the

set of points(ai, aj), counted with multiplicityµji for 0 ≤ i <
j ≤ n + 1, union all points on the diagonal, counted with infinite
multiplicity.

We write ](A) for the total multiplicity of a multisetA which, by
definition, is the sum of multiplicities of the elements inA. For
example, the total multiplicity of the persistence diagram minus
the diagonal is

](D(f)−∆) =
X

i<j

µji .
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Figure 1: The multiplicity of the point (ai, aj) is the alternat-
ing sum of persistent Betti numbers at the corners of the lower
right square. When adding other multiplicities, cancellations
between plus and minus signs occur.

We call this number thesizeof the persistence diagram. Points with
multiplicity zero are not counted and can therefore be discarded.

Basic properties and interpretation. By construction, persistence
diagrams satisfy thek-Triangle Lemma [11], which we now re-
state. It is convenient to have short notation for the closed upper
left quadrant defined by a point(x, y),Qyx = [−∞, x]× [y,∞].

k-TRIANGLE LEMMA. Let f be a tame function and suppose
x < y are different from the homological critical values off . Then
the total multiplicity of the persistence diagram within the upper
left quadrant is](D(f) ∩ Qyx) = βyx .

PROOF. We may assume without loss of generality thatx = bi
andy = bj−1. By definition, the total multiplicity in the upper left
quadrant is

µ =
X

k≤i≤j≤`
µ`k

=
X

k≤i≤j≤`
(β
b`
bk−1

− β
b`
bk

+ β
b`−1
bk

− β
b`−1
bk−1

)

= β
bn+1
b−1

− β
bn+1
bi

+ β
bj−1
bi

− β
bj−1
b−1

Indeed, all other terms cancel, as indicated in Figure 1. But the
remaining terms vanish, except for the third, which is equal to
βyx .

The fact that persistence diagrams satisfy thek-Triangle Lemma
implies that they are equivalent to the pairing defined in [11] for
filtrations of simplicial complexes. More precisely, let∅ = K0 ⊂
K1 ⊂ . . . ⊂ Km = K be a filtration of a simplicial complexK
such thatKi+1 differs fromKi by a single simplexσi. The com-
plexes in this filtration are the sub-level sets of the function whose
value on the interior ofσi is i. Here is the connection: the per-
sistence diagram of this function is the set of points whose coordi-
nates are the pairs of indices computed by the persistence algorithm
[11], together with points at infinity that correspond to indices left
unpaired by the algorithm, together with the diagonal. This means
that each off-diagonal point in the persistence diagram can be inter-
preted as the life-span of a topological feature, as explained in [11].
This fact can also be seen from the definition of multiplicities. We
explain this while temporarily simplifying notation toFi = Fbi
andβji = β

bj
bi

. The multiplicity can be written as the difference

between two differences:µji = (βj−1
i − βji ) − (βj−1

i−1 − βji−1).

The first term,βj−1
i , can be interpreted as the number of indepen-

dent homology classes inFj−1 born beforeFi. The first difference,
βj−1
i − βji , thus counts the classes inFj−1 born beforeFi that die

beforeFj . Similarly, the second difference,βj−1
i−1 − βji−1, counts

the classes inFj−1 born beforeFi−1 that die beforeFj . It fol-
lows thatµji counts the classes born betweenFi−1 andFi that die
betweenFj−1 andFj .

For more general functions, persistence diagrams above the di-
agonal coincide with the (multi-)sets ofP-intervals described in
[4], except that we picture them as points in the extended plane
rather than intervals. The advantage of this representation will be
obvious. While the size of a persistence diagram can be quadratic
in the number of homological critical values in the worst case, it is
linear in several important cases. We already mentioned the case
of filtrations obtained by adding one simplex at a time. Other ex-
amples with linear size persistence diagrams are Morse functions
on smooth manifolds, and PL functions on simplicial complexes
in which each vertex belongs to at most some constant number of
simplices. In these cases, persistence diagrams provide a compact
encoding of the persistent homology groups.

3. STABILITY
In this section, we state and prove the main result of this paper.

The proof is done in two steps, establishing the result for Hausdorff
distance in Section 3.2 and strengthening it to bottleneck distance
in Section 3.3.

3.1 Statement of Theorem
We need some definitions. For pointsp = (p1, p2) and q =

(q1, q2) in R̄
2, let‖p− q‖∞ be the maximum of|p1−q1| and|p2−

q2|. Similarly for functionsf andg, let‖f − g‖∞ = supx |f(x)−
g(x)|. LetX andY be multisets of points.

DEFINITION. TheHausdorff distanceand thebottleneck distance
betweenX andY are

dH(X,Y ) = max{sup
x

inf
y
‖x− y‖∞, sup

y
inf
x
‖y − x‖∞}

dB(X,Y ) = inf
γ

sup
x
‖x− γ(x)‖∞,

wherex ∈ X andy ∈ Y range over all points andγ ranges over
all bijections fromX to Y . Here we interpret each point with mul-
tiplicity k ask individual points and the bijection is between the
resulting sets.

The prime example of multisets we consider are persistence dia-
grams. A bijection between two diagrams has three types of point
pairs: both off the diagonal, one off the diagonal and the other on
the diagonal, and both on the diagonal. The most important type
is the first, matching features between the two functions, and the
least important is the last, completing the matching in a way that
does not affect the bottleneck distance. Since the bottleneck dis-
tance satisfies one more constraint, namely a bijection between the
points, we havedH(X,Y ) ≤ dB(X,Y ). Recalling that a topo-
logical space istriangulableif there is a (finite) simplicial complex
with homeomorphic underlying space, we now state the main result
of this paper, which may be referred to as the Bottleneck Stability
Theorem for Persistence Diagrams.

MAIN THEOREM. Let X be a triangulable space with continu-
ous tame functionsf, g : X → R. Then the persistence diagrams
satisfydB(D(f),D(g)) ≤ ‖f − g‖∞.

In words, persistence diagrams are stable under possibly irregular
perturbations of small amplitude. This is illustrated in Figure 2



where the surplus critical values of one function define points of
the persistence diagram near the diagonal. As shown by Zomoro-
dian and Carlsson [4] in a different language, persistence diagrams
completely describe the homology groups of sub-level sets of a
function and the maps induced by inclusion between them, up to
isomorphism. They are thus a detailed representation of the topo-
logical features of a function that is stable and, in fact, Lipschitz.
Moreover, this representation is meaningful, since each point in
the persistence diagram of a function corresponds to a topological
event in the filtration associated with that function.

Figure 2: Left: two close functions, one with many and the
other with just four critical values. Right: the persistence dia-
grams of the two functions, and the bijection between them.

The bottleneck distance between two persistence diagrams can
be computed by adapting standard maximum matching algorithms
for bipartite graphs; see [8, Chapter 26] or [15]. Since the bottle-
neck distance is bounded from below by the Hausdorff distance,
the claim in the Main Theorem is also true for Hausdorff distance,
which is easier to compute. Indeed, we just need to find the small-
estε such that squares of side-length2ε placed with their centers
at the points of one diagram cover all off-diagonal points of the
other diagram, and vice versa with the diagrams exchanged. We
note also that the stability of critical value pairs is in sharp con-
trast to the lack of stability of critical values and, for Morse and PL
functions, critical points and critical point pairs. Critical values are
destroyed by cancellations and created by their inverses. Also, the
location of critical points is unstable in regions where the function
is nearly constant. Even when critical points happen to be stable,
pairs of critical points change when critical values go through inter-
changes. These changes prohibit any stability results for all three
concepts.

3.2 Proof of Hausdorff Stability
We state and prove a preliminary result, the Box Lemma, which

implies the stability of persistence diagrams for the Hausdorff dis-
tance. This result will be used in Section 3.3 to prove the stronger
statement that persistence diagrams are stable for the bottleneck
distance.

Relations between quadrants. Let f and g be two tame func-
tions defined on a topological spaceX. For all x ∈ R, we let
Fx = Hk(f

−1(−∞, x]) andGx = Hk(g
−1(−∞, x]). Also,

for all x < y, we denote byfyx : Fx → Fy andgyx : Gx →
Gy the maps induced by inclusions, and byF yx = im fyx and
Gyx = im gyx the corresponding persistent homology groups. Writ-
ing ε = ‖f − g‖∞, we havef−1(−∞, x] ⊆ g−1(−∞, x + ε]
for all x ∈ R. We denote the map induced by this inclusion by
ϕx : Fx → Gx+ε. The symmetric inclusion in whichf andg are
exchanged induces another mapψx : Gx → Fx+ε. Givenb < c,

the maps described above fit into the following two diagrams:

Fb−ε
fc+ε

b−ε−−−−−→ Fc+ε

ϕb−ε

??y
x??ψc

Gb
gc

b−−−−−→ Gc

Fb+ε
fc+ε

b+ε−−−−−→ Fc+ε

ψb

x??
x??ψc

Gb
gc

b−−−−−→ Gcb

Since the inclusion maps commute so do the induced maps. Con-
sidering the first diagram, we getfc+εb−ε = ψc ◦ gcb ◦ ϕb−ε. Let now
ξ ∈ F c+εb−ε . By definition,ξ = fc+εb−ε (η) for someη ∈ Fb−ε. Hence
ξ = ψc(ζ), with ζ = gcb(ϕb−ε(η)) ∈ Gcb. It follows thatF c+εb−ε
is a subset of the image ofGcb underψc. Considering the second
diagram, we see thatψc(Gcb) equalsψc ◦ gcb(Gb), which in turn
equalsfc+εb+ε ◦ ψb(Gb) ⊆ F c+εb+ε . We state these two findings for
later reference:

F c+εb−ε ⊆ ψc(G
c
b) ⊆ F c+εb+ε . (2)

The first inclusion impliesdimF c+εb−ε ≤ dimGcb, which is a re-
sult that already appears in Robins [19]. Applying thek-Triangle
Lemma, we get a first inequality between accumulated multiplici-
ties within the two persistence diagrams. To synchronize the state-
ment of the inequality with that of the next, we letQ = Qcb and
Qε = Qc+εb−ε.

QUADRANT LEMMA. ](D(f) ∩Qε) ≤ ](D(g) ∩Q).

In words, the total multiplicity ofD(g) inside the upper left quad-
rant with corner(b, c) is bounded from below by the total multi-
plicity of D(f) inside the quadrant shrunk byε. Of course, the
inequality is symmetric inf andg. Strictly speaking, the above
discussion proves the claimed inequality only for the case when
b, c are not homological critical values ofg andb− ε, c+ ε are not
homological critical values off . But if they are then we can enlarge
the quadrants with a sufficiently small real number0 < δ < ε such
that

](D(f) ∩ Qε) = ](D(f) ∩ Qc+ε−δb−ε+δ),

](D(g) ∩ Q) = ](D(g) ∩ Qc−δb+δ),

and the above argument applies directly because the modified co-
ordinates are not homological critical values.

Images, kernels and quotients.The Quadrant Lemma is too weak
for our purposes. To prepare a similar result for nested boxes, we
introduce vector spaces that correspond to rectangular regions in
R̄

2 defined by up to four constraints. Using thek-Triangle Lemma,
we express the dimensions of these vector spaces by the total mul-
tiplicities of the corresponding regions. Letw < x < y < z
be four real numbers, all different from homological critical values
of f : X → R. We recall that the dimension of the homology
groupFx is the total multiplicity of the upper left quadrant with
corner(x, x) (not including the corner itself), and the dimension
of the persistent homology groupF yx is the total multiplicity of
the upper left quadrant with corner(x, y); see Figure 3 (a) and
(b). Restrictingfzy : Fy → Fz to the vector spaceF yx gives a
surjectionfy,zx : F yx → F zx . Writing F y,zx for the kernel of this
map, we havedimF y,zx = dimF yx − dimF zx [22, Chapter 3].
This is the total multiplicity of the shaded three-sided rectangle de-
picted in Figure 3 (c). Also,F yw ⊆ F yx since any element ofF yw,
being the image of some elementξ ∈ Fw by fyw, is also the im-
age offxw(ξ) by fyx . Thus the mapfy,zw is just the restriction of
fy,zx : F yx → F zx to F yw. As a consequence, the kernelF y,zw of
the former map is included in the kernelF y,zx of the latter map.
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Figure 3: (a) Homology group of the sub-level setf−1(−∞, x].
(b) Image ofFx in Fy. (c) Kernel of surjection F yx → F zx . (d)
Quotient of F y,zx andF y,zw .

We can therefore consider the quotient spaceF y,zw,x = F y,zx /F y,zw .
Its dimension is the difference between the dimensions of the two
kernels,dimF y,zw,x = dimF y,zx − dimF y,zw . Equivalently, it is
the total multiplicity of the shaded rectangular box[w, x] × [y, z]
depicted in Figure 3 (d).

An inequality for nested boxes.We use the above definitions to
prove a crucial improvement of the Quadrant Lemma. Fora <
b < c < d, let R = [a, b] × [c, d] be a box inR̄

2 and letRε =
[a+ ε, b− ε]× [c+ ε, d− ε] be the box obtained by shrinkingR
at all four sides.

BOX LEMMA. ](D(f) ∩Rε) ≤ ](D(g) ∩R).

PROOF. As explained above, we may assume thata, b, c, d are
not homological critical values ofg anda + ε, b − ε, c + ε, d − ε
are not homological critical values off . Furthermore, we may as-
sumea + ε < b − ε andc + ε < d − ε, else there is nothing to
show. We approach the inequality by interpreting the total multi-
plicity of a persistence diagram within a box as the dimension of
a vector space, as explained in the previous paragraph. More pre-
cisely, consider the vector spaces whose dimensions give the total
multiplicities within the two boxes

dimF c+ε,d−εa+ε,b−ε = ](D(f) ∩ Rε), (3)

dimGc,da,b = ](D(g) ∩ R), (4)

We prove the claimed inequality by finding a surjection from a sub-
space of the latter vector space to the former. The main tool used
to relate these vector spaces is the commutative diagram shown in
Figure 4, which has a vector space for each corner of the two boxes.

To define the relevant subspace ofGc,da,b, we introduce subspaces
of Gcb andGca. First, we letEcb be the preimage, by the restric-
tion of ψc toGcb, of the kernel ofu3 (see Figure 4), that is,Ecb =
ψ−1
c (F c+ε,d−εb−ε ) ∩ Gcb. Note that by (2), the image ofGcb under
ψc containsF c+εb−ε , so the restriction ofψc toEcb , which we denote
by s3, has the kernel ofu3 as its image. We also consider the in-
tersectionEca = Gca ∩ Ecb . We will see below thatEcb/E

c
a is a

Gda
r1 // Gdb

F d−εa+ε

r2 // F d−εb−ε

s1

::vvvvvvvvv

F c+εa+ε

r3 //

u2

OO

F c+εb−ε

u3

OO

Gca ⊇ Eca

u1

OO

s2

::uuuuuuuuuu r4 // Ecb ⊆ Gcb

s3

ddIIIIIIIIII

u4

OO

Figure 4: Commutative diagram patterned after the two nested
boxesRε ⊆ R. We shorten notation by writing u2 = fc+ε,d−εa+ε

and u3 = fc+ε,d−εb−ε .

subspace ofGc,da,b, from which a surjection toF c+ε,d−εa+ε,b−ε can be con-
structed. Continuing with the description of the diagram, the maps
r1, r2, r3 andr4 are just inclusions between vector spaces. Further-
more,u1 is the restriction ofgc,da toEca andu4 is the restriction of
gc,db to Ecb . The maps2 is the restriction ofψc to Eca, and we get
ψc(G

c
a) ⊆ F c+εa+ε from (2), which implies that the image ofs2 is

contained in the same vector space, as required. Finally,s1 is the
restriction ofϕd−ε to F d−εb−ε , and we getϕd−ε(F d−εb−ε ) ⊆ Gdb from
(2) (with F andG interchanged), which implies that the image of
s1 is contained inGdb , as required. The diagram in Figure 4 is there-
fore valid and it obviously commutes. Hence,u4 = s1 ◦ u3 ◦ s3,
which impliesEcb = keru4 becauseu3 ◦ s3 is zero. Furthermore,
r1 ◦ u1 = u4 ◦ r4, which impliesEca = keru1 becauseu4 ◦ r4 is
zero andr1 is an inclusion. We express these relations with redun-
dant notation, writingEcb = Ec,db ⊆ Gc,db andEca = Ec,da ⊆ Gc,da .
SinceEc,da = Ec,db ∩ Gc,da , the quotientEc,da,b = Ec,db /Ec,da is

just the set of cosets of elements inEc,db ⊆ Gc,db moduloGc,da , so
Ec,da,b ⊆ Gc,da,b. In particular

dimEc,da,b ≤ dimGc,da,b. (5)

We are now ready for the final argument relating the two quo-
tients. Recall thatEc,da,b = keru4/keru1 and considerF c+ε,d−εa+ε,b−ε =

keru3/keru2. By construction,s3(keru4) = keru3. To show
thats3 induces a surjection between the quotients, it thus remains
to prove thats3(keru1) = s2(keru1) is included inkeru2. But
this is clear becauser2 ◦ u2 ◦ s2(ξ) = u3 ◦ s3 ◦ r4(ξ) = 0, for
everyξ ∈ keru1, andr2 is an injection. As a consequence,

dimF c+ε,d−εa+ε,b−ε ≤ dimEc,da,b . (6)

We get the claimed inequality by concatenating (3), (6), (5), (4), in
this sequence.

A direct consequence of the Box Lemma is that the Hausdorff
distance betweenD(f) andD(g) is not larger thanε. Indeed, if
(x, y) is a point ofD(f), then there must be a point ofD(g) at dis-
tance less than or equal toε from (x, y) since the total multiplicity
of D(g) inside the square[x− ε, x+ ε]× [y − ε, y + ε] is at least
one.

3.3 Proof of Bottleneck Stability
The Hausdorff distance between two persistence diagrams never

exceeds the bottleneck distance because it is oblivious to multiplic-
ities and clusters of points. In this subsection, we strengthen the



stability result to bottleneck distance, thus completing the proof of
the Main Theorem. This strengthening is crucial for some of the
applications, including the inequalities proved in [7].

An easy special case.Before proving the stability for bottleneck
distance in the general case, we discuss a special case that permits
an easy proof. Given a tame functionf : X → R, we consider
the minimum distance between two different off-diagonal points or
between an off-diagonal point and the diagonal:

δf = min{‖p− q‖∞ | D(f)−∆ 3 p 6= q ∈ D(f)}.
If we draw squares of radiusε = δf/2 around the points ofD(f)
we get a thickened diagonal and a finite collection of squares that
are disjoint from each other and from the thickened diagonal; see
Figure 5. We call another tame functiong : X → R very closeto f

Figure 5: The shaded squares are centered at the (black) points
of D(f). The white squares are centered at the (white) points
of D(g).

if ‖f − g‖∞ < δf/2. We now prove the Main Theorem under the
additional assumption of very close functions.

EASY BIJECTION LEMMA. Let f, g : X → R be tame func-
tions andg very close tof . Then the persistence diagrams satisfy
dB(D(f),D(g)) ≤ ‖f − g‖∞.

PROOF. Writing µ for the multiplicity of the pointp in D(f)−
∆ and¤ε for the square with centerp and radiusε = ‖f − g‖∞,
we get

µ ≤ ](D(g) ∩ ¤ε) ≤ ](D(f) ∩ ¤2ε)

from the Box Lemma. Since2ε < δf , p is the only point ofD(f)
in ¤2ε, which implies](D(g) ∩ ¤ε) = µ. We can therefore map
all points ofD(g) ∩ ¤ε to p. After repeating this step for all off-
diagonal points ofD(f), the only points ofD(g) that remain with-
out image have distance more thanε from D(f) − ∆. Because
the Hausdorff distance betweenD(f) andD(g) is at mostε, these
points ofD(g) are at distance at mostε from the diagonal. Map-
ping them to their respective closest points on∆ yields a bijection
between the multisetsD(f) andD(g), keeping in mind that the
points on∆ have infinite multiplicity. Since the bijection moves
points by at mostε, this concludes the proof.

We will prove the Main Theorem by composing many bijections
of the type described above, thus constructing a bijection for the
general case.

The case of piecewise linear functions.We now prove the Main
Theorem for two piecewise linear functionŝf and ĝ defined on a

simplicial complexK. A convex combinationof f̂ andĝ is a func-
tion hλ = (1− λ)f̂ + λĝ for whichλ ∈ [0, 1]. The one-parameter
family of convex combinations forms a linear interpolation between
the two piecewise linear functions, starting ath0 = f̂ and ending
ath1 = ĝ.

INTERPOLATION LEMMA.

dB(D(f̂),D(ĝ)) ≤ ‖f̂ − ĝ‖∞.

PROOF. We decompose the linear interpolation into sufficiently
small steps so we can use the Easy Bijection Lemma to get a bi-
jection for each step. Letc = ‖f̂ − ĝ‖∞ and note that for each
λ ∈ [0, 1], hλ is tame andδ(λ) = δhλ is positive. It follows that
the setC of open intervalsJλ = (λ − δ(λ)/4c, λ + δ(λ)/4c)
forms an open cover of the interval[0, 1]. Consider now a mini-
mal subcoverC′ of C. Since[0, 1] is compact,C′ is finite. Let
λ1 < λ2 < . . . < λn be the midpoints of the intervals inC′. Since
C′ is minimal, any two consecutive intervals,Jλi andJλi+1 , have
a non-empty intersection. Hence,

λi+1 − λi ≤ (δ(λi) + δ(λi+1))/4c

≤ max{δ(λi), δ(λi+1)}/2c.
By definition of c, ‖hλi − hλi+1‖∞ = c(λi+1 − λi). As a con-
sequence,‖hλi − hλi+1‖∞ ≤ max{δ(λi), δ(λi+1)}/2, which
implies thathλi is very close tohλi+1 or the other way around.
We can thus apply the Easy Bijection Lemma, which yields that
the bottleneck distance betweenD(hλi) andD(hλi+1) is bounded
from above by‖hλi − hλi+1‖∞ for 1 ≤ i ≤ n−1. Puttingλ0 = 0
andλn+1 = 1, we see that the previous inequality holds also for
i = 0 and fori = n becauseh0 is very close tohλ1 andh1 is very
close tohλn . Using the triangle inequality, we get

dB(D(f̂),D(ĝ)) ≤
nX

i=0

dB(D(hλi),D(hλi+1))

≤
nX

i=0

‖hλi − hλi+1‖∞.

But since thehλi sample the linear interpolation from̂f to ĝ, the
latter sum equals‖f̂ − ĝ‖∞, which concludes the proof.

Finale. We are now ready to combine the accumulated technical
results to complete the proof of the Main Theorem. Recall that we
assume a triangulable topological spaceX and two continuous tame
functionsf, g : X → R. By definition of triangulability, there is a
(finite) simplicial complexL and a homeomorphismΦ : L → X.
We note that the persistence diagram is invariant under this change
of variables, that is,f ◦ Φ : L → R is tame and has the same
persistence diagram asf . Let δ > 0 be sufficiently small. Sincef
andg are continuous andL is compact, there exists a subdivision
K of L such that

|f ◦ Φ(u)− f ◦ Φ(v)| ≤ δ,

|g ◦ Φ(u)− g ◦ Φ(v)| ≤ δ

wheneveru andv are points of a common simplex inK. Let now
f̂ , ĝ : SdK → R be the piecewise linear interpolations off ◦ Φ
and g ◦ Φ on K. By construction ofK, these functions satisfy
‖f̂ − f ◦ Φ‖∞ ≤ δ and‖ĝ − g ◦ Φ‖∞ ≤ δ.

We finish the argument using the triangle inequality to bound
dB(D(f),D(g)) from above by the sum of bottleneck distances



between the persistence diagrams of adjacent functions in the se-
quencef, f̂ , ĝ, g. For the middle pair we get

dB(D(f̂),D(ĝ)) ≤ ‖f̂ − ĝ‖∞
≤ ‖f − g‖∞ + 2δ

using the Interpolation Lemma, the fact thatf̂ and ĝ differ by at
mostδ from f ◦Φ andg◦Φ, and‖f − g‖∞ = ‖f ◦ Φ− g ◦ Φ‖∞,
in this order. To derive a bound for the first pair in the sequence we
assumeδ < δf/2 so we get a bijection from the Easy Bijection
Lemma. Since the change of variables does not affect the persis-
tence diagram, we get

dB(D(f),D(f̂)) = dB(D(f ◦ Φ),D(f̂)) ≤ δ.

Similarly, we getδ as an upper bound for the third pair assumingδ
is smaller thanδg/2. In total, we have

dB(D(f),D(g)) ≤ ‖f − g‖∞ + 4δ.

But this is true for every positiveδ, which we can make as small
as we like. The inequality therefore holds also without the term4δ,
which is the claimed inequality in the Main Theorem.

4. APPLICATIONS
By applying our results to different functions, we get several

corollaries, some of which we now describe.

Homology from point samples. We first address a problem also
studied in [9], namely estimating the homology groups of a closed
subsetX of a metric spaceM from a set of possibly inaccurate
point samples. For smooth surfaces embedded inR

3, this can be
done by applying a surface reconstruction algorithm and returning
the homology groups of the output. A subset of the available al-
gorithms guarantee correct reconstruction, e. g. [1, 10], implying
correct Betti numbers under some assumptions on the input. In the
smooth but possibly higher-dimensional setting, [18] shows how to
build a homotopy equivalent complex, which suffices for homol-
ogy estimation. This approach does not extend to singular spaces,
for which provably correct reconstruction algorithms are currently
not available. We need definitions to describe our approach to the
problem. LetdX : M → R be the distance function defined by
mapping each pointp ∈M to its distance fromX.

DEFINITION. The homological feature sizeof X, denoted by
hfsX, is the smallest positive homological critical value ofdX .

When the ambient metric space is the Euclidean space, the homo-
logical feature size ofX is closely related to the weak feature size
of its complement,wfs (M −X), recently introduced in [6]. In
particular, results in [6] implywfs (M −X) ≤ hfsX. For a sur-
faceS ⊆ R

3, both concepts are related to thelocal feature size,
lfs : S → R, defined by mapping each pointp to its distance
from the medial axis [1]. The minimum oflfs(p), over all points
p ∈ S, is sometimes referred to as thereachof S. Classical results
on parallel bodies imply thathfsS is at least as large as the reach.
A non-smooth object can well have non-zero homological feature
size but its reach is necessarily zero; see Figure 6. For instance,
semi-algebraic sets always have positive weak feature size [13] and
therefore positive homological feature size. This property turns out
to be essential in our approach. Suppose we estimate the homology
of X from another closed subsetP approximatingX, which may
be a finite set of points. For any two numbersx < y, letXy

x and
P yx be the persistentk-th homology groups ofdX anddP associ-
ated withx andy. To state our result, letX+δ be theparallel body
consisting of all points inM at distance less thanδ fromX.

Figure 6: The bold curve has positive homological feature size,
equal to the radius of the dotted circle, but it has zero reach
because the three cusp points have vanishing local feature size.

HOMOLOGY INFERENCETHEOREM. For all real numbersεwith
dH(X,P ) < ε < hfsX/4 and all sufficiently smallδ > 0, the di-
mensions of the homology group ofX+δ andP 3ε

ε are either both
infinite or both finite and equal.

PROOF. Note that‖dX − dP ‖∞ = dH(X,P ), by definition of
Hausdorff distance. Hence‖dX − dP ‖∞ < ε. Our assumptions
do not imply thatdX anddP are tame, but we can still apply the
inequality between persistent Betti numbers implied by the first in-
clusion in (2), whose proof makes no use of the tameness assump-
tion. This yields

dimX4ε+δ
δ ≤ dimP 3ε+δ

ε+δ ≤ dimX2ε+δ
2ε+δ .

Choosingδ such that4ε+ δ < hfsX, the interval[δ, 4ε+ δ] con-
tains no homological critical value ofdX . It follows thatX4ε+δ

δ

andX2ε+δ
2ε+δ have the same dimension implying that both inequali-

ties above are equalities. Furthermore,dim Hk(X
+δ) = dimXδ

δ =
dimX4ε+δ

δ , again because there are no homological critical values
in [δ, 4ε+ δ].

Perhaps unexpectedly, the homology groups ofX+δ can be dif-
ferent from those ofX, even whenX has positive homological
feature size andδ is arbitrarily small. An example of such aX
is described in [6, 21]. However, this kind of pathological behav-
ior cannot happen for absolute neighborhood retracts [21, Chapter
1], which include most practically encountered sets. We note that
the dimensions of the homology groups ofX+δ are the dimensions
of the Čech cohomology vector spaces in algebraic topology [21,
Chapter 6]. From a practical point of view, the Homology Infer-
ence Theorem gives an algorithm for estimating the homology of
a closed subset ofR3 from a set of samples, provided estimates
of Hausdorff distance and homological feature size are known. In-
deed, the dimensions of the persistent homology groups that appear
in the theorem are efficiently computable using the persistence al-
gorithm on the filtration of alpha complexes [11, 12]. Finally we
mention that F. Chazal and A. Lieutier [6] have independently ob-
tained similar but finer results for a more restricted setting. For in-
stance, they can determine the fundamental group of a closed set in
Euclidean space from an approximating closed set. This group cap-
tures topological information not captured by the homology groups
of the set.

Stable signatures of shapes.To decide whether two shapes are
similar is useful in a variety of settings, including drug design, face
recognition, forensic comparison, and sourcing of standard compo-
nents. In all these applications, we need fast comparison algorithms
but also fast search methods in shape databases. One approach to
this problem is to associate with each shape a simpler object, or



signature, in such a way that two congruent shapes have the same
signature. Two shapes can then be compared by comparing their
signatures. The term signature originates in the work of Cartan,
whose idea was to associate to each curves 7→ f(s) in the plane
the curves 7→ (κ(s), κ′(s)), whereκ(s) denotes the curvature at
the pointf(s). This new curve is invariant under rigid motion and
contains enough information to reconstruct the original curve, up
to rigid motion. However, due to its extreme sensitivity to noise,
this particular signature is difficult to use in practice.

In sharp contrast, the persistence diagram of the distance func-
tion is a signature that is stable under perturbations in the Hausdorff
sense, which is fairly weak. Indeed, as mentioned above, the max-
imum difference between the distance functions of two shapes is
equal to the Hausdorff distance between the shapes. The Main The-
orem therefore implies that if two shapes have Hausdorff distance
smaller thanε, up to rigid motion, the bottleneck distance between
the persistence diagrams of their distance functions is smaller than
ε. In contrast to Cartan’s signature, the persistence diagram han-
dles point sets in a reliable way since sufficiently dense samplings
of a shape are good approximations for the Hausdorff distance. On
the other hand, it is not detailed enough to determine the original
shape, not even up to rigid motion. In particular, two shapes whose
persistence diagrams are close are not necessarily approximately
congruent.

To fill this gap, we may consider persistence diagrams of func-
tions different from distance. An example is the approach intro-
duced in [3]. In the case of a smooth hypersurface,S, it maps each
point p ∈ S and each unit length vectorv in the tangent space
of S at p to the absolute normal curvature atp in the directionv,
(p, v) 7→ |κ(p, v)|. The persistence diagram of this function de-
fined on the unit tangent bundle ofS, provides a signature ofS.
It is called abarcodein [3], where persistence diagrams are repre-
sented as sets of intervals. In order to compare two barcodesB and
B′, it is suggested to use the following metric, which we describe
in terms of the corresponding persistence diagramsD andD′:

d(D,D′) = inf
γ

X

p

‖p− γ(p)‖1,

where‖p− q‖1 = |p1−q1|+ |p2−q2| andγ ranges over all bijec-
tions betweenD andD′. Although this distance function may be
relevant in practice, it is unclear whether it makes barcodes stable
under reasonable metrics for the class of hypersurfaces. However,
if the distance between barcodes is measured by the bottleneck dis-
tance, then the Main Theorem implies that barcodes are continuous
when the set of hypersurfaces is endowed with theC2-topology.

BARCODE THEOREM. If a diffeomorphismΦ : R
d → R

d has
derivatives up to second order close to those of a rigid motion,
then the bottleneck distance between the barcodes of a hypersur-
faceS ⊆ R

d and its perturbationΦ(S) is small.

Indeed, applying a diffeomorphism that isC2-close to a rigid mo-
tion to a hypersurface does not change its normal curvatures by
much. A similar result can be obtained for arbitrary co-dimension
submanifolds. Computing the bottleneck distance between the bar-
codes of two shapes is thus a relevant approach to deciding whether
these two shapes are approximately congruent.

5. DISCUSSION
We have shown that persistence diagrams provide a stable repre-

sentation of the topological properties of a broad class of functions,
and have described several applications of this result. Many ques-
tions remain unanswered, some of which probe the limits of the

result. Is it possible to extend the Main Theorem to functions that
are non-tame? The ideas used in the proof suggest the appropri-
ate generalization of the persistence diagram of such a function is
a measure defined over the extended plane. Are there other inter-
esting metrics, on functions and persistence diagrams, for which
an inequality like the one in the Main Theorem holds? For exam-
ple, if the distance between persistence diagrams is measured as
in [3], what metrics between functions give such an inequality, if
any? Other open questions are concerned with applications of the
Main Theorem, which may be viewed as a precise statement about
the structural sensitivity of functions to noise. This interpretation
ought to be useful in the design of algorithms that cope well with
incomplete or imprecise data. How can we exploit the new insights
to get improved algorithms for problems like the medial axis [5],
surface reconstruction [1, 10], and alike? How far can we relax the
requirements on the input data and still guarantee correct construc-
tion?
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