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ABSTRACT

Generalizing the concept of a Reeb graph,Rieeb spacef a mul-
tivariate continuous mapping identifies points of the domthiat

belong to a common component of the preimage of a point in the

range. We study the local and global structure of this space f
generic, piecewise linear mappings on a combinatorial fakhi
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1. INTRODUCTION

This paper advocates Reeb spaces for the structural analfysi
continuous, multivariate, scientific data.

Motivation. The current transformation of the physical sciences is
driven by the availability of ever larger and more detailedasets.

In many cases, the data samples one or more continuousdngcti
We model this situation mathematically as a mapgingl — R”,
whereM is the domain and the components ffare the multi-
ple real-valued functions. Commonly asked questions qonite
identification of correlated and uncorrelated component the
construction of a small basis that preserves all or mostefrifor-
mation contained irf. The size of the data motivates the extraction
of the essential information and their summary. A powerfal tin
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this context is theReeb graphwhich is defined whet = 1. It
compresses the components of the level sets to points anesses
their relationship by forming a-dimensional space. The situation
for & > 1 is significantly more complicated and the topic of this
paper. The central question is how to pack the Reeb grapheeof t
k components into a single structure. Preferably, this ttrecre-
flects the properties of the mapping and is invariant undégreint
choices of basis components. Not surprisingly, the singida of
the mapping play a crucial role, which will become clear wian
see how the Jacobi set of the mapping relates to the Reeh sipace
proposed single structure.

Beyond summarizing, we are also interested in simplifyimg t
data and its derivatives, in particular the Jacobi set ardRbeb
space. While there have been major advances in measurisgthe
of features [7], the translation of this understanding ietiective
simplification methods has been slow. Particularly unsssfts
was the attempt to simplify the Jacobi set. Indeed, our eaigino-
tivation for the study of Reeb spaces was exactly that: terstend
the structural constraints that guide the simplificatiothef Jacobi
set. While we feel that this paper is a step in the right dioegtwe
leave the completion of this task to future investigations.

Prior work and results. Because of the importance in visualiza-
tion, there has been a great deal of work on Reeb graphs of real
valued functions [18]. Motivated by the absence of loop<ftioc-

tions on topologically simple domains, these graphs arestiomes
referred to acontour treeq1]. The simplification of these trees
was discussed in [3]. There is significantly less prior worktbe
extension of Reeb graphs to Reeb spaces. The existing work is
limited to bivariate, generic, smooth mappings.

e Burlet and de Rham study smooth, bivariate mappings on
orientable3-manifolds [2]. Under the assumption that every
point of the Jacobi set is definite (appears as a minimum for
some linear combination of the two components), they es-
tablish relationships between the topology of amanifold
and that of the Reeb space. Porto and Furuya extend this
work to orientablel-manifolds ford > 3 [17].

¢ Motivated by the study of immersions 8fmanifolds inR*,
Levine and coauthors give a complete local classification of
points in the Reeb space of bivariate, generic, smooth map-
pings on orientable as well as non-orientaBkenanifolds
[12, 13]. Furuya extends this work to orientadlenanifolds
[9] and Kobayashi and Saeki extend it furtherltoanifolds
ford > 3 [11].

In the piecewise linear literature we find only one paper s
beyond Reeb graphs [6]. Using the Jacobi curves for pieeewis
linear mappings introduced in [5], it gives a dynamic altori for



maintaining the Reeb graph in time. The result may be inétegr

not a complex. Extending the notion of underlying space bsets

as sweeping out the Reeb space of a bivariate mapping in which L C K we write|L| for the union of interiors of the simplices in the

one of the components is time.

In this paper, we consider generic, piecewise linear mapin
from a combinatoriaki-manifold toR*. Following the work on
generic, smooth mappings, we characterize points of the Resce,
proving that their neighborhoods are cones over Reeb sphoese
lower dimension. Complementing the local analysis, we stiat/
Reeb spaces have triangulations and coarsest stratifisatideir
existence is established constructively. In the case dfrtéuegula-
tion this leads to a polynomial-time algorithm while the stmc-
tion of the coarsest stratification contains an undecidablgrob-
lem and leads to algorithms only fér< 4.

Outline. Section 2 provides background from topology. Section
3 introduces Reeb spaces for piecewise linear mappingsrohieo
natorial d-manifolds. Section 4 gives the proof of the local char-
acterization of points of the Reeb space. Section 5 coristthe
triangulations and the coarsest stratifications. Sectidlugrates
the results by studying bivariate piecewise linear mappiog ori-
entable3-manifolds that are generic and simple. Section 7 con-
cludes this paper.

2. BACKGROUND

In this section, we introduce the necessary backgroundron si
plicial complexes, piecewise linear functions, and Jasets. For
further material on the first two topics we refer the readévitmkres
[16] and, on the last topic, to [5].

Simplicial complexes. An i-simplexo is the convex hull ofi +

1 affinely independent points in some Euclidean space. lgettin
uo,u1, . .., u; be the pointsg is the set oftonvex combinations
thatis, pointsy " s;u; with >~ s; = 1ands; > 0forall0 < j <.
The interior of o consists of the convex combinations for which
all the s; are strictly positive. Thedimensionof the simplex is
dimo = 4, which is at most the dimension of the ambient Eu-
clidean space. Aaceof o is spanned by a non-empty subset of
thei + 1 points. All faces argroper except fore which is anim-
properface of itself. Theboundaryof the simplex, denoted d>,
consists of all its proper faces. #fandv are two disjoint faces of

o with dim 7 + dimv = dim o — 1 theno is thejoin of the two,

o = T % v, meaning it is the union of line segments connecting
points of r with points ofv. Any two of these line segments are
either equal, disjoint or meet at a common endpoint.

A simplicial complexs a finite set of simplice&” such that every
face of a simplex i belongs tak” and the intersection of any two
simplices inK is either empty or a face of both. We cdtl a d-
complexandd the dimensiorof K if the largest dimension of any
of its simplices isd. Theunderlying spacef K is the union of the
simplices,|K| = (J,.x o, together with the subspace topology
inherited from the ambient space. Avoiding any possibldusion
we will sometimes blur the distinction between a complex asd
underlying space. Aubcomplexs a simplicial complex. C K.

L is calledfull if it contains every simplex of¢ whose vertices lie
in L. For every non-negative integéx d, thei-skeletondenoted
as K@, is the largest subcomplex of dimensignit consists of
all simplices of dimension or less inK. The0-skeleton is often
referred to as theertex setVert K = K©). Thestarof a simplex
o, denoted as$t o, is the set of simplices i that haves as a
face. We get thelosed staiif we add all faces of simplices in the
star. Thdink of o, denoted a$.k o, consists of all simplices in the
closed star that have an empty intersection withNote that the
closed star and the link are complexes while the star is gdiger

subset. Asubdivisionof K is a simplicial complex with the same
underlying space for which every simplex is contained imapgex

in K. Particularly useful is théarycentric subdivisionvhich we
denote assd K. To describe it we recall that tHearycenterof an
i-simplex is the average of its+ 1 vertices. The barycenters of
the simplices inK form the vertex set ofd K and a subset of the
barycenters spans a simplex iff the corresponding simplices
form a chain in which every simplex is a face of the next in the
sequence.

We sayK triangulatesa topological space homeomorphic to its
underlying space. IK triangulates al-manifold then every point
of |K| has a neighborhood homeomorphicR8. However, this
does not imply that the link of evefiysimplex triangulates a sphere
of dimensiond — ¢ — 1. A counterexample to this seemingly plau-
sible property can be found in Edwards [8], see also [19]. Ak c
K acombinatoriald-manifoldif it satisfies this stronger property,
that is, the link of every vertex triangulates thé— 1)-sphere and
is itself a combinatoriald — 1)-manifold. Equivalently, the star of
every vertex is isomorphic to the star of a vertex in a sulsitivi of
thed-simplex.

PL mappings and height functions. Let u1, uz, ..., u, be the
vertices of a simplicial complex<, o a simplex inK, anda a
point of . We recall that is a unique convex combination of the
vertices ofo so we can writer = 377 s;u; with 357 s; = 1,

s; > 0forall j, ands; = 0 unlessu; is a vertex ofoc. Thes;
are unique and are called tharycentric coordinatesf a. We use
them to extend a vertex mafp: Vert K — R* by piecewise linear
interpolation to gpiecewise lineaor PL mappingf : |K| — R*
defined by

fla) = Z 55/ (uj).

By construction, the restriction gf to a simplex ofK is linear. We
may think of f as a way to drawk in R*. Clearly, f is contin-
uous but it is generally not injective. In particulgt,restricted to

a simplex of dimension beyorid cannot be injective. We caff a
generic PL mappingf the images of the vertices have no structural
properties that can be removed by arbitrarily small pestidns of
the vertex map. In particular, we will make use of the follogi
consequence of this general assumption.

I. The restrictions off to simplices of dimensio® or less are
injective, that is, the image of every simplex of dimension
1 < kis ani-simplex.

Supposé: : |[K| — Ris ageneric PL function oK. By Property |
we haveh(u;) # h(u;) whenever; andu; are the two endpoints
of an edge ink. We define thdower link of a vertexu; as the
collection of simplices in the link whose vertices all haveadler
function value than.;. Symmetrically, theupper linkis the col-
lection of simplices in the link whose vertices have largerdtion
value:

Lk,uj
Lk+uj

{0 € Lku;j | a € 0 = h(a) < h(uj)};
{r € Lku; | a € 7 = h(a) > h(u;)}.

AssumingK is a combinatoriali-manifold, the link ofu; is a tri-

angulation of théd — 1)-dimensional spher&®~*. The lower and
upper links are full subcomplexes of this triangulation. t&lthat
their union is not all of the link as there are simplices thatdhsome
of their vertices with higher value, and some with lower alu



We measure the way the lower link is connected using reduced 3. REEB SPACES

homology wit[lZ/2Z coefficients. Following the usual conven-
tion, we writes; for the rank of the dimensioireduced homology

group. Denoting the ranks of the non-reduced homology group

by 3; we haveB; = 3; unlessi < 1. FurthermoreGy = 3o — 1

andf$_1 = 0 unless the lower link is empty in which case we have

Bo = Po = 0andpB_; = 1. All §; are non-negative integers.
We call u; aregular vertexof h if all reduced Betti numbers of
its lower link vanish and &ritical vertex otherwise. It is simple

critical vertex if Y 3; = 1. Simple critical points are conveniently

classified by thendexthat exceeds the dimension of the non-zero

reduced homology group by one; see Table 1.&er 3 it is com-
mon to refer to simple critical points of indéX 1, 2, 3 asminima
1-saddles2-saddlesmaxima

type  index|| B-1 Bo B B
regular 0 0 0 0
minimum 0 1 0 0 0
1-saddle 1 0 1 0 0
2-saddle 2 0 0 1 0
maximum 3 0 0 0 1

Table 1. A simple critical point of index i is characterized by
Bi—1=1landp; =0forall j #i—1.

Jacobi sets.We now return to a multivariate generic PL mapping
f : |K| — R*. Following [5], we consider all linear combinations
of the components of. Equivalently, we leti be a unit vector in
S¥=1 and consider the PL functioh; : | K| — R defined by

hg(a) = <f(a)7ﬁ>7

the height of the image of the poiatin the directioni. Assuming
hz is constant on a simplexin K we can define itfower link the
same way as for a vertex, namely as the collection of simplice
the link whose vertices have function value less than thatpaf
7. Theupper linkof 7 is similarly defined. Assuming the upper and
lower links exhaust all vertices @fk 7, we use the reduced homol-
ogy of the lower link to decide whetheris regular or critical for
hg, and if it is critical whether or not it isimple If 7is a(k — 1)-
simplex then there are exactly two unit vectors for whichhbaght
functions they define are constant-opnamely the unit normalg
and —& of the image ofr in R*. The lower link ofr under one
height function is its upper link under the other, which ineplthat
T is critical for hy iff it is critical for h_z. In other words; has
only one chance to be critical. Finally, we define tlaeobi setof

f as the collection of criticalk — 1)-simplices together with their
faces. These simplices form a subcomplexsofvhich we denote
asJy.

Property | is needed to unambiguously define the Jacobi set, b

it does not imply that this subcomplex has a structure thatsis
simple as the Jacobi set of a generic smooth mapping. Wefthere
introduce a second requirement and ¢all | K| — R* asimple,
generic PL mappindf

Il. every (k — 1)-simplex inJy is a simple critical simplex.

Even property Il falls short of implying that the underlyisgace

of J; is a manifold, but this would be asking too much since even

Jacobi sets of generic, smooth mappings are not necessaiti
folds unless is very small [10].

We will not need the simplicity property until section 6 whee
deal with the specific case whéti has dimensioi3.

In this section, we introduce the main concept studied ia thi
paper, the Reeb space of a piecewise linear mapping.

Generic preimages. Let K be a combinatoriati-manifold and

f : |K| — RF a generic PL mapping. We are interested in the
preimage of a point € R*. By Property I,f~*(c) meets every
simplex of dimensiort < k in at most a single point. This im-
plies that it meets every simplex of dimensibr< i < d either in
the empty set, a point, or gm — k)-dimensional convex polytope,
namely the intersection of thesimplex with an(i — k)-plane con-
tained in the affine hull of thé-simplex. For most points these
polytopes fit together to form a manifold, as we now prove.

GENERICPREIMAGE LEMMA. Let K be acombinatorial-manifold,
f : |K| — R* a generic PL mapping, anga point inR* not in
the image of thék — 1)-skeleton. Therf ~!(c) is either empty or
a manifold of dimensiomd — k.

PROOF Ford < k the preimage of is empty and ford = k
it is either empty or a finite set of points. In both cases thsre
nothing left to show. We therefore assume- & for the remainder
of this proof.

Let o be ani-simplex in K. Since K is a combinatoriald-
manifold, the link ofo triangulates a sphere of dimensién-i — 1.
Lettingu be the barycenter of, we construciB, = u * |Lk o| by
drawing a line segment from to every point in the link. Clearly,
B, is a PL ball of dimensiod — . We further draw a line segment
between every point aB, and every point of the boundary ef
as sketched in Figure 1. Any two of these line segments drereit

Figure 1: We see a vertical edge and the corresponding-ball
obtained by connecting its midpoint to the respective thirdver-
tices of the two triangles in the star. Connecting every poinof
the 1-ball to the endpoints of the edge gives a decomposition of
the closed star. Pieces of the decomposing line segmentsifoa
homeomorphism between thd -ball and a portion of the preim-

agef '(c).

disjoint or meet at a common endpoint, which is eitheBinor in
do. Together, the line segments decompose the closed star of
Next we show that foi = k the portion of f~*(c) inside the
closed star ot is homeomorphic td3,. Equivalently, every ver-
tex of the preimage has a neighborhood homeomorphR%a".
This implies thatf ~*(c) is indeed ad — k)-manifold. Leto be
a k-simplex in K that contains a point, with f(u,) = c. Be-
causef ! (c) avoids the(k — 1)-skeleton ofK’, u, belongs to the
interior of o. LetT € Sto and letv be its maximal face disjoint
from o. Henceo * v = 7 andu * v is the contribution of- to B, .
Letting 5 be the dimension of we havedimv = 5 — k — 1 and
dim (u * v) = j — k. Furthermore f ! (c) intersectsr in a poly-
tope of dimensiorj — k. The line segments in the decomposition
of B, * 0o define a piecewise linear homeomorphism fram v



to this polytope; see Figure 1. The collection of such thergi
a homeomorphism fronB, to the intersection of ~*(c) with the
closed star ot. [J

Quotient space. Intuitively, the Reeb space of parameterizes
the set of components of preimages of points R*, we need to
describe its topology. By the Generic Preimage Lemma, dllbu
measure zero subset of these components are manifolds ehdim
siond — k. As we varyc without crossing the image of thé — 1)-
skeleton these manifolds vary without changing their togaal
type. Sincec hask degrees of freedom this variation has locally
the structure of &-manifold. Only when belongs to the image of
the (k — 1)-skeleton can we have violations of the manifold prop-
erty and get shapes that appear as transitions betweenahalgrif
possibly different global connectivity. In summary, we nexpect
the Reeb space to have the structure of a collectigermfanifolds
that are glued to each other in possibly complicated waye. réh
mainder of this paper show that this is indeed the right tiani
It does this by first formally introducing the Reeb space dreht
studying its local and global topological properties.

Call two pointsa andb in | K| equivalent denoted bya ~ b,
if f(a) = f(b) anda andb belong to the same component of the
preimagef ' (f(a)) = £~ (f(b)). TheReeb spacis the quotient
space obtained by identifying equivalent poirit§; = |K|/ ~,
together with the quotient topology inherited frgii|. We already
have a map fromk | to R*, namelyf, and one from K| to W,
which we call thequotient mapgy. The Stein factorizatioradds
another mag from W; to R¥ such that the triangle commutes:

K| 1, RF

ar\ e

W

Sincef is generic PL, the dimension of the Reeb spack-is(d —
k) = k, the same as the image pf Furthermore, it is not difficult
to prove that the Reeb space is Hausdorff, that is, any twWerdift
points inW; have neighborhoods that are disjoint.

An example. We illustrate the definitions with a mapping from
a 3-manifold to the plane. It is convenient to describe the case
of a smooth mapping, the extra details that appear in the afase
a PL approximation are not difficult. We also note that our ex-
ample is not compact, so should treated as local since weyslwa
assume in the PL case that we have a finite simplicial complex.
Considerf : R® — R? defined by its two component functions
fi(z, z2,23) = x5 — z1xo + 22 and f2(x1,z2,z3) = x1. The
preimage of a point = (s, t) is the intersection of two level sur-
faces, fi *(s) N f; 1 (t). Setting the two components toand ¢

we getz; = t andz? = y(x2) wherey(z2) = s — 5 + txo.
Fort > 0, v has a minimum and a maximum, for= 0 it has

a single degenerate critical point, and fok 0 it has no critical
points. We are interested in the number of roots and in paaic
the values ofz; for which v(z2) > 0 since only for those do we
get a solution ta:3 = ~(z2). The odd degree polynomialhas ei-
ther 1 or 3 roots except wherg and its derivative have a common
zero, which occurs along the folelrs> = 4t3. As illustrated in
Figure 2, this curve decomposes ft¥%t) plane into two regions,

~ has three roots above, two roots on, and one root below te fol
Accordingly, f~*(c) has two components above and one compo-
nent below the fold. It consists of a curve and an isolatedtdor

c on the left branch and of two touching curves foon the right

Figure 2: Above the fold the function ~ has three roots and
thus two intervals in which it is positive. Below the fold~ has
one root and only one interval in which it is positive.

branch of the fold. It should be clear how these cases tiansit
between each other as we varin the plane. The fold is of course
the image of the Jacobi set under the mappfng

We can re-interpret Figure 2 as a picture of the Reeb spag¢e of
Indeed, it is the image d#V; under the mag in the Stein factor-
ization. The region above the fold is covered twice and tiggore
below is covered once. Correspondingly, the Reeb spacdstens
of two sheets, one covering the entire plane and the otharicgy
the region above the fold. The latter connects to the fornarga
the right branch of the fold, which is where the two composent
of 7!(¢) come together to merge into a single component. The
left branch of the fold is the image of a boundary piece of g s
ond sheet and has nothing to do with the first sheet. In summary
the Reeb space consist of the plane with another two-diroeaki
sheet attached to it, like a fin sticking out of a fish as in Fegyr
left.

4. LOCAL STRUCTURE

In this section, we prove that every point of the Reeb spasaha
neighborhood that is a cone over a Reeb space of dimension one
less. In stating and proving this result, we follow the work o
generic, smooth mappings in [11].

Tubes, cores, and conesAs usual we letK’ be a combinatorial
d-manifold andf : |K| — R* a generic PL mapping. We shed
light on the neighborhood structure of a point in the Reelrsty
considering its preimage. To be specific, #ebe a point ofW,
andc = g(z) its image inR*. Let B be a closed ball centered at
c that is sufficiently small so it intersects the image of a damp
iff this image includesc. Considering the preimages efand of
B, we are interested in the componefitof f~*(c) whose image
under the quotient map ig and in the componerif’ of f~'(B)
that containgC. We callT" atubeand C its core For example,
the core in Figure 5 is a circle and the tube is a solid torudinee
the boundany®T of the tubeT to be the intersection df" with
f~4(0B), and letr = f(a) : 3T — R” be the restriction off.
The corresponding restrictiop of ¢y mapsoT to W, C Wy, a
subspace whose dimension(is— 1) — (d — k) = k — 1, one less
than the dimension 6fV;. SinceK is finite, | K| is compact. This
implies thatoT is compact and so i&,.. The(closed) conever
W, is the space

cone(W,.)

(W x [0,1]) /(W x 1)



and itscone poinis (W, x 1) /(W x 1). We are now ready to state
the first structural result of this paper.

CONE NEIGHBORHOODTHEOREM. Let K be a combinatorial
d-manifold, f : |K| — R* a generic PL mapping, an@; the
Reeb space of. Then each point € Wy has a homeomorphism
from cone(W, ) to a closed neighborhood that maps the cone point
tox.

To prove this theorem we use that the cone d¥eris compact and
that W, is Hausdorff. Every continuous injection from a compact
to a Hausdorff space is an embedding [15, page 167]. Thissnean
that the compact space and its image are homeomorphic. dt thu
suffices to construct a continuous injectign cone(W,) — W;y

that maps the cone point o The next paragraph does exactly that.

Constructing an embedding.We begin by constructing the barycen-
tric subdivision ofK, slightly modified by placing the new vertices
not always at the barycenters of the simplices. The conmgcti
simplices are the same as in the standard definition. Spalbjfic

if C intersects the interior of a simplex in K then we choose

a pointu, € C Ninto as the vertex irBd K that represents.

If C' does not intersect the interior of then we choose a point
u, = int o — T', which exists becausB is sufficiently small. By
construction, there is a subcompléxof Sd K whose underlying
space is the coré[| = C; as illustrated in Figure 3. It is not dif-

Figure 3: A piece of the barycentric subdivision of K. The
white dots mark the vertices of K and the black and shaded
dots mark the new vertices ofSd K. The shaded path is a piece
of the core which is subdivided by the subcomplex. of Sd K.
The corridor along the path is a piece of the tube which is con-
tained in St L.

ficult to prove thatl is a full subcomplex. Extending the concept
of a star we writeSt L for the set of simplices ifd K that have a
face inL. The tube is covered in its entirety by the interiors of the
simplices inSt L.

We first use the barycentric subdivision to establish a coiotiis
map fromdT x [0, 1] to T" whose restriction t@7" x [0,1) is a
homeomorphism ont@ — C'. Letr be a simplex irSt L but not in
L and leto be the maximal face af that belongs td.. We observe
that o is unique becausé is full. Let v be the maximal face of
7 that is disjoint fromo and note that = o * v, the join of its
two faces. Writing all simplices as joins we get a decomposition
of the closed star of. into line segments. As usual, any two line
segments in this decomposition are either disjoint or mestam-
mon endpoint. Each point of the core is an endpoint of a ctidlec
of line segments. In contrast, a poindf the boundary of the tube
belongs to exactly one line segment. Lettinge the endpoint of
this line segment in the core we &} : [0, 1] — T be the straight
line mapping\.(t) = (1 — t)a + tb. Combining the map3, over
all a € 9T gives the map\ : 9T x [0,1] — T. As anticipated,
the restriction of\ to 9T x [0,1) — T — C'is a homeomorphism

and ) itself is continuous. Finally, defing : 97 x [0,1] — Wy,
by settingy = gy o A\. The new mapy takesdT" x 1 to the point
x. The preimage of every other poigtin the image ofy is of the
form U x t, whereU is the preimage of a point iV, andt is in
[0,1).

Next we mapdT' x [0, 1] to the cone oveW,.. Recall thatr :
0T — R* is the restriction off to the boundary of the tube and
gr : 0T — W, is the corresponding restriction gf. We extend
g- to a map fromdT' x [0, 1] to W, x [0, 1] by taking the product
with the identity on the unit interval. Composing this pretimap
with the quotient mafV,. x [0, 1] — cone(W, ), we getq : 9T X
[0,1] — cone(W,.), which maps0T x 1 to the cone point. The
preimage of every other poigtin cone(W,) is of the formU x ¢,
whereU is the preimage of a point if#,. andt is in [0,1), as
before. This finally induces a unique map,from the cone to the
Reeb space that makes the triangle commute:

aT x [0,1]

/q v\

cone(W,) - We.

To finish the proof of the Cone Neighborhood Theorem we just
need to realize thaf has the two required properties. It is continu-
ous because bothandgq are continuous and it is injective because
the preimages of points in the imagesqénd of are the same
setsU x t.

5. GLOBAL STRUCTURE

In this section, we show that Reeb spaces have canonictd stra
fications into manifolds. We give a construction in two stdpst
triangulating the Reeb space and second by grouping siegpl
form the strata.

Refining arrangement. As before we letK' be a combinatorial
d-manifold andf : |K| — R* a generic PL function. We also
assumek < d, otherwiseK is itself a triangulation of the Reeb
space. To prepare the construction of a triangulation, iired<

by decomposing its simplices into prisms aligned with thersb

of f. Specifically, we take the images of thee — 1)-simplices of

K in R*, dissect space with their affine hulls, and decompose the
simplices using the preimage of the dissection. By assumpaf
genericity, the image of everk — 1)-simplexo € Kisa(k —1)-
simplex and its affine hull is @& —1)-dimensional plane iR*. The
collection of such planes dissed®$ into closed chambers, each a
convex polyhedron of dimensian We call this thearrangement
defined by the planes [4]. To refidé€, we take each simplexand
decompose it into sets of points that map into a common chambe
or a common intersection of chambers. Fok-aimplexr these
sets arg:-dimensional convex polytopes, the same as the chambers.
For a(k + 1)-simplexr these sets arg: + 1)-dimensional prisms
each uniquely determined by its top and bottom faces of d&nen

k. It is allowed that the top and bottom faces touch each other
along a common face, generating a partially degeneratengris
between. We show that it is not necessary to study deconmpusit

of simplices of dimension beyorid+ 1.

SKELETONLEMMA. The Reeb space ¢f: | K| — R” is home-
omorphic to the Reeb space of the restrictiorydb the (k + 1)-
skeleton ofK'.

PROOF. Lete : |[K**Y| — R* be the restriction off to the
(k + 1)-skeleton and recall that pointsandb are equivalent if



they map to the same image(a) = e(b) = ¢ € R*, and be-
long to the same component of the preimage' (c). By assump-
tion of genericity, this preimage is a complex whose maxigial
ements are edges, each a line intersectiig & 1)-simplex. In
contrastf ~* (¢) is a complex whose maximal elements éfe-k)-
dimensional convex polytopes, each the intersection(@f & k)-
dimensional plane with d-simplex. Since™*(c) is thel-skeleton

of f~*(¢), there is a bijection between the components of the two
preimages. Hence there is a bijection betw&énand W;. Fi-
nally, we observe that the quotient topologies are equivateply-

ing that the bijection is a homeomorphism between the twdRee
spaces. [

Triangulation. We use the decompositions of the skeletdofo
construct a triangulation of the Reeb space. Qebe the collec-
tion of preimages of chambers decomposing khekeleton of K
and call two of these polytopeacidentif they share a common
(k — 1)-dimensional face. LeP be the collection of prisms de-
composing thegk + 1)-skeleton and recall that eagh € P has
two k-dimensional faces i), its top facep; and itsbottom face
wp. The algorithm partitions) into blocks, starting with the parti-
tion into singletonsQ = {{¢'} | ¥ € Q}. We writeQ,, for the
block that containg.

f or each prismp € P do
if Qu # Qy, then
merge the two blocks into one
endi f
endf or.

When we merge two blocks we remove both fr@rand add their
union as a new block t@. By construction, all polytopes in a

block are preimages of the same chamber in the arrangement. W

say two blocks),, and@,, areincidentif ) andy,’ are preimages
of different but incident chambers in the arrangement andttlare
at least two preimages, one in each block, that are incident.

A complex representing the Reeb space @ readily obtained
from the partition into blocks. Specifically, for each blo€k; in
Q we take a copy of the chambg(+)) and we glue these copies
along sharedk — 1)-faces to reflect the incidence relation among
the blocks. We further decompose each polytope into sireglic
and thus finally get a simplicial complex which we denotdfas
In summary, we have an algorithm that triangulates the Rpabes
of a generic PL mapping from a combinatoriald-manifold to
R*. Assumingd is a constant, the size of the triangulation and the
running time of the algorithm are both polynomial in the sié¢he
combinatorial manifold.

Stratification. In generali¥; will be significantly finer than neces-
sary to represent the Reeb space. In a first step towardseoiags
the representation, we group simplices to form manifoldse fe-
sult will be astratificationof Wy, that is, a filtration

p=wrcwc...cwrF=w;

such that eachV’? is a subcomplex ofV; and$? = W7 — Ww7~!

is either empty or g-manifold. We callS? the j-stratumof the
stratification and each of its componentg-dimensional pieceln
addition to being g-manifold, we require that all points of a piece
are topologically equivalent. By this we mean that any twon{so
z andy of a piece have closed neighborhodd$z) and N (y) in
|W;| and a homeomorphism from one to the other that maps

y and whose restriction to the piece is again a homeomorphism.

By the Cone Neighborhood Theorem the closed neighborha®ds a

cones ove(k — 1)-dimensional Reeb spaces. The requirement of
topological equivalence can therefore be reformulategims of
these spaces. Consider thelimensional Reeb space described
in the example of section 3. I&stratum consists of two sheets
(mapping to the plane and to the fin), itstratum consists of two
curves (mapping to the two branches of the fold), an@-ssratum

is one point (mapping to the origin).

We construct the stratification in the order of decreasimgeati-
sion. At the top dimension we initializ&" to the set of-simplices,
each a piece by itself. Then we add simplices of lower dimen-
sion effectively merging and enlarging the pieces. Forwsuse
a boolean subroutineoESBLEND that decides whether or not a
simplex fits into a piece or between pieces of the currentustra
We will prove shortly that each iteration starts with a coexiv’’
of dimension at mosj. Following the same pattern as before we
can therefore construct thestratum ofi¥}; as the top dimension
stratum of W7,

SetW* = W;;
for j = kdownto 0do
initialize W7~ to the(j — 1)-skeleton ofi¥/
andS? toWw’ — wi~1,
fori=j5—1downtoOdo
f or eachi-simplex¢ € W7~ do
i f DOESBLEND(¢,S7) t hen
add¢ to S7 and remove it fromiv 41
endi f
endf or
endf or
endf or.

Note thatS? = W7 — W71 is maintained throughout the algo-
rithm. We still need to establish that the algorithm constiswhat
we promise but this depends primarily on the boolean subreut
that decides upon which simplices to add to a stratum.

Recognition. According to the definition of a stratification, we
need to satisfy two conditions when we addissimplex( to the
current setS?, the first guaranteeing that we havej-ananifold
and the second that points in the same piece have homeomorphi
neighborhoods. We formalize both conditions by considgthre
second barycentric subdivision and comparing links ofigestin
this subdivision. Recall that the first barycentric subslim con-
tains a vertext for each simplex ¢ W;. We refer to it as dirst
generationvertex ofSd®W; = Sd Sd W} noting that all its neigh-
bors are second generation verticesSi? ;. The link ofé is a
model for the boundary of the closed neighborhood of anytpnin
the interior of¢. Let Sd?S7 be the subset of simplices Bd?1V}
whose interiors are contained|ifi’ |. We accept as a new simplex
in the j-stratum if the following two conditions are satisfied.

1. The link of in Sd257 is a(j — 1)-sphere.

2. There is a homeomorphism that maps the link’db the
link of £ in Sd W}, where¢ is already inS? and belongs
to the star of(. We also require that the restriction of this
homeomorphism t8d2S” is a homeomorphism between the
two links which by Condition 1 are botfy — 1)-spheres.

Itis clear that this implementation of the boolean subretioEs
BLEND maintains S’ as aj-manifold. For the top dimension,
j = k, this implies that wheneves* contains a simplex then it
also contains the simplices in its star. Symmetrically, mdwer
Wk=1 = w* _ S* contains a simplex it also contains its faces. In
other words#*~ ! is a complex. We can now use induction over



the dimension and prove th#t’ is a complex for allj. Similarly,

the core,C, is the component of ~*(c) whose image undey;

wheneverS? contains a simplex then it also contains its star within is 2, and the tubeT, is the component of ~*(B) that contains

W, Hence ifS? is non-empty then it is g-manifold for eachy.
Finally, we notice that the result of the algorithm does nepehd
on the order in which the simplices are processed. Indeedett

C. Recall thatr : 9T — R? is the restriction off that maps the
boundary of the tube to the boundary of the disk and thhas a
closed neighborhood i#W; that is homeomorphic to the cone over

of the i-simplex ¢ does not depend on whether or not any other W, = q;(9T). It thus suffices to understand the structuréf,

i-simplices belong to thg-stratum. We thus have a constructive  which we study by walking the circle in a counter-clockwisder
proof of a global property of the Reeb space. usinge : [0,1] — R? with ima = dB. The walk begins and
ends at the poinp = «(0) = «(1). Letting ¢ be the antipodal

STRATIFICATION THEOREM. Let K be a combinatoriai-manifold, point, we also walk the straight diameter usifig: [0,1] — R?
k> 1,andf : |K| — R* ageneric PL mapping. Then the Reeb with p = B(0), c = B(3), andg = B(1). Note that each point

spaceW; of f is a stratified space and thi&~ as constructed by
the algorithm form its coarsest stratification.

We note that the constructive proof is really only an alduwritfor

k < 5. Otherwise, the boolean subroutine attempts to recognize

when two triangulated spaces of dimension 1 > 4 are homeo-
morphic, which is undecidable as proved by Markov [14].

6. THE ORIENTABLE 3-MANIFOLD CASE

We take a closer look at the Reeb spaces for PL mappings from
an orientables-manifold to the plane. In particular, we give a com-

plete case analysis of local cones that arise for simplergesiech
mappings. To do this we will finally employ the simplicity adin
tion introduced at the end of section 2.

Genericity and simplicity. Let K be a compact combinatorial ori-
entable3-manifold without boundary ang : |K| — R? a PL
mapping. We assume thAtis generic and simple. Specifically, we
require that

I'. the intersection of a level set gf with | K" | is empty, one
point, or two points each in the interior of an edge;

II'. the Jacobi set off is al-manifold, that is, each edge df
is a simple critical edge and each vertexJpfis endpoint of
exactly two edges id;.

Recall that to define the lower link of an edge we use the foncti
hg : |K| — R which maps a poing to the height off(a) in the
direction@ € S' normal to the edge. A critical edge is simple iff
all reduced Betti numbers of this lower link vanish, exceptdne
which is equal tdl. There are three possibilities, namely; = 1
(the cross-section of the simplex is a minimui®),= 1 (a saddle),
andB; = 1 (a maximum); see Figure 4. Condition II' implies that

Figure 4: From left to right: a regular edge and three simple
critical edges. Each edge is shown with its lower link and a
cross-section of its star.

Jy contains no duplicate edges and no duplicate vertices,enher
the latter we mean that each endpoint of an edgé:ibelongs to
exactly one other edge if; see also [5].

of the two walks is the image of a curve in the tube. The two one-
parameter families sweep out the boundary of the tube anithano
surface we refer to as thdivider, D = TN f~' o 8[0,1]. To
describe the two sweeps we define

oTs = TN f ' oalo,s];
D, = Tnf " op,s],

for each0 < s < 1. The simplest of all possible cases is illustrated
in Figure 5. There, none of the points in the diBkis critical.
Hence, the preimage of every point@f0, 1] is a closed curve, and
the same is true for the preimage of every poing{sf, 1]. It follows
thatoTs is an annulus, for every < s < 1, that closes up to form

a torus whers reachesl. Similarly, D, is an annulus, for every
0 < s < 1, and it remains one until the end. The dividér, is
therefore an annulus bounded by two closed curves whiclaresh
with 9T. Since D also contains the corg,’, the only possible
configuration is the one depicted in Figure 5. In this patticaase,

AEVA

Figure 5: Left: the tube, its core, and the annulus that divides
the tube into two. Right: the closed neighborhood ofz in the
Reeb space and its image in the plane.

the pointx belongs to aheetthat is, a piece of the-stratum of the
Reeb space. The points in the neighborhood correspond sedtlo
curves forming a fibration of the tube.

Choosing the walks. For the more complicated cases it will be
convenient to choose the two walks such thdtas a connected
preimage and both preimages avoid thgkeleton of the barycen-
tric subdivision of K. We use the curves sweeping out the divider
to prove that such poingsandg exist.

ENDPOINT LEMMA. There exist antipodal poingsandq of 9B
such thatr—*(p) is connected and ' (p) andr~'(g) both have
empty intersection withiSd ).

PrROOF Each pair of antipodal points corresponds to a direc-
tion @ € S' such thati is a positive multiple ofg — p. Let

Walks and sheets.To enumerate the cones that may arise, we let 8z : [0,1] — R? be the corresponding diagonal walk abqi)

x € Wy be a point of the Reeb space aBda small closed disk

with centerc = g(z) in the plane, as in section 4. Furthermore,

the corresponding divider. Note that the dividers all stitheecore
but are otherwise disjoint.



Fixing a directionz and a pointa in the core, we consider how
the curvel N f~' o0 Bz(s), which sweeps oub (i) ass goes from
0 to 1, intersects a sufficiently small neighborhodda) of a in
|K]|. If a & |J¢| then the curve looks locally like a line that sweeps
overa, passing it at = 1. HenceN (a) intersects the curve in a
connected piece, if at all. B € |J¢| then a curve approaches
pinching off to a single point or recombines leaviagn two dif-
ferent directions. In the former case, we see a closed cinnieks
ing to a point or the other way round. In the later case, lgcall
we see the usual saddle picture of two pieces that look like th
two branches of a hyperbola passing through its pair of asyticp
lines. The two pieces are globally connected along a conrgarfe
the curve before meeting atbut are not connected after meeting
ata, or the other way round. There is an open semi-circle of direc
tions 4 such thatV(a) intersects a single component of the curve.
This semi-circle is determined by the image of the edge oesdly
Jy that contains the point. By Condition I, there are at most two
points in the core that belong {d;| and by Condition II' at most
two edges inJ; are adjacent to a vertex in the Jacobi set. The cor-
responding two semi-circles are defined by the images of fivo d
ferent edges i/;. It follows that the two line segments intersect at
c and the corresponding semi-circles intersect in an arc nfzeso
length. Pickingp on this arc implies that~! is connected. To sat-
isfy the second requirement of avoiding theskeleton ofSd K we
just need to choose outside a measure zero subset of the afcl

Arcs. Beyond sheets, the next more complicated case is when the

boundary of the tube meets the Jacobi set in two poiritanda”,

in the interior of a single edge or in the interior of two diéat
edges both edges of the same type. The core intersgtsn a
single point,a. The pointsa’ anda” belong to different edges
whena is a vertex ofJ; and in this case, we assume both edges
are definite or both indefinite. This implies two cases andathb
the pointx belongs to ararc, that is, a piece of thé-stratum. The
point a is the sole interior critical point 0B~ o f : D — [0, 1]
and the points’ anda’ the sole interior critical points af ' o f :

oT — [0,1).

CAseA.1. The edge(s) of/; that containg:’ anda” is(are) def-
inite. The tube is a ball obtained by thickening the point
a. The divider, D, depends on the choice of the diameter
since the preimage gfmay be empty or one curve. Walking
along the circle, we start with a single curve that shrinks to
the pointa’ and then reappears from the poirit sweeping
out a sphere. The Reeb space is locally a half-plane, like at a
point on the left branch of the fold in Figure 2.

CAsSEA.2. The edge(s) of ; that containg’ anda” is(are) indef-
inite. The tube is a solid double torus obtained by thickgnin
the figure8 curve that crosses itself at The divider,D, de-
pends on the choice of the diameter since the preimage of
may consist of one or two curves. Walking around the circle,
we start with a single curve that splits into twadathat later
merges at” to form again a single curve. The Reeb space
is locally a book with three pages, like at a point on the right
branch of the fold in Figure 2.

Nodes.Next we consider the case in which the core meftst a
vertex,a, one of the incident edges of; is definite and the other
incident edge is indefinite. By Condition II’, the boundarytoe
tube meets the Jacobi set in two poiatenda”. The pointa is the
sole interior critical point of3"! o f : D — [0, 1] and the points.’
anda” are the sole interior critical points af *o f : 9T — [0, 1).

CaseN.1. Assuminga’ belongs to the indefinite and’ to the
definite edge, the walk around the circle starts with a single
curve that splits into two at’ of which one shrinks to a point
ata”. The divider,D, depends on the choice of the diameter.
Specifically, the preimage of the endpoinmay consist of
one or of two curves. In the former case we have one curve
that persists along the entire diameter and in the lattex cas
we start with one curve and get another expanding araund
In either case, the core is a single curve and the Reeb space
is locally a disk with a fin sticking out, like at the origin in
Figure 2; see also Figure 6, left. The painis anodeof the
Reeb space, that is, a piece of thetratum.

In the most complicated case the core meets the Jacobi sgbin t
points,a andb. Each of the two points lies in the interior of an
indefinite edge, else the core would be disconnected. Thedaoy
of the tube meets the Jacobi set in four points,a”’, b', andd”.
Here,a andb are the sole interior critical points ¢f ' o f : D —
[0,1] anda’, a”, ¥, b are the sole interior critical points of ~* o
f: 90T — [0,1). There are two cases and in both the pairi¢ a

M
x

(D

a

a e.e.’
Figure 6: From left to right: the local cone and the core for the

Cases N.1, N.2, N.3 at which the point is a node of the Reeb
space.

Case N.2. Walking along the diameter, we start with a single curve
that gets pinched at and atb with the net effect that it re-
mains a single curve. Knowing that the preimage;6$ a
single curve determines the boundary of the tube. Using
to walk the circle, we start with a single curve that split®in
two curves ata’ and then merges into a single curvebat
As we continue, the single curve splits into two curves’at
and once again it merges into a single curvé’”atThe core
consists of two circles that meet at two poinisandb, and
the tube is a solid triple torus; see Figure 6, middle.

Case N.3. Walking along the diameter, we start with a single curve
that splits into three curves atandb. Knowing that the
preimage ofy consists of three curves again determines the
boundary of the tube. As we walk along the circle, the single
curve splits into two at’, one of the two splits into two at
b’, giving a total of three curves. As we continue, two of the
three curves merge at’ and the remaining two merge &t.

The core is a double figurg&and the tube a solid triple torus;
see Figure 6, right.

7. DISCUSSION

The main contribution of this paper is the introduction ofeRe
spaces for multivariate, piecewise linear mappings on éoatb-



rial manifolds and the analysis of their local and globalisture.
There are several open questions that remain.

e The structural assumption that the domain is a combinatoria

manifold is critically used in the proof of the Generic Preim
age Lemma. Which of our results are not true for general
triangulations of manifolds and which do extend? What can

be said about Reeb spaces of mappings on simplicial com-

plexes that do not triangulate manifolds?

How can we effectively simplify the Reeb space of a multi-
variate mapping? How does this simplification interact with
the simplification of the Jacobi set?
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