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Summary. The medial axis of a geometric shape captures its connectivity. In spite
of its inherent instability, it has found applications in a number of areas that deal
with shapes. In this survey paper, we focus on results that shed light on this in-
stability and use the new insights to generate simplified and stable versions of the
medial axis.

1 Introduction
In this paper, we survey what is known about the medial axis of a geometric

shape. To get an intuitive feeling for this concept, consider starting a grass
fire along a curve in the plane, like the outer closed curve on Figure 1. The

Fig. 1: Medial axis of shape whose boundary is the outer closed curve. The distance-
to-boundary function has three critical points, one saddle and two maxima. One of
the maxima coincides with a branching point.



2 Dominique Attali, Jean-Daniel Boissonnat, and Herbert Edelsbrunner

fire starts at the same moment, everywhere along the curve, and it grows
at constant speed in every direction. The medial axis is the set of locations
where the front of the fire meets itself. In mathematical language: it is the set
of points that have at least two closest points on the curve. If we start the fire
along the boundary of a geometric shape in R* we generically get a medial
axis of dimension k£ — 1, one less than the dimension of the space.

In the plane, the medial axis is a (one-dimensional) graph whose branches
correspond to regions of the shape it represents. Its structure has found appli-
cations in image analysis for shape recognition [52] and in robotics for motion
planning [42]. The distance-to-boundary recorded at points of the medial axis
provides information about local thickness, which can be used to segment
the shape, separating it into large regions with relatively narrow connections
[21, 25, 45]. In reverse engineering, the medial axis appears naturally as a tool
to characterize the sampling density needed to reconstruct a curve in the plane
and a surface in R? [1, 2]. Other applications include domain decomposition
in mesh generation [46, 50], feature extraction in geometric design [38, 39],
and tool-path creation in computer-aided manufacturing [36].

In this paper, we make no attempt to cover the large amount of work on
medial axis in digital image processing and instead refer to texts in the area
[35, 40, 41]. Whenever possible, we state the definitions and results for RF,
where k is an arbitrary but fixed constant, but sometimes we need to limit
ourselves to R? and R3. Since most applications are in two and three dimen-
sions, this limitation implies only a minor loss of relevance. The style adopted
in this paper is not that of a typical survey paper. Rather than aiming at a
broad coverage of the literature, we focus on a small number of results that we
deem important. Those are centered around questions of stability and com-
putation of the medial axes. We encapsulate the various topics in a relatively
large number of small and by-and-large independent sections. Starting with
fundamental properties, we slowly progress towards more advanced results. In
Section 2, we define medial axes and skeletons. Sections 3 and 4 state prop-
erties of the medial axis that concern its finiteness and its homotopy type.
Sections 5, 6, and 12 discuss the stability of the medial axis under various
notions of distance. Section 7 recalls that computing the medial axis exactly
is difficult except for certain classes of shapes, and Section 8 introduces the
approximation paradigm designed to circumvent these difficulties. Sections 9,
10, 11 and 13 describe steps and aspects of this paradigm. We find that topics
of stability and computation are related, which is the reason for interleaving
the sections as enumerated.

2 Medial axis and skeleton
The medial axis has been introduced by Blum [12] as a tool in image analysis.

There is no generally agreed upon definition for either notion; the meaning
of the two terms might change from one author to another. In this paper,
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we adopt the definitions given in [43]. Let X be a bounded open subset of
the k-dimensional Euclidean space, R*. The medial azis, M[X], is the set of
points that have at least two closest points in the complement of X. We call an
open ball B C X mazimal if every ball that contains B and is contained in X
equals B. The skeleton is the set of centers of maximal balls. The two notions
are closely related but not the same. Specifically, the medial axis is a subset
of the skeleton which is, in turn, a subset of the closure of the medial axis [44,
chapter 11]. In the most general case, the skeleton is not necessarily closed
and the last inequality is strict. Examples of shapes in R? whose skeleton are
composed of an infinite number of curves and which are not closed can be
found in [16, 22]. A simple example of a skeleton in R? that is not closed is
given in [20]. If we weight each point z of the medial axis with the radius
p(x) of the maximal ball centered at x, then we have enough information
to reconstruct the shape. In other words, the medial axis together with the
map p provides a reversible coding of shapes. This coding is not necessarily
minimal and some shapes, such as finite union of balls, can be reconstructed
from proper subsets of their weighted medial axes.

Even though medial axes are not necessarily the same as skeletons, the
two concepts are too similar to warrant a balanced treatment of both. The
rest of this paper will therefore focus exclusively on the medial axis.

3 Finiteness properties

There are cases in which the medial axis has infinitely many branches, even if
the shape is bounded and its boundary is C*°-smooth [22]. To construct such
an example, let f: R — R be a C"*°-smooth function defined by

_ 1 2
1—e (sinzll) if |z1] < 1,
1 if |z1] > 1.

f(x1) =

Consider the set of points X C R? above its graph, as shown Figure 2. The
medial axis of X consists of infinitely many branches, one for each oscillation of
f- To obtain a bounded shape, we apply inversion, mapping every point x € X
to t(x) = x/||z||*>. The inversion preserves circles and incidences between
curves. It follows that the medial axis of ¢(X) has the same structure and
number of branches as the medial axis of X . More specifically, if we compactify
R? and join all branches of M[X] at the added point at infinity, then we have
a homeomorphism between M[X] and M[c(X)]. The point at infinity maps
to the center of the circle that is the image of the line xo = 1. We note,
however, that the homeomorphism between the two medial axes is different
from ¢, which does not preserve centers of circles. The above construction can
be extended to produce medial axes with infinitely many branch points and
similar pathological examples in higher dimension.
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Fig. 2: The upper ‘half-plane’ X bounded by a smooth curve and its image under
inversion. Both shapes have medial axes with infinitely many branches.

In the plane, Choi, Choi and Moon [22] establish that the medial axis of
a bounded shape whose boundary is piecewise real analytic is a finite graph.
Chazal and Soufflet [20] extend this result to semianalytic bounded open sets,
which are bounded and open subsets X C RF for which every point of R”
has a neighbourhood U with X N U defined by a finite system of analytic
equations and inequalities. They prove that such sets have medial axes which
admit stratifications and satisfy finiteness properties. Specifically, the medial
axis can be decomposed into a finite number of strata, each a connected i-
manifold with boundary, for ¢ < k. Furthermore, the medial axis has finite
j-dimensional volume, where j denotes the largest dimension of any stratum.
In addition in R3, the boundary of the medial axis consists of a finite union
of points and curves of finite length. For a shape in R3 whose boundary is
a generic manifold, a classification of points on the skeleton can be found in
[4, 33].

4 Homotopy equivalence

In [43], Lieutier proves that any bounded open subset X C RF is homotopy
equivalent to its medial axis. Unlike earlier works [54, 51], he assumes no
regularity condition on the boundary of X. Intuitively, this result implies
that the medial axis and the shape are connected the same way, regardless
of dimension. To be more formal, we say that two maps f and ¢ from X to
Y are homotopic if there exists a continuous map H : X x [0,1] — Y with
H(x,0) = f(x) and H(x,1) = g(x). Using this definition, two spaces X and YV’
are homotopy equivalent if one can find two continuous maps f: X — Y and
g:Y — X such that go f is homotopic to the identity map of X and fog is
homotopic to the identity map of Y. To establish the homotopy equivalence
between a shape X and its medial axis, Lieutier considers the distance-to-
boundary function, p, which associates to each point z € X its distance to
the complement of X and defines the vector field Vp : X — RF by
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x — c(x)

Vel = =)

(1)
where ¢(x) is the center of the smallest ball enclosing the set of points in X ¢
closest to x. This vector field has been introduced before for purpose of surface
reconstruction [29, 34]. It extends the gradient of p to points of the medial axis
where the gradient is not defined. It is not continuous, but induces flow lines

used in the proof to construct a continuous deformation F : X x [0,1] — X
with F(z,0) = z and F(z,1) € M[X].

5 Instability and semi-continuity

We think of M as a transform that maps the shape X to its medial axis,
M([X]. As emphasized in [43], geometric shapes are usually not known exactly
and represented by approximations of one kind or another. For example, the
boundary of a shape may be approximated by a triangulation resulting from
surface reconstruction or from segmentation of volumetric data. Under those
circumstances, it would be important that the transform be continuous. In
other words, one should be able to compute an arbitrarily accurate approxi-
mation of the output for a sufficiently accurate approximation of the input.
Most commonly, one would use the Hausdorff distance to quantify the differ-
ence between two inputs and two outputs and this way define what it means
for the transform to be continuous. Unfortunately, the medial axis transform
is not continuous under this notion of distance: small modifications in an input
shape can induce large modifications in its medial axis. The difficulty of ap-
proximating the medial axis due to its instability with respect to the Hausdorff
distance is a well-known but until recently not well-understood problem.

One can observe experimentally that small modifications of a shape do not
affect the entire medial axis. Typical effects for shapes in R? are fluctuating
branches that leave the rest of the medial axis unchanged. Similarly, for shapes
in R3 we notice fluctuating spikes, added to or removed from the otherwise
stable structure. This observation is consistent with the fact that the medial
axis is semicontinuous with respect to the Hausdorff distance [44, chapter 11].
To explain this concept, let A and B be two subsets of R*. Following [23], we
write dg (A |B) = sup,c4 d(z, B) for the one-sided Hausdorff distance of A
from B, where d(x, B) is the infimum of the Euclidean distances between x
and points y in B. Observe that dg(A| B) < ¢ if and only if A is contained
in the parallel body B*¢ = {z € R* | d(z, B) < €}. The Hausdorff distance
between A and B is defined as dy (A, B) = max{dy(A| B),du(B| A)}. Write
A€ for the complement of A. A transform 7 is semicontinuous if for every
bounded open subset X C R* and for every § > 0, there exists ¢ > 0 such
that for every open subset Y of R¥,

di(X°,Y°) < e = dp(T[X]|T[Y]) <. 2)
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In other words, small Hausdorff distance between the complements of X and Y’
implies that 7[X] is contained in a tight parallel body of 7[Y]. As mentioned
earlier, this condition is satisfied for 7 = M.

6 Stability under C2-perturbations

In [20], Chazal and Soufflet prove that the medial axis transform is continu-
ous when C2-perturbations are applied on shapes in R3. To define what this
means, we recall that the norm of a linear map h is the supremum of ||h(x)]]
over all points with ||z|| = 1 [53]. Using this concept, we say two linear maps
are e-close if the norm of their differences is less than e. A map f : R3 — R?
is called an e-small C™-perturbation if

(i) f(z) = x outside some compact subset of R?,

(ii) f is a C™-diffeomorphism,

(iii) the i-th derivatives of f and f~! are e-close to the i-th derivative of the
identity map, for all point x € R and all i from 0 to m.

Let X be an open subset of R?® whose boundary is a C2-smooth manifold
[37]. Chazal and Soufflet [20] prove that a small C2-perturbation f implies a
small Hausdorff distance between the medial axes of X and f(X). Formally,
for every § > 0, there exists ¢ > 0 such that for every e-small C?-perturbation
fy da(M[X], M[f(X)]) < é. This result is optimal for m since the medial
axis of a shape is already instable under C'-perturbations. Therefore, for
approximating the medial axis of X with the medial axis of Y, the boundary
of Y must be close to the boundary of X both in position, normal direction and
curvature. Unfortunately, effective implementations of exact alorithms for the
medial axis are known only for restricted families of shapes, such as polyhedra,
unions of balls and complements of discrete point sets, whose boundaries are
generally not C2.

7 Exact computation of medial axes

A fairly general class of shapes for which it is possible, in principle, to compute
the medial axis exactly are the semi-algebraic sets, each the set of solutions of
a finite system of algebraic equations and inequalities. The medial axis of such
a set is itself semi-algebraic and can be computed with tools from computer
algebra. To describe this, let X be a shape whose boundary is a C''-smooth
manifold. We introduce the symmetry set of X, consisting of the centers of
spheres tangent to the boundary of X at two or more points. It contains all
points of the medial axis but possibly additional points since the spheres are
not constrained to bound balls contained in X. Suppose now the boundary
of X is defined by the algebraic equation f(x) = 0 and 0 is a regular value
of f. It follows that the gradient for all points of the boundary is non-zero,
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V f(x) # 0. In this case, the symmetry set is the closure of the set of points z
that satisfy the following system of algebraic equations:

flz) =0,
fly) =0,
(x —2) x Vf(z) =0,
lz = 2|* = [ly — 2|1%,

tle —yl?=1

In the last condition, ¢ is an additional free variable that ensures that x and y
are distinct. If 0 is not a regular value of f, we need to add Vf(x)V f(y)u =1
as yet another equation, with u a free variable. Finally, the medial axis is
obtained by imposing the additional conditions that ||u — z||? > ||z — 2||?, for
all points v on the boundary, and z be contained in X. Hence, if u denotes
a new free variable, we need to remove from the set of solutions of the above
system the (z,u) such that f(z) <0, f(u) =0 and |Ju — z||* < ||z — 2||>. The
set of solutions of this last system is semi-algebraic as is the medial axis since
it is the difference of two semi-algebraic sets.

Although possible in principle, we are not aware of an implementation that
effectively constructs the exact medial axes of general semi-algebraic sets. The
most advanced effective implementations are limited to the planar case, to
piecewise linear shapes, and to shapes constructed from finitely many balls.
Even for shapes bounded by simple curves in the plane, the algebraic difficul-
ties in computing medial axes are significant and satisfactory implementations
are rare and far in between. Piecewise linear curves involve the comparison
of expressions with two nested square roots [17] and efficient and fully robust
implementations are few [36]. Ramamurthy and Farouki tackle the case of
algebraic curve segments whose bisectors have rational parametrizations [47].
An exact algorithm for not-necessarily convex polyhedra in R? can be found
in [24]. For the complement of a union of balls in R*  the medial axis can
be derived from the Apollonius diagram of the corresponding spheres or from
convex hulls of finitely many points in R¥+2 [11, 14]. Perhaps suprisingly, the
medial axis of the union of finitely many balls is simpler than that of the
complement. As first described in [5], it is piecewise linear and can be con-
structed from the Voronoi diagram of a finite set of points. As discussed in
more detail shortly, the cells of dimension less than & in this diagram may
be interpreted as the medial axis of a punctured Euclidean space, a case that
permits particularly simple exact algorithms.

8 Approximation paradigm for medial axes

The difficulty of computing medial axes exactly motivates a serious look at
approximation algorithms. We describe a framework that captures a common
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line of attack to approximating the medial axis, as sketched in Figure 3. First,
we find Y approximating X that belongs to a class of shapes for which the
medial axis can be constructed exactly. Second, we construct the medial axis
of Y. Third, we prune the medial axis of Y to get a subset P[M[Y]] C M[Y]
that approximates the medial axis of X. The composition of the three steps
provides the approximation of the medial axis of X. The most challenging

APPROXIMATE

X ——Y

APPROXIMATE  + CONSTRUCT

MEDIAL AXIs @ MEDIAL AXIS
A\
PIM[Y]] ~—"— M[Y]

Fig. 3: An approximation P[M]Y]] of the medial axis of a shape X can be found in
the medial axis of a shape Y approximating X.

step in the approximation paradigm is the extraction of a subset P[M[Y]
of M[Y] that indeed approximates M[X]. Recent mathematical results that
rationalize this approach are discussed shortly.

The notion of approximation used in the first step varies between different
implementations of the approximation paradigm. It would either mean that
Y is the image of X under a small C"-perturbation, or that the Hausdorff
distance between the complements of X and Y is small, as in [19]. Other
notions of approximation are conceivable.

9 Punctured Euclidean spaces

We start by identifying a class of shapes for which the medial axis can be
constructed exactly and efficiently. We obtain shapes in this class by punctur-
ing the k-dimension real space at a discrete set of locations. Equivalently, we
consider the complement of a discrete set of points P in R*. The medial axis
of this space is the Voronoi graph of P, which we define as the union of all cells
in the Voronoi diagram of dimension k — 1 or less. Algorithms for constructing
the Voronoi graph are well-studied in computational geometry and implemen-
tations are available from the geometric software library CGAL [55]. For a set
P of n points in R¥, the graph can be constructed in time O(n[k/ﬂ +nlogn),
which is optimal in the worst case because the graph can consist of a constant
times n!*/2] faces. In most practical applications, the number of faces, F, is
much less and the output-sensitive algorithm in [18] constructs the graph in
time O((n + F)log® F). Examples of point sets with provably small Voronoi
graphs are so-called k-light e-samples of compact smooth generic surfaces in
R3, with ' = O(nlogn) [8], and k-light e-samples of polyhedral surfaces in
R3, with F' = O(n) [7]. Such samples will be studied in more detail shortly.
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Consider a finite point set P whose Hausdorff distance to the boundary of
a shape X is less than e and write Vor[P] for the Voronoi graph of P. Using
the semicontinuity of the medial axis expressed in (2), we can show that the
subset of Vor[P] inside X contains an approximation of the medial axis of X.
In the approximation paradigm for medial axes, this subset can be interpreted
as the medial axis of a shape Y close to X. Specifically, let Y be the union
of maximal open balls in the complement of P whose centers lie inside X.
Since the Hausdorff distance between P and the boundary of X is less than
€, the same is true for the complements of X and the thus constructed space:
dp(X°©,Y°) < e. Furthermore, the special construction of ¥ as a union of
open balls implies

M[Y] = Vor[P|N X.

A similar but different construction can be found in [19]. There the shape YV
is defined as the parallel body X ¢ minus the points in P. This construction
implies some extra complications in the form of portions of the medial axis
that are not part of the Voronoi graph of P. These portions are removed using
the concept of A-medial axis, as explained later.

10 Voronoi graph and medial axis

We now consider results that focus on the detailed relationship between the
Voronoi graph of a finite point set and the medial axis of the shape whose
boundary the points sample. We need precise notions. A sample of the bound-
ary of a shape X is a finite set of points (exactly and not just approximately)
on that boundary. An e-sample is a sample whose Hausdorff distance is less
than e. In other words, every point of the boundary is less than distance ¢
away from a point in the e-sample. The e-sample is k-light if the number of
sample points within distance € is never more than x. The e-sample is noisy
if points are not necessarily on the boundary but at Hausdorff distance less
than e to the boundary.

An early result on the connection between the Voronoi graph and the me-
dial axis is due to Brandt [15]. Given a shape in R?, he takes an e-sample on
the boundary curve and considers the Voronoi edges and vertices that are com-
pletely contained in the shape; see Figure 4. He then proves that under some
technical conditions on the boundary curve, the portion of the Voronoi graph
defined by these edges and vertices approximates the medial axis. Amenta and
Bern [1] point out that the direct extension of this result to shapes in R? does
not hold. The validity of the extension is spoiled by the existence of slivers
in three-dimensional Delaunay triangulations, which occur for e-samples with
arbitrarily small € > 0. Roughly, a sliver is a tetrahedron whose four vertices
are almost cocircular on the boundary surface. The location of the Voronoi
vertex corresponding to the sliver depends on the four vertices but is generally
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Fig. 4: In R?, vertices and edges lying inside a shape and extracted from the Voronoi
graph of an e-sample of the boundary approximate the medial axis (courtesy of Attali
and Montanvert [10]).

unrelated to any feature of the surface and does not necessarily lie near the
medial axis. As a first step to cope with slivers, Amenta and Bern eliminate
all but a few Voronoi vertices. Every sample point p generates a Voronoi poly-
hedron and the vertices furthest away from p on the two sides of the surface
are the poles of p. Clearly, there are at most 2n poles for a sample of n points.
As proved in [3], for a shape whose boundary is a smooth C!-manifold, the
poles tend to the medial axis as € goes to zero.

To extend the result of Brandt to R?, we need more than just points (the
poles) near the medial axis; we need to connect them to form a geometric
structure approximating the medial axis. In [3], Amenta, Choi and Kolluri
use simplices of the (weighted) Delaunay triangulation of the poles. To avoid
the construction of this weighted Delaunay triangulation and connect the poles
directly inside the Voronoi graph, we need to know about its local distance
from the medial axis. Bounds on this distance can be found in [6, 13, 23].
Assuming the boundary of the shape is a smooth C'-manifold and using
these bounds, among other things, Dey and Zhao [27] give an algorithm that
identifies a subgraph of the Voronoi graph that approximates the medial axis
for the Hausdorff distance. We note that the above results are limited to
smooth surfaces and to samples of points that lie on that surface. The next
two sections deal with more general data.
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11 Pruning in the presence of noise

Assuming the medial axis of a shape Y approximating X has been constructed,
we prune M[Y] to retrieve an approximation of M[X]. In this paragraph, the
terms shape, medial axis, and stable part refer to Y, M[Y], and P[M[Y]],
respectively. Pruning methods shorten peripherical branches of the medial
axis, trying to capture its stable part. Typically, points on the border are
successively removed until a stopping condition is satisfied. This condition
may be a threshold on the difference between the initial shape and the shape
reconstructed from the simplified medial axis [16, 23, 28, 48, 49|, or it may
be based on an estimate of the stability of portions of the medial axis [9, 10,
26, 31, 32, 45]. We present experimental results due to Attali and Montanvert
[10] that shed light on the latter approach. To each point y € Y, we associate
the distance to Y¢, the complement of Y, and the largest angle formed by
points in Y ¢ closest to y:

p(y) =d(y,Y") and 6(y)= max Zayb,
a,bell(y)
where II(y) = {x € Y° | d(y,Y°) = |ly — z||}. We obtain the parameter
graph by collecting, for all points y of the medial axis, the points (6(y), p(y))
in the two-dimensional parameter space [9, 10]. Points in this graph lie on
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Fig. 5: Medial axis, parameter graph and simplified medial axis obtained by keeping
points in the upper right quadrant of the parameter graph (courtesy of Attali and
Montanvert [10]).

curves associated with branches of the medial axis, as illustrated in Figure 5.
When noise is added to the boundary, new branches appear on its medial
axis; see Figure 6. The corresponding effect on the parameter graph is the
appearance of a hyperbola-like point cloud located near the coordinate axes.
This experimental observation suggests a method for recognizing points on
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the medial axis that own their existence to noise in the input data. A first
version of that method removes points y for which p = p(y) is smaller than
a first threshold or 6 = 6(y) is smaller than a second threshold. In order to
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Fig. 6: A small amount of noise added to the boundary of a shape suffices to dra-
matically change its medial axis. The simplified medial axis is defined by points in
the upper right quadrant of the parameter graph (courtesy of Attali and Montanvert
[10]).

refine the method, let us introduce 6(y) = sup, per(y) la — bl|/2. The new
quantity, § = §(y) is related to the previous ones by

)

~ sin(0/2)

If one plots p as a function of @ for a fixed value §, one can find experimentally
a value of § for which the corresponding curve approximates the noise induced
hyperbola-like point cloud. This indicates that the stable part of the medial
axis corresponds to points y for which 0 is greater than a given threshold. The
next section describes a theoretical verification of these experimental results.

12 Stability of the A-medial axis

Chazal and Lieutier [19] define the A-medial axis of a bounded open subset X
of R* and prove its stability under the Hausdorff distance, for regular values
of A\. Remember that this property is not shared by the medial axis transform.
To describe their results, let r(z) be the radius of the smallest ball enclosing
I1(x), the set of points in the complement of X with minimum distance to x.
By definition, the A-medial axis of X is

MuX]={z e X |r(zx) > A}
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For A > 0, the A-medial axis is a subset of the medial axis, whose Hausdorff
distance to the medial axis tends to zero when A tends to zero. We say that
A is a regular value of X if the function that maps u € R to M,[X] in R¥
is continuous under the Hausdorfl metric at 4 = A. In other words, a small
modification of a regular value X implies a small modification of the A-medial
axis. Typical non-regular values are radii of locally largest maximal balls. We
are now ready to give a precise statement of the result in [19]: if X is a regular
value of a shape X, the A-medial axis transform is continous at X for the
Hausdorff distance. In other words, for every § > 0, there exists ¢ > 0 such
that for every open subset Y of R¥,

di(X6,Y) < ¢ — dg(M,[X], MA[Y]) < 4. (3)

Note the similarity with (2), which expresses the same property using one- in-
stead of two-sided Hausdorff distance. As part of the approximation paradigm
for medial axes, this result sheds new light on the pruning method described
above, which is now seen as approximating the A-medial axis. Furthermore, an
approximation of the medial axis can be obtained by forcing A to decrease as
Y gets closer to X. This idea is present in [27] and can be found in [19]. Specif-
ically, we consider a sequence of shapes Y, whose Hausdorff distance to X is at
most €. Writing D for the diameter of X and introducing g(e) = 10/3D3/* /e,
we get

21_1% du (M[X], Mg(e) [Ye]) =0, (4)

[private communication with André Lieutier|. Unlike the medial axis, the \-
medial axis is not necessarily homotopy equivalent to the shape. To shed light
on this phenomenon, Chazal and Lieutier [19] call a point € X critical if
the vector field Vp defined in (1) vanishes at x; see Figure 1. The weak feature
size of X is the smallest distance between a critical point and the boundary
of X. As proved in [19], the A-medial axis is homotopy equivalent to X if X is
smaller than the weak feature size.

13 What now?

How do we best harness the power of the new insights, in particular the stabil-
ity of the A-medial axis? In this section, we speculate how this stability can be
used to obtain improved implementations of the approximation paradigm of
medial axes. We also mention some of the open issues that are still obstacles
in our quest for a satisfactory solution in the absence of any knowledge on the
shape X other than a possibly noisy finite sample of its boundary.

Given a finite point set P, we call the A-medial axis of the complement
the A-Voronoi graph of P. The A-complex is the collection of simplices in
the Delaunay triangulation that can be enclosed by a sphere of radius less
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than A. The relation between the two is one of duality and complementarity:
a Voronoi cell of dimension less than k belongs to the A-Voronoi graph iff
the dual Delaunay simplex does not belong to the A-complex. To derive an
alternative description, let B be the set of open balls with radius A whose
centers are points in P. The A-complex consists of all simplices spanned by
points in P whose balls have a non-empty intersection. This is similar to but
slightly weaker than the condition for the simplex to belong to the a-shape
[31], which requires that the balls and the (k-dimensional) Voronoi cells have
a non-empty intersection. Indeed, it is not difficult to prove that for A = «,
the A-complex and the a-complex are homotopy equivalent. To construct the
A-Voronoi graph, we simply select the Delaunay simplices that belong to the -
complex and collect the dual Voronoi cells of the remaining Delaunay simplices
as the pieces of the A-Voronoi graph. An example of this construction is shown
in Figure 7. Assume now that P is a noisy sample of the boundary of an open

Fig. 7: The A-complex and the A-Voronoi graph of a noisy sample of a simple closed
curve in the plane.

set X C R¥. If we know that P is an e-sample of that boundary, we may set
A = g(€) and compute the A\-Voronoi graph. The results presented in Sections
10 and 12 assure that as € goes to zero, the A\-Voronoi graph restricted to X
is an approximation of the medial axis of X. To recapitulate, we go through
the following steps to obtain an approximation of the medial axis:

1. determine how small an € is needed;

2. obtain an e-sample of the boundary of X;

3. construct the A-Voronoi graph, with A = g(e);
4. select the part of the graph inside X.

In practice, we rarely have enough knowledge about X to know what € > 0 is
sufficiently small, and even if we knew, we might not have the means to obtain
an e-sampling of the boundary. In exceptional cases, the boundary of X is
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defined mathematically, e.g. as the zero-set of an algebraic function f : R¥ —
R, and we can determine sufficiently fine e-samples and therefore A-Voronoi
graphs that approximate the medial axis, as in Figure 8. This approach to

Fig. 8: Two A-medial axes of the same shape, with A increasing from left to right,
constructed as a subset of the A-Voronoi graph of a sample of the boundary (courtesy
of Steve Oudot).

medial axes thus suffers from the same difficulties as the a-shape approach to
surface reconstruction: it is usually not clear which value of A (or «) is most
appropriate, and in many cases there is no such most appropriate value. This
suggests we re-trace some of the developments aimed at fixing this drawback
for a-shapes, namely looking at the filtration (nested sequence) of A-Voronoi
graphs and use topological persistence [30] to select and combine pieces of
A-Voronoi graphs for different values of A in different portions of X.
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