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ABSTRACT support areas, such as visualization. However, much of the data that

The persistence diagram of a real-valued function on a topological is currgntly available is too large and detailed for djrect human con-
space is a multiset of points in the extended plane. We prove thatsump_tlon. Moreover, mea_sl_Jr_ement errors an_d discretization prc_)b-
under mild assumptions on the function, the persistence diagram is/€MS inherent to any acquisition process add irrelevant complexity
stable: small changes in the function imply only small changes in _to the data. A crucial problem is the_refore the asse_ssment O.f the
the diagram. We apply this result to estimating the homology of importance of a feature, one goal being the emphasis of dominant

sets in a metric space and to comparing and classifying geometric/€atUres and the suppression of all others. This problem immedi-
shapes. ately raises two questions, namely: “what is a feature?” and “how

do we measure the relative importance of features?”. We argue that
the importance and the stability of a feature are overlapping, if not

Categones and SUbJeCt Descrlptors identical concepts, as importance can be quantified in terms of the

F.2.2 JAnalysis of Algorithms and Problem Complexity]: Non- amount of change necessary to eliminate a feature.

numerical Algorithms and Problemsseometrical problems and

computations, Computations on discrete structu@g.1 Discrete Results and prior work. The main result of this paper is the stabil-

Mathematics]: Combinatorics—€ounting problems ity of the persistence diagram of a function on a topological space.
The persistence diagram, introduced by Edelsbrunner, Letscher and

General Terms Zomorodian [11], is a point set in the extended plane that encodes

the difference in the homology of the sub-level sets of the func-
tion. Each point corresponds to a feature and quantifies its impor-
tance by the absolute difference between the point's two coordi-

Algorithms, Theory

Keywords nates. Measuring the distance between two functigrendg, by

Combinatorial topology, continuous functions, homology groups, the Lec-norm and that between the corresponding persistence di-

persistence, stability agrams,D(f) andD(g), by the bottleneck distance, the stability
result bounds the latter distance by the former:

1. INTRODUCTION

_ ) _ _ ds(D(f),D(9)) < [If —9llw- @
In this paper, we consider real-valued functions on topological

spaces and use the concept of persistence to study their qualitativel he assumptions required for this result are mild and are satisfied

and quantitative behavior. More specifically, we encode the topo- by Morse functions on compact manifolds, piecewise linear func-

logical characteristics of a function in what we call its persistence tions on simplicial complexes, and more. The bottleneck distance

diagram and study the stability of this encoding. is based on a bijection between the points and is therefore always
at least the Hausdorff distance between the two diagrams. We use

Motivation. Topological spaces and functions on them are com- diagram-chasing methods from algebraic topology to prove (1) for

mon types of data in all disciplines of the natural sciences and en- the Hausdorff distance and approximation by piecewise linear func-

gineering and their computational treatment is of central concern in tions together with linear interpolation to strengthen (1) from Haus-

dorff to bottleneck distance.

::TChlg gf(')b‘tgév&%mh%rsbweéi E?:r;t\ia”y ;upport(?[de%/Ol\(lﬁli %gdfro%rg?t The authors believe that (1) can be used to shed new light on nat-
Fra third authorsvr;s pgrtially supl:)r(])rt%rd%r?rlllSF under-gra-nt-DMS; ural phenomena through improvements of our analysis capabilities.
01-07621 and by DARPA under grant HR0011-05-1-0007. To provide evidence for this claim, we apply the inequality to two

specific problems. The first is the estimation of the homology of a

closed subset of a metric space from a finite point sample. A few

years ago, Robins proved an algebraic tool we call the Quadrant
Permission to make digital or hard copies of all or part of this work for Lemma [19]. We use it to show that under some assumptions on
personal or classroom use is granted without fee provided that copies arethe sampling density, the persistent homology of the point sample,
not made or distributed for profit or commercial advantage and that copies for parameters related to the sampling density, is the same as the
bear this notice and the full citation on the first page. To copy otherwise, to homology of the subset. Somewhat surprisingly, this result does
reput_)lls_h, to post on servers or to redistribute to lists, requires prior specific not require the full power of our stability result, not even the Haus-
permission and/or a fee. dorff version, which we pr ing th drant L but al
SCG'05,June 6-8, 2005, Pisa, Italy. ' prove using the Quadrant Lemma but also
Copyright 2005 ACM 1-58113-991-8/05/0006$5.00. the more powerful Box Lemma. The same result on homology es-




timation has independently been obtained by Chazal and Lieutier DEFINITION. A function f : X — R is tameif it has a finite

[6]. Their methods are limited to subspaces of Euclidean space, number of homological critical values and the homology groups
but extend beyond homology to fundamental groups. The secondHy (f ! (—oo, a]) are finite-dimensional for akk € Z anda € R.
problem is the comparison and classification of geometric shapes.
Due to its practical importance, it has been studied extensively in
a number of areas including morphology [2] and image process-
ing [20]. Recently, Carlsson et al. introduced barcodes, which are . ; ; ) .
persistence diagrams (drawing points in the plane as intervals) forend this paragraph with an observation about homological critical
the curvature function of a certain derived space of the shape [3]. yalues: Let.X be a topologllcal spacé arﬁjlx — R. Assum-

We use (1) to make concrete statements about the stability of these"9 @ fixed mtegerk. we write F, = H’“(f (—oo, m]).‘ and_for
barcodes. As an additional application, not described in this pa- £ < ¥: W€ letfZ : Ko — Fy be the map induced by inclusion of
per, we established that under fairly mild assumptions it is possible the sub-level set af in that ofy.

to estimate the total mean curvature of a smooth surfad iny

the discrete analog of that measure defined for a piecewise linear
approximation of the smooth surface [7].

In particular, Morse functions on compact manifolds are tame, as
well as PL functions on finite simplicial complexes and, more gen-
erally, Morse functions on compact Whitney-stratified spaces. We

CRITICAL VALUE LEMMA. If some closed intervdk, y] con-
tains no homological critical value g¢f, thenf? is an isomorphism
for every integer.

Outline. Section 2 introduces the mathematical concepts used in PROOF. Lettingm = (z +y)/2, we havefy = fi, o f;". If

this paper. Section 3 proves the stability of persistence diagrams, /= i$ not an isomorphism then at least onef@f and f7, is not an
focusing on Hausdorff distance in Section 3.2 and on bottleneck isomorphism either. By induction we obtain a decreasing sequence
distance in Section 3.3. Section 4 presents two applications of the Of intervals whose intersection is a homological critical value inside
stability result. Section 5 concludes this paper. [, y], contradicting our assumption []

Persistence diagramsUsing the same notation as above, we write

2. BACKGROUND AND DEFINITIONS F? = im f} for the image ofF, in F,. By convention, we set

In this section, we review background from topology, in particu- FY = {0} wheneverz or y is infinite. The groupg’, calledper-
lar homology groups, and we introduce the setting for our results. sistent homology grouip [11], are key objects in the study of topo-

logical persistence. Whereas the grodpstell us about the topol-

Homology and tame functions.We refer to [17] for an introduc- ogy of the sub-level sets df, persistent homology groups contain
tion to homology that is both mathematically rigorous and accessi- information about the topological relationships between these sub-
ble to non-specialists. Given a topological sp&cand an integer level sets.
k, we denote thé-th singular homology groupf X by Hy (X), We now show that the set of all persistent homology groups of a
and thek-th Betti numbeiby 55 (X) = dim Hx(X). In this paper, tame function can be encoded in a planar drawing, which we call a
we will work with modulo2 coefficients, so that homology groups  persistence diagram. As we will see later, persistence diagrams are
are vector spaces ovér, = Z/27Z. We recall that a continuous  but another representation of thentervals introduced in [11] and
function f between two topological spac&sandY induces linear extended in [4]. Leff : X — R be a tame function(a;)i=1..., its
mapsfx : Hx(X) — Hy(Y) between the homology groups. Also, homological critical values, an@;);—o..» an interleaved sequence,
if f:X — Yandg:Y — Z are two continuous functions, then namelyb;_1 < a; < b; for all i. We setb_1 = ap = —oo and
the linear map induced by the composition is the composition of b,4+1 = ant+1 = +00. Fortwo integerd) < i < j < n+ 1, we
the induced linear mapsy o f)r = g © fx. In what follows, we define themultiplicity of the pair(a;, a;) by
will only consider the special case in whighis a subspace of . b b by by q
andf is the inclusion ofX into Y. o= By =By 8y =By

The results of this paper apply to a fairly general class of func-
tions which we refer to as tame. We begin by extending the classi-
cal notion of critical values to real functions on topological spaces
without further restriction.

wheresY = dim FY denotepersistent Betti numbefer all —oco <

x < y < +oo. To visualize this definition, considéf as the value
' of afunction atthe poin(z,y) € R* whereR = R U {—o0, o0}

Then p! is the alternating sum off on the corners of the box
[bi—1,bi] % [bj—1,b,], depicted in Figure 1. Observe thatifand

DEFINITION. LetX be atopological space arfda real function 2 lie in the open intervala,, a,.1 ) andy andy’ lie in (a1, a;),

on X. A homological critical valueof f is a real number for ; ) .
which there exists an integérsuch that for all sufficiently small ~ thenss = 7. /Indeed, it follows from the Critical Value Lemma

e > 0 the mapH;(f ' (—o0,a — ¢]) — Hp(f " (—00,a + ¢)) that Iy and 'Y, are isomorphic. The multiplicities? are thus
induced by inclusion is not an isomorphism. well-defined and we will see later that they are always non-negative.

. " We now introduce the main object of study.
In words, the homological critical values are the levels where the

homology of the sub-level sets changes.f lis a Morse function DEFINITION. Thepersistence diagrar(f) c R? of f is the
on a smooth manifold, then Morse theory implies that its homo- get of points(a;, a;), counted with multiplicitypf foro < i <
logical critical values coincide with its classical critical values, j < mn+ 1, union all points on the diagonal, counted with infinite

its values at critical points [16]. For (generic) PL functions de- multiplicity.

fined on simplicial complexes, homological critical values form a . . . .

subset of the function values at the vertices. Both examples areWe Writef(A) for the total multiplicity of a multisetA which, by
special cases of Morse functions on Whitney-stratified spaces [14], definition, is the sum of multiplicities of the elementsih For
which include a large class of piecewise smooth functions defined €xample, the total multiplicity of the persistence diagram minus
on smooth manifolds. For such a function, homological critical the diagonal is

values form a subset of the critical values of the restriction of the HD(f) - A) = Z“g'

function to the strata. —
1<J



The first termﬂf‘l, can be interpreted as the number of indepen-
dent homology classes i, 1 born beforef’;. The first difference,
B!~" — p7, thus counts the classes#_; born beforeF; that die
before F;. Similarly, the second differencg; | — 3/ |, counts

i—11

1 b the classes irf;_; born beforeF;_; that die beforer. It fol-
1 a]- lows thaty? counts the classes born betwegn; and F; that die
i b]< betweenF;_; andF}.
53 For more general functions, persistence diagrams above the di-
agonal coincide with the (multi-)sets @¥-intervals described in
—+— - 2 > [4], except that we picture them as points in the extended plane
b, & b - rather than intervals. The advantage of this representation will be
‘ obvious. While the size of a persistence diagram can be quadratic
in the number of homological critical values in the worst case, it is
Figure 1: The multiplicity of the point (a;, a,) is the alternat- linear in several important cases. We already mentioned the case
ing sum of persistent Betti numbers at the corners of the lower ~ Of filtrations obtained by adding one simplex at a time. Other ex-
right square. When adding other multiplicities, cancellations amples with linear size persistence diagrams are Morse functions
between plus and minus signs occur. on smooth manifolds, and PL functions on simplicial complexes

in which each vertex belongs to at most some constant number of
simplices. In these cases, persistence diagrams provide a compact
We call this number thsizeof the persistence diagram. Points with  encoding of the persistent homology groups.
multiplicity zero are not counted and can therefore be discarded.

3. STABILITY

In this section, we state and prove the main result of this paper.
The proof is done in two steps, establishing the result for Hausdorff
distance in Section 3.2 and strengthening it to bottleneck distance
in Section 3.3.

k-TRIANGLE LEMMA. Let f be a tame function and suppose 3.1 Statement of Theorem
z < y are different from the homological critical values faf Then . . B
the total multiplicity of the persistence diagram within the upper (qlwi)n ﬁ}eﬂ—ggsfeﬂ?pdﬁgﬂ'tlog‘;hgzzggﬁsr;o& 1’}2 21)| ::gézi

left quadrant i(D(f) N Qz) = £z ¢2|. Similarly for functionsf andg, let| f — g|| . = sup, | /(z)—

Basic properties and interpretation. By construction, persistence
diagrams satisfy thé-Triangle Lemma [11], which we now re-
state. It is convenient to have short notation for the closed upper
left quadrant defined by a poifit, y), Q% = [—oo, 2] X [y, 0].

PROOF. We may assume without loss of generality that b; g(w)|- LetX andY’ be multisets of points.
andg N i’i‘l' By definition, the total multiplicity in the upper left DEFINITION. TheHausdorff distancand thebottleneck distance
quadrantis betweenX andY” are
4
peo= > w dn(X,Y) = max{supinf ||z — y| ., supinf [y — /| .}
k<i<j<e z Y y 7
b b by by_ X.Y) = infs _
D DRI R . d5(X,Y) = infsupllz = 1(@)ll,
k<i<j<e

b b by by wherex € X andy € Y range over all points angl ranges over
= BT =B, B =B all bijections fromX to Y. Here we interpret each point with mul-
tiplicity k£ ask individual points and the bijection is between the

Indeed, all other terms cancel, as indicated in Figure 1. But the resulting sets.

remaining terms vanish, except for the third, which is equal to
gy, O The prime example of multisets we consider are persistence dia-
grams. A bijection between two diagrams has three types of point

The fact that persistence diagrams satisfyitfiriangle Lemma  paijrs: both off the diagonal, one off the diagonal and the other on
implies that they are equivalent to the pairing defined in [11] for the diagonal, and both on the diagonal. The most important type

filtrations of simplicial complexes. More precisely, let= Ko C is the first, matching features between the two functions, and the
Ki C ... C K;» = K be afiltration of a simplicial complex’ least important is the last, completing the matching in a way that
such that; 1, differs from K; by a single simplex;. The com- does not affect the bottleneck distance. Since the bottleneck dis-

plexes in this filtration are the sub-level sets of the function whose tance satisfies one more constraint, namely a bijection between the
value on the interior ob; is <. Here is the connection: the per-  points, we havely (X,Y) < dp(X,Y). Recalling that a topo-
sistence diagram of this function is the set of points whose coordi- |ogical space isriangulableif there is a (finite) simplicial complex
nates are the pairs of indices computed by the persistence algorithmyith homeomorphic underlying space, we now state the main result

[11], together with points at infinity that correspond to indices left of this paper, which may be referred to as the Bottleneck Stability
unpaired by the algorithm, together with the diagonal. This means Theorem for Persistence Diagrams.

that each off-diagonal point in the persistence diagram can be inter-

preted as the life-span of a topological feature, as explained in [11]. MAIN THEOREM. Let X be a triangulable space with continu-
This fact can also be seen from the definition of multiplicities. We ous tame functiong, g : X — R. Then the persistence diagrams
explain this while temporarily simplifying notation tb; = F, satisfyds (D(f),D(g)) < [|f — gll -

and 3} = f3,]. The multiplicity can be written as the difference | words, persistence diagrams are stable under possibly irregular
between two differencesy’ = (3" — 37) — (37=) — p_,). perturbations of small amplitude. This is illustrated in Figure 2



where the surplus critical values of one function define points of the maps described above fit into the following two diagrams:
the persistence diagram near the diagonal. As shown by Zomoro-

dian and Carlsson [4] in a different language, persistence diagrams Fy . o e Fyye foie e
completely describe the homology groups of sub-level sets of a

function and the maps induced by inclusion between them, up to waal szc wﬁ Twc
isomorphism. They are thus a detailed representation of the topo- . .

logical features of a function that is stable and, in fact, Lipschitz. Gy % G, Gy % G§

Moreover, this representation is meaningful, since each point in
the persistence diagram of a function corresponds to a topological
event in the filtration associated with that function.

Since the inclusion maps commute so do the induced maps. Con-
sidering the first diagram, we géf™= = v o gj; 0 .. Let now

¢ € Fy™2. By definition,é = f;72(n) for somen € F,_.. Hence

&€ = 9e(¢), with ¢ = gi(wp—2(n)) € Gj. It follows that F* 2

is a subset of the image ¢f; undery.. Considering the second

A\ 3 g diagram, we see that.(G§) equalsi. o g;(Gy), which in turn
}'IJ \\ . equalsfy s o ¥y (Gy) C FylZ. We state these two findings for
: later reference:
/l\\\/
A / \ FiECo(GE) C RS (2)
\'\xf/ The first inclusion implieslim F,ffj < dim Gy, which is a re-

sult that already appears in Robins [19]. Applying th&riangle
Lemma, we get a first inequality between accumulated multiplici-
ties within the two persistence diagrams. To synchronize the state-
ment of tre inequality with that of the next, we I8t = Q; and

Q- =t

QUADRANT LEMMA. #(D(f) N Q:) < #(D(g) N Q).

Figure 2: Left: two close functions, one with many and the
other with just four critical values. Right: the persistence dia-
grams of the two functions, and the bijection between them.

The bottleneck distance between two persistence diagrams carl WOrds, the total multiplicity oD(g) inside the upper left quad-
be computed by adapting standard maximum matching algorithms rant with corner(b, c) is bounded from below by the total multi-
for bipartite graphs; see [8, Chapter 26] or [15]. Since the bottle- Plicity of D(f) inside the quadrant shrunk hy Of course, the
neck distance is bounded from below by the Hausdorff distance, IN€quality is symmetric inf andg. Strictly speaking, the above
the claim in the Main Theorem is also true for Hausdorff distance, diScussion proves the claimed inequality only for the case when
which is easier to compute. Indeed, we just need to find the small- 0: ¢ are not homological critical values gfandb — ¢, ¢ + ¢ are not
este such that squares of side-length placed with their centers homological critical values of. Butif they are then we can enlarge
at the points of one diagram cover all off-diagonal points of the th€ quadrants with a sufficiently small real numbec 5 < e such

other diagram, and vice versa with the diagrams exchanged. wethat

note also that the stability of critical value pairs is in sharp con- 4D(F)NQ.) = #D(f)NQstes
trast to the lack of stability of critical values and, for Morse and PL (D(F) ) (D7) f:;*é)’
functions, critical points and critical point pairs. Critical values are 1Dl NQ) = #(D(g) N Qyys),

destroyed by cancellations and created by their inverses. Also, theanq the above argument applies directly because the modified co-
location of critical points is unstable in regions where the function jinates are not homological critical values.

is nearly constant. Even when critical points happen to be stable,

pairs of critical points change when critical values go through inter- Images, kernels and quotientsThe Quadrant Lemma is too weak
changes. These changes prohibit any stability results for all three g, o, purposes. To prepare a similar result for nested boxes, we
concepts. i_ngroduce vector spaces that correspond to rectangular regions in
- R* defined by up to four constraints. Using thdriangle Lemma,
3.2 Proof of Hausdorff Stability we express the dimensions of these vector spaces by the total mul-
We state and prove a preliminary result, the Box Lemma, which tiplicities of the corresponding regions. Let < =z < y < z

implies the stability of persistence diagrams for the Hausdorff dis- be four real numbers, all different from homological critical values
tance. This result will be used in Section 3.3 to prove the stronger of f : X — R. We recall that the dimension of the homology
statement that persistence diagrams are stable for the bottleneclgroup F, is the total multiplicity of the upper left quadrant with

distance. corner(z, ) (not including the corner itself), and the dimension

of the persistent homology groufy is the total multiplicity of
Relations between quadrants. Let f andg be two tame func- the upper left quadrant with cornéx, y); see Figure 3 (a) and
tions defined on a topological spa&e For allz € R, we let (b). Restrictingf,; : F, — F. to the vector spacéy gives a
Fp = Hi(f '(~o0,z]) and G, = Hy(g~'(—o0,z]). Also, surjectionf¥* : FY — FZ. Writing F¥>* for the kernel of this
for all z < y, we denote byfy : F, — F, andgy : G» — map, we havelim FY"* = dim FY — dim F; [22, Chapter 3].
G, the maps induced by inclusions, and BY = im fy and This is the total multiplicity of the shaded three-sided rectangle de-
GY = im g¥ the corresponding persistent homology groups. Writ- picted in Figure 3 (c). AlsoF¥ C F} since any element oFY,
inge = |f—gl., we havef ' (—oc0,z] C g~ '(—o00,z + €] being the image of some elementc F,, by fJ, is also the im-
for all z € R. We denote the map induced by this inclusion by age of f (&) by f¥. Thus the mapf* is just the restriction of
¢a @ Fy — Gzie. The symmetric inclusion in whicli andg are fy= . FY — Ff to FY. As a consequence, the kerrg}* of

exchanged induces another map: G, — F,.. Givenb < c, the former map is included in the kerngl/'* of the latter map.
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e,d—e

subspace ofs“%, from which a surjection tdF:Is »_. can be con-
structed. Continuing with the description of the diagram, the maps
Figure 3: (a) Homology group of the sub-level sef ~* (—oo, z]. r1, T2, r3 andry are just inclusions between vector spaces. Further-
(b) Image of F, in F,. (c) Kernel of surjection F) — F7. (d) more,u, is the restriction o< to ES andu. is the restriction of
Quotient of FY>* and FJ*. g;’d to E;. The maps: is the restriction of). to E;, and we get
Ye(Gs) C FofL from (2), which implies that the image 6f is
contained in the same vector space, as required. Finallg the
restriction ofp,_. to F' 7, and we getpa—. (Fy~5) C Gy from

(2) (with F" andG interchanged), which implies that the image of
s1 is contained inG¢, as required. The diagram in Figure 4 is there-
fore valid and it obviously commutes. Henee, = s; o ug o s3,
which impliesE; = ker us becauseus o s3 is zero. Furthermore,

71 0 u1 = uq o rq, Which impliesE; = ker u; becauseus o ry4 is
zero andr is an inclusion. We express these relations with redun-

We can therefore consider the quotient spage, = F7* /FY~.

Its dimension is the difference between the dimensions of the two
kernels,dim Fy'; = dim FY"* — dim F)'*. Equivalently, it is

the total multiplicity of the shaded rectangular bax =] x [y, ]
depicted in Figure 3 (d).

An inequality for nested boxes. We use the above definitions to

lp))rove a ccriUfiaII;mfrovebment chl trtw)e ngadrgrﬁéQLen:jn?a.R(FO( dant notation, writinges — Eg,d C Gg,d andES = ES C God.
< ¢ <d,letR = [a,b] x [c,d] be a box inR" and letR. = Since ES? = EP* N GoY, the quotientE®d = EP?/ESY is
[a+e,b—¢] x [c+¢,d — £] be the box obtained by shrinking ) P B
at all four sides. just the set of cosets of elementsAlj® C G’ moduloG5 ¢, so
ESY C GS4. In particular
Box LEMMA. §(D(f) N R.) < #(D(g) N R). ' '
dimEJy < dim G (5)

PROOF As explained above, we may assume thgdt c, d are
not homological critical values gf anda +¢,b —e,c+¢,d — ¢ We are now ready for the final argument relating the two quo-
are not homological critical values ¢t Furthermore, we may as-  tients. Recall thaE{"y = ker w4 /ker u; and considef s =y ~% =
sumea + ¢ < b—e andc + ¢ < d — ¢, else there is nothingto  keruz/keruz. By construction,ss(kerus) = kerus. To show
show. We approach the inequality by interpreting the total multi- thatss induces a surjection between the quotients, it thus remains
plicity of a persistence diagram within a box as the dimension of to prove thatss(kerui) = sa(kerw:) is included inker us. But
a vector space, as explained in the previous paragraph. More prethis is clear because o uz o s2(§) = w3 o0 s3 o r4(§) = 0, for
cisely, consider the vector spaces whose dimensions give the totalevery{ € ker w;, andr; is an injection. As a consequence,

multiplicities within the two boxes dim Fere%¢ < dim B¢ ®)
ate,b—e — a,b*
. ct+e,d—e _ )
dimF,ioy-c = #D() N Ee), ) We get the claimed inequality by concatenating (3), (6), (5), (4), in
dim Gy = #(D(g) N R), 4) this sequence. (]

We prove the claimed inequality by finding a surjection fromasub- A direct consequence of the Box Lemma is that the Hausdorff
space of the latter vector space to the former. The main tool useddjstance betweed(f) andD(g) is not larger thare. Indeed, if
to relate these vector spaces is the commutative diagram shown in(z. /) is a point ofD(f), then there must be a point b(g) at dis-
Figure 4, which has a vector space for each corner of the two boxes.tance less than or equal¢drom (z, 3) since the total multiplicity

To define the relevant subspace(bj’"’z, we introduce subspaces  of D(g) inside the squarg: — ¢,z + ¢] x [y — &,y + ] is at least
of G andGg. First, we letE}; be the preimage, by the restric-  gne.

tion of 1. to G}, of the kernel ofus (see Figure 4), that ify;, = .

P H(FEFE975) N Gy, Note that by (2), the image a®; under 3.3 Proof of Bottleneck Stability

e containsFlfjj, so the restriction of). to E;,, which we denote The Hausdorff distance between two persistence diagrams never
by s3, has the kernel ofi; as its image. We also consider the in- exceeds the bottleneck distance because it is oblivious to multiplic-
tersectionE; = G N Ey. We will see below that; /ES is a ities and clusters of points. In this subsection, we strengthen the



stability result to bottleneck distance, thus completing the proof of
the Main Theorem. This strengthening is crucial for some of the
applications, including the inequalities proved in [7].

An easy special caseBefore proving the stability for bottleneck

simplicial complexi. A convex combinationf f andg is a func-
tion hy = (1 — \)f + Ag for which € [0, 1]. The one-parameter
family of convex combinations forms a linear interpolation between
the two piecewise linear functions, startingiat = f and ending
ath; = g

distance in the general case, we discuss a special case that permits

an easy proof. Given a tame functign: X — R, we consider
the minimum distance between two different off-diagonal points or
between an off-diagonal point and the diagonal:

oy min{[p — gl | D(f) —A3p#qe D)}

If we draw squares of radius= ¢ /2 around the points db( f)

INTERPOLATIONLEMMA.
ds(D(f),D@) < IIf —dll..

PrROOF We decompose the linear interpolation into sufficiently
small steps so we can use the Easy Bijection Lemma to get a bi-

we get a thickened diagonal and a finite collection of squares that jection for each step. Let = ||f — ||, and note that for each
are disjoint from each other and from the thickened diagonal; see A € [0,1], hy is tame andi(\) = dy, is positive. It follows that

Figure 5. We call another tame functign X — R very closdo f

Figure 5: The shaded squares are centered at the (black) points
of D(f). The white squares are centered at the (white) points
of D(g).

if ||f =gl <ds/2. We now prove the Main Theorem under the
additional assumption of very close functions.

EAsSY BIJECTIONLEMMA. Let f,g : X — R be tame func-
tions andg very close tof. Then the persistence diagrams satisfy

ds(D(f),D(9)) < If = 9lloe-

PRoOOF Writing y for the multiplicity of the poin in D(f) —
A and[. for the square with centgrand radius = || f — gl .
we get

po < #(D(g) NOe) < #(D(f) NOee)

from the Box Lemma. Sinc2es < ¢, p is the only point ofD( f)
in Oz., which impliest(D(g) N O:) = p. We can therefore map
all points of D(g) N O, to p. After repeating this step for all off-
diagonal points oD ( f), the only points oD(g) that remain with-
out image have distance more thafrom D(f) — A. Because
the Hausdorff distance betwe&X(f) andD(g) is at most, these
points of D(g) are at distance at mostfrom the diagonal. Map-
ping them to their respective closest pointsMlyields a bijection
between the multisetB(f) and D(g), keeping in mind that the
points onA have infinite multiplicity. Since the bijection moves
points by at most, this concludes the proof.[]

We will prove the Main Theorem by composing many bijections
of the type described above, thus constructing a bijection for the
general case.

The case of piecewise linear functionsWe now prove the Main
Theorem for two piecewise linear functiorfsand g defined on a

the setC' of open intervals/y (A= 86(N)/4e, X + 5(N) /4c)
forms an open cover of the intervil, 1]. Consider now a mini-
mal subcovelC’ of C. Since[0, 1] is compact,C’ is finite. Let
A1 < A2 < ... < Ay be the midpoints of the intervals @'. Since
(" is minimal, any two consecutive intervalg,, and.J have
a non-empty intersection. Hence,

Aigr = Ai < (0(A) +(Xig1))/4e
< max{d(N\i),d0(Xit1)}/2¢c.

i+17

By definition of ¢, ||, — A, HOO = ¢(Xiy1 — N\i). As a con-
sequencellhy, — ha,, Il < max{d(\:),0(Xi+1)}/2, which
implies thath,, is very close tohy, , or the other way around.
We can thus apply the Easy Bijection Lemma, which yields that
the bottleneck distance betweBrih,,) andD(hy,, , ) is bounded
fromabove by|hx; — ha, || forl <i < n—1. Puttingho =0
and\,4+1 = 1, we see that the previous inequality holds also for
1 = 0 and fori = n becauséy is very close tdh,, andh, is very
close toh,,,. Using the triangle inequality, we get

ds(D(f),D(@)) <

i dp (D(h/\,i), D(h/\i+1 ))

IN

n
Hhh‘ - h)\i+1 H .
oo

=0

But since theh,, sample the linear interpolation froffito g, the
latter sum equal§f — g||__, which concludes the proof.[]

Finale. We are now ready to combine the accumulated technical
results to complete the proof of the Main Theorem. Recall that we
assume a triangulable topological spacand two continuous tame
functionsf, g : X — R. By definition of triangulability, there is a
(finite) simplicial complexZ and a homeomorphisi : L — X.

We note that the persistence diagram is invariant under this change
of variables, that isf o ® : L. — R is tame and has the same
persistence diagram &s Letd > 0 be sufficiently small. Sinc¢

andg are continuous and is compact, there exists a subdivision

K of L such that

|f o ®(u) — fod(v)|
lgo®(u) —god(v)

whenevern, andv are points of a common simplex . Let now
f,4 : SAK — R be the piecewise linear interpolations b ®
andg o ® on K. By construction ofK, these functions satisfy
If = fo®l, <dandl|g—go®|, <.

We finish the argument using the triangle inequality to bound
dg(D(f),D(g)) from above by the sum of bottleneck distances

< 4,
< 6



between the persistence diagrams of adjacent functions in the se-
quencef, f, g, g. For the middle pair we get

ds(D(f),D(@) < IIf —dll.
< Nf—gll +20

using the Interpolation Lemma, the fact thatnd § differ by at
mostd from fo® andgo®, and||f —g||_ = [|[fo® —go ®|__,

in this order. To derive a bound for the first pair in the sequence we
assume) < dy/2 so we get a bijection from the Easy Bijection
Lemma. Since the change of variables does not affect the persis-

; Figure 6: The bold curve has positive homological feature size,
tence diagram, we get

equal to the radius of the dotted circle, but it has zero reach

dg(D(f),D(f)) = ds(D(fo®),D(f)) < 6. because the three cusp points have vanishing local feature size.
Similarly, we gets as an upper bound for the third pair assuming
is smaller thard, /2. In total, we have HOMOLOGY INFERENCETHEOREM. For all real numberswith
ds(D(f),D(9)) < |f—gll +40. di (X, P) < e < hfs X/4 and all sufficiently smalb > 0, the di-

o N ) mensions of the homology group &+ and P3¢ are either both
But this is true for every positivé, which we can make as small  ixfinjte or both finite and equal.

as we like. The inequality therefore holds also without the téfm

which is the claimed inequality in the Main Theorem. PrROOF. Note thatl|d* — dPHoo = du (X, P), by definition of
Hausdorff distance. Hendgl® — d”||_ < e. Our assumptions
4. APPLICATIONS do not imply thatd™ andd” are tame, but we can still apply the
By applying our results to different functions, we get several inequality between persistent Betti numbers implied by the first in-
corollaries, some of which we now describe. clusion in (2), whose proof makes no use of the tameness assump-

tion. This yields

dim X;°*° < dim PX}° < dim X551,

5

Homology from point samples. We first address a problem also
studied in [9], namely estimating the homology groups of a closed
subsetX of a metric space\/ from a set of possibly inaccurate  Choosings such thatle + § < hfs X, the interval[s, 4 + 6] con-
point samples. For smooth surfaces embedde&inthis can be  tains no homological critical value af*. It follows that X 2+
done by applying a surface reconstruction algorithm and returning ang x2-+2 have the same dimension implying that both inequali-
the_homology groups of the output. A _subset of the avalllable_al- ties above are equalities. Furthermatian Hy, (X +9) = dim X? —
gorithms guarantee correct reconstruction, €. g. [1, 10], implying dim X **°  again because there are no homological critical values
correct Betti numbers under some assumptions on the input. In thein [ 42 n 6’] 0

smooth but possibly higher-dimensional setting, [18] shows how to

build a homotopy equivalent complex, which suffices for homol- Perhaps unexpectedly, the homology groupXdf can be dif-

ogy estimation. This approach does not extend to singular spacesgarent from those ofX, even whenX has positive homological

for which provably correct reconstruction algorithms are currently ¢asture size and is arbitrarily small. An example of such &

not available. \)/(Ve need definitions to describe our approgch to theis gescribed in [6, 21]. However, this kind of pathological behav-
problem. Letd™ : M — R be the distance function defined by o1 cannot happen for absolute neighborhood retracts [21, Chapter
mapping each poini ¢ M to its distance from¥.. 1], which include most practically encountered sets. We note that

DEFINITION. The homological feature sizef X, denoted by  the dimensions of the homology groupsf ® are the dimensions

hfs X, is the smallest positive homological critical valuedof. of the Cech cohomology vector spaces in algebraic topology [21,
Chapter 6]. From a practical point of view, the Homology Infer-

‘ence Theorem gives an algorithm for estimating the homology of
a closed subset dk® from a set of samples, provided estimates
of Hausdorff distance and homological feature size are known. In-
deed, the dimensions of the persistent homology groups that appear
in the theorem are efficiently computable using the persistence al-
gorithm on the filtration of alpha complexes [11, 12]. Finally we

] ) ) mention that F. Chazal and A. Lieutier [6] have independently ob-
p € 5, is sometimes referred to as tfeachof 5. Classical results  ¢aineq similar but finer results for a more restricted setting. For in-
on parallel bodies imply thatfs S'is at least as large as the reach.  gan0e they can determine the fundamental group of a closed set in
A non-smooth object can well have non-zero homological feature Euclidean space from an approximating closed set. This group cap-

size but its reach is necessarily zero; see Figure 6. For instancey, e topological information not captured by the homology groups
semi-algebraic sets always have positive weak feature size [13] andy¢ e get.

therefore positive homological feature size. This property turns out
to be essential in our approach. Suppose we estimate the homolog
of X from another closed subs&tapproximatingX’, which may

be a finite set of points. For any two numbers< y, let X and

PY be the persisterit-th homology groups ofl* andd” associ-
ated withz andy. To state our result, leX +° be theparallel body
consisting of all points inV/ at distance less thahfrom X.

When the ambient metric space is the Euclidean space, the homo
logical feature size ok is closely related to the weak feature size
of its complementwfs (M — X), recently introduced in [6]. In
particular, results in [6] implyvfs (M — X) < hfs X. For a sur-
faceS C R?, both concepts are related to theal feature size

Ifs : S — R, defined by mapping each poiptto its distance
from the medial axis [1]. The minimum dfs(p), over all points

Stable signatures of shapesTo decide whether two shapes are
similar is useful in a variety of settings, including drug design, face
recognition, forensic comparison, and sourcing of standard compo-
nents. In all these applications, we need fast comparison algorithms
but also fast search methods in shape databases. One approach to
this problem is to associate with each shape a simpler object, or



signature in such a way that two congruent shapes have the sameresult. Is it possible to extend the Main Theorem to functions that
signature. Two shapes can then be compared by comparing theirare non-tame? The ideas used in the proof suggest the appropri-
signatures. The term signature originates in the work of Cartan, ate generalization of the persistence diagram of such a function is
whose idea was to associate to each curve f(s) in the plane a measure defined over the extended plane. Are there other inter-
the curves — (x(s), k'(s)), wherer(s) denotes the curvature at  esting metrics, on functions and persistence diagrams, for which
the pointf(s). This new curve is invariant under rigid motion and an inequality like the one in the Main Theorem holds? For exam-
contains enough information to reconstruct the original curve, up ple, if the distance between persistence diagrams is measured as
to rigid motion. However, due to its extreme sensitivity to noise, in [3], what metrics between functions give such an inequality, if
this particular signature is difficult to use in practice. any? Other open questions are concerned with applications of the
In sharp contrast, the persistence diagram of the distance func-Main Theorem, which may be viewed as a precise statement about
tion is a signature that is stable under perturbations in the Hausdorffthe structural sensitivity of functions to noise. This interpretation
sense, which is fairly weak. Indeed, as mentioned above, the max-ought to be useful in the design of algorithms that cope well with
imum difference between the distance functions of two shapes isincomplete or imprecise data. How can we exploit the new insights
equal to the Hausdorff distance between the shapes. The Main Theto get improved algorithms for problems like the medial axis [5],
orem therefore implies that if two shapes have Hausdorff distance surface reconstruction [1, 10], and alike? How far can we relax the
smaller thare, up to rigid motion, the bottleneck distance between requirements on the input data and still guarantee correct construc-
the persistence diagrams of their distance functions is smaller thantion?
€. In contrast to Cartan’s signature, the persistence diagram han-
dles point sets in a reliable way since sufficiently dense samplings Acknowledgments
of a shape are good approximations for the Hausdorff distance. Onwe would like to thank Fecéric Chazal for suggesting a simplification in
the other hand, it is not detailed enough to determine the original the proof of the bottleneck stability. We also thank anonymous reviewers
shape, not even up to rigid motion. In particular, two shapes whose for their useful comments.
persistence diagrams are close are not necessarily approximately
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