To appear in an IEEE VGTC sponsored conference proceedings

Computing Robustness and Persistence for Images

Paul Bendich, Herbert Edelsbrunner, and Michael Kerber

Abstract—We are interested in 3-dimensional images given as arrays of voxels with intensity values. Extending these values to a
continuous function, we study the robustness of homology classes in its level and interlevel sets, that is, the amount of perturbation
needed to destroy these classes. The structure of the homology classes and their robustness, over all level and interlevel sets, can be
visualized by a triangular diagram of dots obtained by computing the extended persistence of the function. We give a fast hierarchical
algorithm using the dual complexes of oct-tree approximations of the function. In addition, we show that for balanced oct-trees, the
dual complexes are geometrically realized in R? and can thus be used to construct level and interlevel sets. We apply these tools to

study 3-dimensional images of plant root systems.

Index Terms—Voxel arrays, oct-trees, persistent homology, persistence diagrams, level sets, robustness, approximations, plant roots.

1 INTRODUCTION

The last decade has witnessed the development of persistent homology
from a mathematical idea to a full-blown methodology for capturing
essential features of data in a robust manner; see eg. the recent text-
book [10]. Datasets to which persistent homology has been success-
fully applied include natural images [5], trademark images [6], sensor
networks [8], protein structures [20], gene expression profiles [9], and
brain structures [7]. These and other applications are facilitated by ef-
ficient algorithms and software for computing persistence for filtered
complexes. While efficient, the algorithms are not yet fast enough to
support broad applications to 3-dimensional image data consisting of
millions if not billions of voxels.

Our first contribution is a fast algorithm for computing persistence
for 3-dimensional images. It uses standard image processing tools,
such as oct-trees [17, 18], and produces the persistence information in
a series of progressively more accurate approximations. An important
step here is the construction of a simplicial complex that serves as in-
put to the persistence algorithm. We analyze under which conditions
this complex is geometrically realized in R3; if these conditions are
satisfied, we may use versions of the marching cube algorithm [15] to
compute approximations of level sets. The output of our algorithm is a
converging series of multi-sets of dots in the plane, referred to as per-
sistence diagrams, where each diagram gives an easy-to-read encoding
of the homology of all level sets and interlevel sets of an oct-tree ap-
proximation of the image, as well as the robustness of this information
under perturbations of the input data. The theoretical underpinnings of
this representation of homological robustness can be found in [3, 11].
The second contribution is the detailed analysis of the approximations
of the diagram and the robustness information obtained for piecewise
constant and piecewise linear approximations of the image data. These
results quantify the convergence of the information provided in a series
of refinements by the hierarchical algorithm. The third contribution is
the application of the new tools to analyze root systems of agricultural
plants.

As mentioned above, the persistence diagram of a 3-dimensional
image is a compact representation of the families of level and inter-
level sets. It can therefore be compared with other summary repre-
sentations of level sets, such as Reeb graphs [16, 19] and the contour
spectrum [2]. While both contain information not readily available
from the persistence diagrams, the diagrams go beyond them by dis-

o Paul Bendich is with IST Austria. E-mail: bendich@ist.ac.at.

o Herbert Edelsbrunner is with IST Austria, Duke University, and
Geomagic. Email: edels@cs.duke.edu.

o Michael Kerber is with IST Austria. Email: mkerber@ist.ac.at.

o This research is partially supported by the National Science Foundation
(NSF) under grant DBI-0820624 and the Defense Advanced Research
Projects Agency (DARPA) under grants HR0011-05-0057 and
HR0011-09-0065.

playing topological information of dimension higher than 0 as well
as the robustness of all information under perturbations of the input
data. We believe the latter to be a generally useful tool for the analysis
of level sets; possible applications are the selection or the simplifi-
cation of level sets, which have been studied with more specialized
approaches in [1, 12]

Outline. Section 2 gives the necessary background. Section 3 ex-
plains an algorithm for computing the persistence diagram of a func-
tion defined via an oct-tree. Section 4 analyzes the resulting approx-
imations of persistence and robustness. Section 5 applies the tools
to root system data and reports on the run-time characteristics of our
software. Section 6 concludes the paper.

2 BACKGROUND

In this section, we introduce background from topology, in particular
homology groups and persistence, as well as terminology on images
and their representation as oct-trees.

Images and oct-trees. We think of an image as a real-valued
function. Since we are primarily interested in the 3-dimensional case,
we write f : R? — R. In practical applications, we can know the value
of the function only at a finite number of points. We are interested
in the important special case in which this set contains the 1> integer
points in a cube. A voxel is a cube with unit side-length centered
at such an integer point. Since all we know about the function are
its values at the n’ integer points, we may as well use the voxels to
construct a first piecewise-constant approximation. Specifically, we
define fyox : R — R by setting fyox (x) = f(i, j, k) if x lies inside the
voxel centered at the integer point (i, j, k), assuming some tie-breaking
mechanism, and fyox(x) = 0 if x is not contained in any of the n
voxels.

EW

-

-

B S I

FB

Fig. 1: The east-west, north-south, and front-back planes decompose a node in the oct-tree
into its eight children.

We get additional piecewise constant approximations of f from par-
tial hierarchical representations of the array of voxels, which we now
describe. The type of hierarchies we have in mind are called oct-trees.

Assume n = 2¢. The root node of an oct-tree is the union of the n’
voxels. It has either zero or eight children, and in the latter case each
child is the root node of an oct-tree for the corresponding smaller array
of voxels. The level of a node in this tree is A = 0 for the root node and
A + 1 for the child of a node at level A. A node of the oct-tree is inter-
nal if it has eight children, as in Figure 1, and it is external if it has no
children. Nodes at level ¢ are single voxels and cannot have children.
The height of the oct-tree is the maximum level of any of its nodes,
which is at most ¢. Given an oct-tree, B, we use its external nodes to
construct a function fz : R? — R. Specifically, we set fz(x) equal to
a consensus value of the voxels that make up the external node that
contains x, assuming again some tie-breaking mechanism for points
that belong to two or more external nodes. We set fz(x) = 0 if x lies
outside all external nodes. We have fp = fyox if all external nodes are
voxels.

Complexes. Here we explain the terminology relating to simpli-
cial complexes that we use in later sections. By an i-simplex, we mean
the convex hull of i + 1 affinely independent points. For i =0,1,2,3,
an i-simplex is a vertex, an edge, a triangle, a tetrahedron. Given a
simplex o, the set of simplices spanned by the subsets of the vertices
of o are called faces of &. A simplicial complex K in R3 is a set of
simplices drawn in R3 in such a way that any two simplices 6,7 € K
intersect, if at all, along an entire mutual face. For example, one can-
not have an edge piercing a triangle. The underlying space |K| of a
simplicial complex K is the union of all the simplices in K together
with the topology inherited from the ambient Euclidean space.

There is also a notion of an abstract simplicial complex. This is a
set . of subsets of some vertex set that is closed under containment;
in other words, o € J# and 7 C o requires T € ¥ . For example, an
abstract simplicial complex can be obtained by taking the nerve [10,
page 59] K of a collection of convex sets. Letting K contain one ver-
tex for each convex set, K will contain a simplex ¢ for each collection
of convex sets with a non-empty intersection. Given an abstract sim-
plicial complex %, a geometric realization is a drawing of % as a
simplicial complex K in some Euclidean space. Finally, a triangula-
tion of a topological space X is a simplicial complex K along with a
homeomorphism between |K| and X. In the rest of this section, we
will often blur the difference between a topological space and a sim-
plicial complex by imagining that we have in mind a triangulation of
the former.

Homology. Here we give an informal description of the homol-
ogy basics needed for this paper; for a more thorough and general
treatment of homology theory, see for example [14]. We first de-
scribe the Z/27Z-homology groups H;(X) of a topological space X,
restricting ourselves to dimensions i = 0,1,2. Each such group will
be a vector space over Z/2Z. By a 0-cycle in X we mean a point,
by a 1-cycle we mean a closed curve possibly with self-intersections,
and by a 2-cycle we mean a closed surface. We can add any two i-
cycles o and B by defining o + f3 to be the i-cycle formed by the
closure of their symmetric difference. An i-cycle a bounds if « is the
boundary of an (i + 1)-dimensional subspace of X; intuitively a cy-
cle bounds if it can be pulled taut to a point entirely within the space
X. We also say that « is homologous to another i-cycle B if there
exists an (i + 1)-dimensional subspace whose boundary is & + 3. An
i-dimensional homology class is a collection of mutually homologous
i-cycles. For example, a O-dimensional class would be a connected
component, while we imagine a 1-dimensional class as a loop going
around a tunnel, and a 2-dimensional class as a surface enclosing a
void. The set of i-dimensional classes forms the vector space H;(X)
with addition again corresponding to taking symmetric difference. The
rank of this vector space, denoted as rank(H;(X)), is often referred to
as the i-th Betti number of X. It will often be convenient to talk about
homology whole-sale, considering all dimensions at once. To do this
formally, we define H(X) as the direct sum of the H;(X). We extend
the above notion of absolute homology assuming a second topolog-
ical space, Xop C X. An i-dimensional subspace o C X is called a
relative i-cycle of the pair (X, X) if the boundary of « is entirely con-
tained within Xg; of course this includes the possibility that o has no

boundary. Substituting relative for absolute cycles, we define when o
bounds and when it is homologous to another relative cycle, as before.
An i-dimensional relative homology class is a collection of homol-
ogous relative i-cycles. Finally, these classes form a vector space, as
before, which we denote as H;(X,X), and call the i-th relative homol-
ogy group of the pair (X,Xg). Similar to before, we write H(X,Xj)
for the direct sum of the H;(X,X).

We illustrate these definitions using the torus X that bounds the
donut-shaped space in the lower-right quadrant of Figure 2. Since
X is connected, we have rank(Ho(X)) = 1. There is one void formed
by the torus itself, and hence rank(H»(X)) = 1 as well. The group
H;(X) is more interesting. Let o and f3 be two meridian 1-cycles,
both passing through the visible tunnel of the torus, and let y be a lon-
gitudinal I-cycle, going around that tunnel. Note that o and f3 are
homologous since their sum forms the boundary of the tube between
them. On the other hand, 7y is homologous to neither o nor . With
a little work, we can see that any other non-bounding 1-cycle on X is
homologous to & or to y or to their sum. In other words, the homol-
ogy classes represented by « and 7y form a basis for H (X), and hence
rank(H; (X)) = 2. Now suppose we use a plane to cut the torus into
two cylinders, letting one be Xg. The pair (X, X() defines relative cy-
cles of dimension 0, 1, and 2. We have rank(H(X,Xp)) = 0 because
every O-cycle bounds, that is, every point can be connected to X(by
a curve whose boundary is that point plus some point in Xg. Further-
more, rank(H; (X, Xp)) = rank(H,(X,Xg)) = 1, with the two vector
spaces spanned by the longitudinal 1-cycle and the torus surface.

We have described homology here in the context of a topological
space. There is also a nearly equivalent notion of homology for a
simplicial complex. Using this latter idea, the vector spaces can be
computed by reducing a matrix whose columns are indexed by the
simplices in the complex; of course, the more simplices in the com-
plex, the longer the running time. Hence, the oct-tree construction de-
scribed in this paper will produce a faster running time via a controlled
decrease in the number of input simplices. For details on simplicial
homology and the matrix reduction algorithm, see [10].

Persistence. One disadvantage of homology, as described above,
is its sensitivity to small changes in the space. For example, consider
the twice-broken circle Y shown in the upper-left quadrant of Figure
2. As it is currently drawn, there are two components and no other cy-
cles. On the other hand, a small change in Y, perhaps caused by some
inaccuracy in rendering, might cause radical homological changes; for
example, the space in the lower-right quadrant of the same figure has
only one component but also has a non-bounding 1-cycle. We now
give a brief sketch of persistent homology, which deals with this prob-
lem by turning homology into a multi-scale concept; as before, we
refer the reader to [10] for more precision and detail.

t=4

)

t=14 t=6

Fig. 2: Four sublevel sets of the function dy. As we move clockwise from the upper-left,
the threshold parameter increases.

t=0

We start with a topological space M and a continuous real-valued
function f : Ml — R. The main idea is to construct a sequence of vec-

To appear in an IEEE VGTC sponsored conference proceedings

tor spaces with maps between them, calling this the filtration of M in-
duced by the function f. As a working example, we consider Ml = S3,
the 3-sphere, which we picture as R> compactified by adding a point
at infinity, and we let f = dy, the function that maps each point in S3
to its distance from the space Y C M. In a first phase, we consider
sublevel sets M, = f*1 (—oo,r], where r € R. Whenever r < s, there
is an inclusion of sets M, C M. In our example, the sublevel sets are
empty until we reach r = 0, when we have Y itself. As r increases
further, the sublevel set gradually thickens Y until finally the entire
3-sphere is filled in. During this process, some homology classes dis-
appear and some new ones are formed. For example, in the passage
from the upper-left quadrant of Figure 2 to the upper-right, two com-
ponents are merged into one, and so we say that one component dies
while another component remains alive. Moving to the sublevel set in
the lower-right, a new 1-cycle is born; this 1-cycle subsequently dies
moving into the lower-left, as there is now a surface for it to bound.
At this moment, we have one O-cycle alive and nothing else. When
we reach the point at infinity, the 3-cycle defined by the sphere itself
is formed.

During a second phase of the filtration, we consider pairs (M, M"),
where M = f~![r,0) is a superlevel set of f, and we let r decrease
from positive infinity to negative infinity. We may visualize this by
moving in a counterclockwise order in Figure 2, interpreting each
shape as the piece of the 3-sphere that remains if we remove the super-
level set. The first change in this second phase is the death of the re-
maining O-dimensional class. Moving from the lower-left to the lower-
right quadrant, we see the birth of a 2-dimensional relative class, which
dies when we move into the upper-right quadrant. Going back to the
upper-left quadrant, we see the birth of a 3-dimensional relative class,
which dies together with the other such class when the two compo-
nents are subsumed by Xy. As a general rule, all births and deaths
happen at critical values of f. The persistence of a class is defined to
be the absolute difference between its birth and death values.

Diagrams. Given a function f, the persistence diagram Dgm(f),
consisting of two triangles and one diamond, records the birth and
death of homology classes during the filtration defined by f. We ex-
plain this for the example f = dy, whose diagram is drawn in Figure
3.

Fig. 3: The persistence diagram for the function dy illustrated through four of its sublevel
sets in Figure 2. Each axis goes from minus to plus infinity, and we mark the origins with
grey dots for improved readability. The two shaded rectangles correspond to the level set
of dy at a = 0.6, and the dots in these rectangles give the homology.

We focus first on the left triangle, as it is the easiest to understand.
There is a birth axis, going downhill on the right, and a death axis,
going uphill on the left. For each class that is born and dies during
the first phase of the filtration, we record its birth and death values and
plot them as a dot in this triangle. Note that the diagram in Figure 3
contains two dots in this region, one labeled dimension 0, the other
dimension 1: these correspond to the component that was there from
the start, at time 0, but was merged at some early time, and a 1-cycle
that formed at a later time and died at a still later time. In general, the
closer a dot is to the birth=death diagonal (rendered as the horizontal
baseline), the more likely it is to be interpreted as noise, although this
statement cannot of course be given a precise meaning. Next we con-

sider the diamond, in which we notice two dots, one corresponding to
the component that was born at the beginning and dies right after the
end of the first phase and the other to the 3-cycle that was born right
before the end of the first phase. In general, the diamond contains one
dot for each class that is born during the first phase and dies during the
second phase of the filtration. Finally, the right triangle contains a dot
for each class born and dying during the second phase. Notice that this
diagram is symmetric, with points of dimension i being reflected into
points of dimension 3 — i across the vertical line which separates the
two halves of the diamond. This symmetry will be present whenever
M is a compact manifold [10, Chapter VII].

Stability. These diagrams are useful because they are stable under
small changes in the function, in a manner which we now describe,
first via example and then the general theory. Suppose that we slightly
perturb the values of our function dy to produce a new function g;
the diagram of g is drawn in Figure 4. Notice that the diagrams of

Fig. 4: The persistence diagram for a perturbed version of the function dy.

dy and of g are virtually identical, except for the presence of a large
number of dots along the birth=death diagonal in the latter; these extra
dots are all of very low persistence and hence are probably noise. This
example illustrates a general fact and motivates us to add infinitely
many copies of the dots on the diagonal to the diagram. Given two
real-valued functions f, g on the topological space M, we define the
Leo-distance between them to be || f — g|| ., = sup,enm | f(x) —g(x)|. We
also define a similar distance between dots in the plane. If u = (a,b)
and v = (c,d), then ||u—v||,, = max{|c —a|,|d — b|}. To compare the
diagrams Dgm(f) and Dgm(g), we consider a bijection I': Dgm(f) —
Dgm(g), and find the largest distance between matched dots; we then
minimize this distance over all possible bijections. In symbols, we
define the bottleneck distance between the diagrams to be:
We(Dgm(f), Dgm(g)) = infsup|lu—Tu)]l..

u

where I ranges over all bijections and u ranges over all dots in
Dgm(f). As stated in [10, Chapter VIII], the diagram is stable un-
der measuring difference with the bottleneck distance:

Weo(Dgm(f),Dgm(g)) < [If —&lo- €]

Robustness. The persistence diagram Dgm(f) contains a great
deal of information, namely the homology of every level set f~!(a)
and every interlevel set f~[a,b], as well as the robustness of this
homology. We describe this here in some detail, while referring the
reader to [3, 11] for precise definitions and statements. First, it can be
shown that for any regular value a of f, the homology of the level set
f~Y(a) corresponds to the dots in Dgm(f) that lie within two particu-
lar rectangles. These rectangles have one shared corner located at the
dot a on the vertical line in the middle diamond, and their sides are
parallel to the two coordinate axes; the dimensions of the dots in the
right rectangle also must be reduced by 1. For example, the dots in
the two shaded rectangles in Figure 3 give the homology of dy, ! (0.6).
This level set looks like the boundary of two slightly thickened cir-
cular arcs; hence its homology consists of two components and two
2-cycles. Sliding a along the vertical line produces different rectangle
pairs, each of which gives the homology of a different level set.

We now describe what is meant by the robustness of the homology
of a level set f~!(a). Given an r > 0, we consider the interlevel set
M, (f,a) = f~'[a—r,a+r], and we define an r-perturbation h of f
to be a real-valued function % such that ||z — f]|., < r. Note then that
the level set A~ ! (a) is a subset of Ml,(f,a), and so there is an induced
map on homology groups j, : H(h~!(a)) — H(M,(f,a)). The image
of this map imjj;, can be understood intuitively as the set of homology
classes in H(M,(f,a)) that are homologous, within M.(f,a), to some
homology class in H(h~! (a)). We then define the well group at radius
r to be the intersection of the images of the maps induced by all r-
perturbations of f; that is,

Ur(fra) =)

h=fll.<r

lmJ h-

It can be shown [11] that these well groups can only drop in rank as
the radius increases. A radius r at which such a drop occurs will be
called a terminal critical value. We plot these terminal critical values
as dots on the non-negative real line. The resulting multi-set of dots
displays the robustness of the level set, and we call it the well diagram
Ugm(f.a),

These well diagrams can be read directly from Dgm(f) in the fol-
lowing manner. We draw the rectangle pair corresponding to a. For
each dot u within this pair, there will be a dot ps(u) € Ugm(f,a),
where py(u) is the distance between this dot and the boundary of the
rectangle. In the example shown in Figure 3, with a = 0.6, all four
dots appear to have fairly small p-values. This is not surprising. If
we consider, for example, the function 4 = dy + 0.7, then the level set
h1(0.6) = d§1 (—0.1) = 0, and thus & cannot support any homology
classes whatsoever; hence the robustness of every class in the level set
is certainly less then 0.7.

3 THE ALGORITHM

Given a real-valued function f : R3 — R, the function fyox is a piece-
wise constant approximation of f. By constructing an oct-tree B, we
may further simplify fyox, approximating it with a new function fp
defined on the external nodes of the oct-tree, and then compute the
persistence diagram of this new function. In this section, we describe
an algorithm which accomplishes this. In brief, the main steps of the
algorithm are as follows:

STEP 1. Beginning with the one-node oct-tree, we subdivide external
nodes to produce an oct-tree B.

STEP 2. We construct the nerve of a slightly perturbed version of the
cube complex consisting of the external nodes of B.

STEP 3. We filter this nerve by lower stars (defined below) and com-
pute the associated persistence diagram.

We now describe each of these steps in turn.

3.1 Oct-Tree

We assume a real-valued priority function @ that assigns a priority
@(u) > 0 to any oct-tree node u. Intuitively, @(u) tells us how ur-
gently 1 must be subdivided. We require that @ is zero if the oct-tree
node only contains one voxel, and that ¢ decreases in value along
paths of the oct-tree. The fitness of an oct-tree B is the maximal prior-
ity of its external nodes: ®(B) = maxy ¢(u). Different priority func-
tions can be utilized to accomplish different tasks. In Section 4.2, we
will in particular analyze the properties of the following two:

o @(u) = M() — m(u), where M(s) = max,eq fuox(») and
m(p) = mingey fyox(z). In words, the priority of a node is the
range of the function values inside the corresponding cube.

M —
«) = Mt
minyey | fyox(¥)|- This assigns a higher priority to nodes having
function values closer to zero.

, where M and m are as before, and mq(u) =

We construct the oct-tree in a top-down manner, starting with the one-
node oct-tree B that defines a constant function. We store the external
nodes in a priority queue in decreasing order of ¢. In each iteration,
we remove the external node with highest priority from the queue and
subdivide it into its eight children. These children become external
nodes and are inserted into the priority queue. We continue this pro-
cess until we satisfy a certain termination condition. For that, we have
again two choices. We can fix an integer N and stop when the next
iteration would produce an oct-tree with more than N external nodes.
With this condition, we obtain an oct-tree with best fitness that can be
achieved using N external nodes. Alternatively, we can fix a real value
6 and stop if the fitness of the oct-tree becomes less than or equal to
6. In this way, we obtain a smallest oct-tree whose fitness is not larger
than 6. Instead of fixing a single integer NV, we can also fix a sequence
of integers N| < N, < ... < N; and produce oct-trees B; with best fit-
nesses, having at most N; external nodes. The corresponding functions
fi give progressively more accurate approximations of fyox. Of course,
the same can be done for a sequence of values 6; > 6, > ... > 6;.

3.2 Dual Complex

We now describe a procedure which takes an oct-tree B and produces
from it a simplicial complex, which we call its dual complex. In Sec-
tion 4 we will prove that, under an added balancing assumption on the
tree, this dual complex is geometrically realized in R3.

Perturbation. A direct approach to constructing the dual complex
runs into difficulties because a corner can be shared by as many as
eight cubes. To cope with this difficulty, we think of each voxel as a
Voronoi cell: the set of points in R3 for which the voxel center is a
nearest integer point. We perturb the points slightly such that these
Voronoi cells are simple polyhedra that meet in three along a shared
edge and in four around a shared corner. A particularly straightforward
such perturbation moves the integer points along the direction of the
main diagonal: (i, j,k) — (i —em, j — em,k — em), where € > 0 is suf-
ficiently small and m = i + j + k. The perturbation has the same effect

Fig. 5: A configuration of 27 = 3 truncated cubes. Only 14 of the 26 surrounding trun-
cated cubes touch the middle cube.

on every voxel, changing it to a particular type of truncated cube. As
shown in Figure 5, the truncation flattens six edges to thin rectangular
faces and it flattens two diagonally opposite vertices to small hexago-
nal faces. We call this truncated cube a perturbed voxel. Recall that the
level of a node in the oct-tree is its distance from the root node. If that
node has level A, then it represents a cube of side length n/ 24 =204,

containing 8/=% voxels. After the perturbation, the node represents
an equally large configuration of perturbed voxels. We refer to this
union as a perturbed cube, noting that it is not convex unless A = /.
However, we can control the amount of non-convexity by choosing €
sufficiently small.

Voxel complex. Before considering the general case, assume B is
the complete oct-tree, that is, its external nodes are the n> given vox-
els. We form the dual complex, denoted as K = K(B), by calling each
voxel a vertex. We connect two, three, and four vertices by an edge, a
triangle, and a tetrahedron if the corresponding perturbed voxels have

To appear in an IEEE VGTC sponsored conference proceedings

a non-empty common intersection. More concisely, K is isomorphic
to the nerve of the collection of perturbed voxels. Geometrically, we
draw each vertex as the point at the center of the voxel. Edges, trian-
gles, and tetrahedra are drawn as convex hulls of the two, three, and
four centers.

DS e

Fig. 6: Configurations of two, three, and four voxels defining edges, triangles, and tetrahe-
dra in the dual complex.

Ignoring boundary effects, the dual complex looks the same way
at every vertex. There are three types of edges: aligned to a coordi-
nate direction, to the diagonal in a coordinate plane, and to the space
diagonal. Similarly, there are two types of triangles and one type of
tetrahedron; see Figure 6. We can assemble six tetrahedra around the
shared space diagonal to triangulate a cube. This cube is of the same
size as a voxel, but dual as its corners are the centers of eight voxels.
We get the entire dual complex by assembling (n — 1) such config-
urations. A single interior vertex belongs to eight such triangulated
cubes. For two diagonally opposite cubes, all six tetrahedra share this
vertex, while for each of the other six cubes, only two tetrahedra do.
The resulting 24 tetrahedra form the star of the vertex, and the bound-
ary of the star is its link, as shown in Figure 7. Note that the star of a
vertex consists of 14 edges, 36 triangles, and 24 tetrahedra. Multiplica-
tion with the number of voxels and compensation for double-counting
gives upper bounds on the number of simplices in the dual complex
of the voxel array: #vertices = n3, #edges < 7n3, #triangles < 12n3,
#tetrahedra < 6n°. These bounds are tight up to lower-order terms.

B\

\J

2o

Fig. 7: The link of the shaded vertex in the middle, which corresponds to the middle
cube in Figure 5. Its vertices correspond to the 14 truncated voxels that touch the middle
truncated voxel.

Oct-tree complex. We generalize the construction of the dual
complex to oct-trees that are not necessarily complete. Letting B be
such an oct-tree, the vertices of K = K(B) are the external nodes of
B and K is isomorphic to the nerve of the collection of corresponding
perturbed cubes. The external nodes of B do not all have the same level
so that cubes of different sizes can touch each other. As a consequence,
K is not quite as regular as in the voxel array case. For example, K is
no longer a degenerate Delaunay triangulation of the cube centers. Be-
cause we use the perturbed cubes to decide upon the simplices in the
dual complex, we have 0 < dim(\S < 3 —i for every collection S of
i+ 1 external nodes whose corresponding perturbed cubes have a non-
empty common intersection. This is because the non-empty common
intersection of a collection of perturbed cubes may shrink, as we let €
go to zero, and in the limit drop in dimension, but it cannot disappear.
This implies that the dual complex of an oct-tree is a 3-dimensional
abstract simplicial complex. We note that the common intersection of
a collection of perturbed cubes does not change its homotopy type as
we decrease €. In the limit, the intersection is convex. This implies
that the intersection is contractible, also for small € > 0. Hence the
Nerve Theorem applies, showing that the homotopy type of the dual
complex is the same as that of the union of perturbed or unperturbed

cubes. We will use this fact in Section 4. Geometrically, we draw each
vertex at the center of the corresponding cube, and we draw each edge,
triangle, and tetrahedron as the convex hull of its vertices. However,
as we will see in Section 4.1, this recipe does not necessarily give a
geometric realization in R3. Recall that the dual complex of the array
of N = n3 voxels has at most 26N simplices. We now show the same
bound for oct-trees.

1 (Dual Complex Bound) The dual complex of an oct-tree with N
external nodes has at most 26N simplices.

PROOF. It suffices to prove that the average number of edges in a ver-
tex star is at most 14. Since the link of the vertex is a triangulated 2-
sphere, this gives an average of at most 36 triangles and 24 tetrahedra
in the star. Summing over all vertices and compensating for double-
counting, we get #vertices = N, #edges < 7N, #triangles < 12N,
#tetrahedra < 6N, and therefore at most 26N simplices altogether.

To count the edges, we replace each external node by the corre-
sponding perturbed cube, . We call another perturbed cube v a
neighbor of u if they intersect. Surrounding p by perturbed cubes
of the same size, we get 14 intersections with neighbors, calling each
intersection a side of u; Figure 5 shows the sides of a perturbed voxel.

We look at the neighbors of u that correspond to external nodes of
the oct-tree. If all such neighbors have the same size as u, we have an
edge for each side and therefore exactly 14 edges, as desired. If there
are neighbors larger than u then we have possibly fewer edges and
nothing to worry about. The difficult case is when there are neighbors
smaller than p. If there is one such neighbor across a side ¢ then all
neighbors across ¢ are smaller than p. Furthermore, except for one,
each such smaller neighbor v has at least two of its sides in ¢. We
can therefore charge the corresponding edge in the dual complex to
the additional side of v. Repeating this reassignment of edges for each
cube, we eventually charge at most one edge to each side. The upper
bound on the average number of edges follows.

3.3 Persistence

As described in Section 2, we compute the persistence diagram of
a function f : Ml — R by pairing the births and deaths in the corre-
sponding filtration. In the application at hand, the function is defined
on R3, which we compactify by adding a point at infinity, so M is the
3-sphere. We now describe how we use the dual complex to achieve
this goal.

Extraction. We read the simplices off the oct-tree without explicit
perturbation. As mentioned earlier, if a collection of perturbed cubes
has a non-empty common intersection then so the corresponding un-
perturbed cubes. Furthermore, this common intersection includes a
point that is a corner of at least one of these cubes. It follows that it-
erating through all corners of external nodes in the oct-tree B recovers
all simplices in the dual complex, K. Now suppose we are at a corner
point, 0, and we identified a set S of unperturbed cubes that have 0
in their boundaries. For every subset of S, we need to test whether or
not the corresponding perturbed cubes have a non-empty intersection.
Since the perturbation has the same effect on every corner, this reduces
to checking whether the cubes are arranged in a certain configuration
around the corner, such as the ones displayed in Figure 6.

Ordering. For the computation of persistence, we need more,
namely the simplices in K in a particular ordering. We restrict the
discussion to the first phase of the filtration, in which we need the
simplices ordered in increasing function value. The second phase is
symmetric, with the simplices ordered in decreasing function value.

We are now more precise about this ordering. For each vertex y €
K, let fp(u) be the value of the external node. For each simplex 6 € K,
we define fp(0) equal to the maximum value of any of the vertices
of . Finally, we sort the simplices in the order of increasing value,
breaking ties by ordering lower- before higher-dimensional simplices.
This rule implies that the faces of every simplex precede the simplex
in the ordering. Hence, every prefix of the ordering is a subcomplex of
K. The sequence of these subcomplexes forms the lower star filtration

of K. As proved in [10], it gives the same persistence diagram as
the continuous sequence of sublevel sets of M, which we assume is
triangulated by K. The most expensive operation here is the sorting
of the simplices. We can therefore improve the performance of the
algorithm by sorting the smaller collection of external nodes. This is
equivalent to sorting the vertices of K. We then collect the remaining
simplices by iterating through the external nodes in order. For each
node u, we find the corners in its boundary, and for each corner, we get
the corresponding simplices as described. However, at this time, we
have use only for the simplices whose highest vertex is y. These are
exactly the simplices in the lower star of (1. Concatenating the lower
stars gives the sequence of simplices for the first phase. Adding the
symmetric sequence of upper stars and feeding both to the persistence
algorithm, we get the persistence diagram of f.

4 ANALYSIS

In this section, we describe and analyze two different choices for the
priority function ¢@. The first choice is tailored to produce a persistence
diagram that is not too far off from Dgm(fyox), While the second gives
a good approximation of the robustness for a particular level set. To
overcome a technical obstacle to this theory, we use the dual complex
to get a piecewise linear, continuous function. It defines the level set,
and because critical values remain unchanged, it produces the same
persistence diagram to which we can now formally apply the stability
result (1) mentioned in Section 2.

4.1 Piecewise Linear Approximation

The main result in this subsection is that the dual complex of an oct-
tree that satisfies an additional balancing condition is geometrically
realized in R3. We can therefore use it to define a piecewise linear
approximation of the original function.

Balanced oct-trees. 'We motivate the balancing condition by an
example in which the above recipe for drawing the dual complex in
R3 does not give a geometric realization. Take two nodes at level A
and a third node at level A +2. Arrange them so that the two big cubes
share a line segment (an edge common to both), and the little cube is
nested between them, sharing a face with each and sharing a quarter at
one end of the line segment. The dual edge connecting the centers of
the two big cubes passes through the middle of the line segment and
is therefore contained in the union of the two cubes. In contrast, the
dual triangle is not contained in the union of the three cubes. It is now
easy to find two additional cubes sharing a face so that their dual edge
crosses the triangle.

This counterexample to geometric realization uses the existence of
two neighboring cubes whose levels differ by at least two. Following
[4], we consider oct-trees that have no such cubes. Specifically, we
call two external nodes in an oct-tree neighbors if the corresponding
perturbed cubes have a non-empty intersection. The oct-tree is bal-
anced if every neighbor of an external node at level A is at level A — 1,
A, or A + 1. Given an unbalanced oct-tree, it is not difficult to find the
smallest balanced oct-tree that refines it. We now show that balanced
oct-trees have significant advantages over unbalanced ones.

Non-degeneracy. Recall that we draw the simplices in the dual
complex as convex hulls of the centers of cubes that are external nodes
in the oct-tree. We can show that these simplices are non-degenerate
provided the oct-tree is balanced.

2 (Non-degeneracy Lemma) Let S be a collection of i+ 1 external
nodes in a balanced oct-tree such that the corresponding perturbed
cubes have a non-empty common intersection. Then the centers of the
i+ 1 (unperturbed) cubes in S span a non-degenerate i-simplex in R3.

PROOF. All triangles and edges are faces of tetrahedra in the dual com-
plex. It thus suffices to prove the claim for i = 3, when S contains
four cubes whose corresponding perturbed cubes share a single point,
which we denote as 0. The four cubes contain four voxels, one in each
cube, whose corresponding perturbed voxels share 0. They form the
last of the six configurations in Figure 6. We consider the planes EW,
NS, and FB, as drawn in Figure 1. We say such a plane separates the

four cubes if it does not intersect their interiors and there is at least one
cube on each side of the plane. Note that due to structural limitations
of balanced oct-trees, at least one of the planes EW and NS is sep-
arating. We now distinguish between three cases, proving each time
that the centers of the four cubes span a non-degenerate tetrahedron.
Case 1. All three planes separate the four cubes. The centers of the
cubes then lie on open half-lines that emanate from O in space diag-
onal directions, that is, all their points are equidistant from the three
planes. Since two voxels in the configuration are diagonally opposite
from each other, two of these half-lines belong to the same line. Any
plane that intersects both must contain the line. But then, this plane
can intersect only one of the other two half-lines.

Case 2. Two planes separate the four cubes, say EW and FB. Since NS
does not separate, at least one of the two cubes in the back occupies
both available octants. By assumption of balance, its size (measured
as the length of its sides) is twice the size of the two stacked cubes
in the front, which are of equal size. Their three centers thus lie on a
vertical plane. The center of the remaining cube does not lie in this
plane, no matter whether it has the size of the front cubes or it is twice
that size. The case in which NS and FB separate is symmetric. The
case in which EW and NS separate is different but similar enough to
permit the same argument.

Case 3. Only one plane separates the four cubes, say EW. Then the
cube on the left occupies all four octants on the left. By assumption of
balance, the right cubes are all of the same size and half the size of the
left cube. There are three of them and their centers lie in a plane paral-
lel to and to the right of EW. In contrast, the center of the left cube lies
to the left of EW. The case in which NS separates is symmetric. In all
cases, we conclude that there is no plane that contains the centers of all
four cubes in S. Equivalently, the four centers span a non-degenerate
tetrahedron.

Since the tetrahedron spanned by the centers of the four cubes in §
is non-degenerate, it has a well-defined orientation. In all three cases
in the proof, this orientation is the same for the tetrahedron spanned
by the centers of the four voxels that share the same point, 0.

Geometric realization. It is now not difficult to show that the
dual complex of a balanced oct-tree is geometrically realized in R3. To
this end, we use the Nerve Theorem, which implies that the dual com-
plex has the same homotopy type as the union of cubes, namely that
of a point; see [10, page 59]. Because the tetrahedron defined by the
cubes have consistent orientation with those defined by the voxels, we
also know that any two tetrahedra that share a triangle lie on opposite
sides of the plane that contains this triangle. To prevent global viola-
tions of geometric realization, such as tetrahedra that wrap around an
edge or a vertex more than once, we just need to show that the bound-
ary of K is geometrically realized in R3. This is easiest if we add
layers of cubes around the cubes defined by the oct-tree, getting finer
toward the outside until the entire outermost layer consists of voxels.
Thus, the boundary of our dual complex is the same as the boundary
of the dual complex of the voxel array that covers the same space. The
latter is geometrically realized by construction. We summarize:

3 (Geometric Realization Theorem) The dual complex of a bal-
anced oct-tree is geometrically realized in R3.

4.2 Thresholds and Error Bounds

In the following, whenever we need a continuous function, such as
in the definition of a level set, we implicitly substitute the piecewise
linear function defined by the dual complex for the piecewise constant
function defined by the oct-tree.

Uniform thresholding. We first imagine a situation in which fyox
varies only a little in certain regions, while varying quite sharply in
others. A typical example is a grey-scale image, which usually has
several almost constant regions and a few regions of drastic change. In
such a situation, we wish to simplify fyox in the more uniform regions
while maintaining detail in the areas of change. To accomplish this,
we define our priority function as @ (1) = M(u) —m(u) and we stop

To appear in an IEEE VGTC sponsored conference proceedings

subdividing when we have reached an oct-tree B whose fitness is better
than or equal to a chosen threshold. Then we define fp on this oct-
tree via fg(x) = 5(M(u)+m(p)), where p is the external node that
contains x; if x is not in any such node, we set fg(x) = 0. The new
function fp is a simplified version of fyox since we only need to know
its values on the external nodes. On the other hand, the values of
the two functions do not disagree by much. Hence their respective
persistence diagrams do not differ by much. More precisely, we show:

4 (Diagram Inference Theorem) The bottleneck distance between
. . d(B
the diagrams is bounded: We.(Dgm(fg),Dgm(fyox)) < %

PROOF. According to (1), we need only show that || — fvox |l <
®(B)/2. To this end, we fix x € R? and prove —®(B)/2 < fp(x) —
Svox(x) < ®(B)/2. If x is not contained in any external node, then
fB(x) =0 = fyox(x) and the claim is trivial. So suppose that u is
the external node containing x, and put m = m(u),M = M(u), and
@ = @(u). Since fg(x) = £(M+m) and m < fuox(x) < M, we have

l(me) < fB(x) — frox(x) <

3 (M—m).

N —

We get the desired inequalities by noting that M —m = ¢ < ®(B).

The above theorem demonstrates that our algorithm trades speed
for accuracy, as we now explain. Given an oct-tree B with fitness &,
the bottleneck distance between Dgm(fp) and Dgm(fyox) is at most
®/2. This implies that there is a bijection between subsets of the two
diagrams that contain all dots of persistence larger than ® and no dots
on the baseline. In other words, all dots with persistence larger than
@ in Dgm(fp) represent genuine features of fyox and all features with
persistence larger than @ in fyox are represented by dots with positive
persistence in Dgm(f5). Hence if we are only interested in the most
persistent classes of fyox, we need only subdivide until we reach an
oct-tree with reasonable fitness. Such an oct-tree will not have too
many nodes. Indeed, assuming our original function is Lipschitz, all
external nodes of B have side length at most some constant times P,
and hence the number of simplices in the dual complex is at most some
constant times n> /®>.

Value-dependent thresholding. We have just described how to
use an oct-tree to simplify a function while maintaining some con-
fidence in the resulting persistence computation. Suppose, on the
other hand, that we are interested in the robustness of a particular
level set of f, say f~1(0). In this case, we do not wish to change
the level set at all. Here, we describe a construction that maintains
the level set exactly, while simplifying other regions of the cube;
we also discuss the consequences for the robustness computation.
For each node u, we define mo(u) = minyey |fyox(y)|, and then set
o(u)=(M(u)—m(u))/mo(1). Note that @(1) can take oo as a value
if some voxel in u is part of the level set; we also use the convention
that % = 0 in the priority queue. We again start with the one-node
oct-tree and subdivide external nodes until we reach an oct-tree with
fitness @ < 2. Because fp(x) = %(M—Q—m) and m < fyox(x) < M, we
get —%(M —m) < fp(x) — fuox(x) < %(M —m), as before. Substitut-
ing @ -mg for M —m and using ¢ < ® as well as 0 < mgy < |fyox(X)|,
we get

Dl < S0~ fxl) < Sle@ @

for every point x € R3. In words, the error is bounded from above by
the absolute value of half the fitness times the function value. Since
®/2 < 1, fp and fyox share the same level set at a = 0: fB’l(O) =

fvox1(0). In particular, the homology of these two level sets is iden-
tical, and hence it makes sense to compare the robustness of these level
sets to perturbations of the two different functions. The relationship is
quite simple. The following result follows from (1) after taking loga-
rithms of the two functions in question. We omit any further details of
the proof.

5 (Robustness Inference Theorem) There is a bijection T :
Dgm(fg) — Dgm(fyox) such that, for every dot u € Dgm(fg) which
corresponds to a homology class o € H(fI;1 (0)) = H(fvox 1(0)), the
dot T'(u) also corresponds to o and we have:

(1_¥)Pﬁs(”) < P (TW) < <1+¥”’fﬂ“‘)'

In other words we may use the persistence diagram of the simplified
function fp to make inferences about the robustness of the level set
under perturbations of fyox.

5 COMPUTATIONAL EXPERIMENTS

In this section, we discuss the application of our methods to 3-
dimensional images of root systems. Our computations are part of
a larger effort to characterize their shape, and to form a relationship
between the phenotype and the genotype of agricultural plants. More
specifically, we focus here on how the root system explores the space
in the soil and how root systems of two or more plants interact.

Our software. We have written a preliminary C++ implementa-
tion (about 2500 lines of code) of the algorithm presented in Section 3
to compute an oct-tree and its dual complex. For the persistence com-
putation itself, we used Dionysus! written by Dmitriy Morozov. More-
over, we have implemented an interactive interface to visualize persis-
tence diagrams in Python (about 1000 lines of code). All diagrams in
this paper are generated by this software. We remark that it contains
additional features like showing the birth- and death-coordinates of a
dot (by just moving the mouse on it), zooming into regions, or mov-
ing the location of the level set box (the shaded pair of rectangles in
the diagrams). As mentioned earlier, we distort coordinates in order
to draw the extended real line, [—oo, 0], as a finite interval. The tool
provides several scaling functions for this purpose. In this paper, we
consistently used a linear scale for the interval between the minimum
and the maximum function value. The software is available from the
third author on request.

All experiments are performed on a general computing server
clocked with 2.53 GHz, 8 MB Cache and 96 GB RAM, running un-
der Linux. The data sets are obtained from 2-dimensional images of
root systems grown and photographed in the Benfey Lab at Duke Uni-
versity. An array of such photographs are then converted into a 3-
dimensional voxel array representation using the reconstruction soft-
ware by Ying Zheng.

Distance from a root. In our first example, we study the Eu-
clidean distance from the root. This defines a real-valued function on
RR3 whose sublevel sets arise from uniformly thickening the root. The
topological analysis of this function provides a characterization of the
way the root system distributes itself in the available space. We can
therefore interpret the persistence diagram as a measurement of the
extrinsic geometry of the root system. The left triangle of the diagram
is shown in Figure 8. The two most persistent homology classes are

Fig. 8: Left triangle of the persistence diagram of the distance function defined by a single
root system.

both of dimension 1, and the corresponding dots in the diagram are
P =(4,6.5) and Q0 = (11,14.8). Intuitively, a 1-cycle is formed when
two branches of the root meet while thickening. Looking at the appro-

http://hg.mrzv.org/Dionysus/

Fig. 9: Sublevel sets of the distance function of a root system. The dashed curves mark
upcoming births and deaths.

priate sublevel sets, we can easily detect the corresponding 1-cycles of
the root; see Figure 9. At = 3, we see two thickened branches getting
close to each other (dashed circle) and forming a 1-cycle at t = 4, the
birth-coordinate of P. Atr =35.5, this 1-cycle is almost filled out and
dies shortly after at # = 6.5, the death-coordinate of P. In the bottom
row, we see two thickened branches getting close to each other atr =9
(dashed circle) and forming a 1-cycle att = 11, the birth-coordinate of
Q. This 1-cycle still exists at + = 13 and eventually dies at r = 14.8,
the death-coordinate of Q.

Trading speed for accurate diagram. The persistence diagram
in Figure 8 takes about 30 minutes to compute; the corresponding
complex has about 7.6 million vertices. We approximated the dis-
tance function using an oct-tree generated by uniform thresholding,
stopping after a certain number of external nodes. Two examples, for
40,000 and 160,000 nodes, are displayed in Figure 10; these examples
took 16 and 41 seconds to construct. Figure 10 also shows the exact
diagram. We can see that the 40,000-node approximation is quite inac-
curate but already provides evidence for the existence of two 1-cycles
with high persistence. Furthermore, the 160,000-node approximation
is very close to the exact persistence diagram, with a dot P’ = (3.5,5.6)
close to P and a dot Q' = (9.7,13.5) close to Q. The fitness of the tree
is about 5.2, which would allow any dot to move up to 2.6 units of
length before reaching the location in the exact diagram; see the Dia-
gram Inference Theorem from Section 4.2. While this would allow P’
to move to the baseline and disappear, we already know that Q' corre-
sponds to a class with non-zero persistence. Comparing the approxi-
mate 1-cycles with the exact ones, we see that the actual movement is
about a factor of 2 less than the bound given in the mentioned theorem.

et T ey ritceds” am aNon e Mk atesct stasen s it a2

Fig. 10: Cutout of the persistence diagrams for the approximated distance function defined
by trees with 40,000 and 160,000 external nodes, and for the exact distance function. The
dots of 1-dimensional classes are black, and those of other homology classes are gray.

Linking between roots. As a second example, we consider the
case of two root systems growing in the same container. We are inter-
ested in a computational criterion that decides whether the two roots
stay at a safe distance from each other or they interact, with branches
of one root entering the area of the other. We use topology to distin-
guish between these two cases. Writing d; : R3 — R for the Euclidean
distance function defined by the i-th root, we consider their difference,
d = d —d, and in particular the zero set, d~'(0), which consists of the
points with equal distance from both roots. If the roots are separated,
the zero set is a topological plane with trivial homology. On the other
hand, the presence of a 1-cycle in the zero set suggests an interaction
between the two root systems.

Fig. 11: Two roots along with the surface of equidistant points. Left: the surface has trivial
homology, suggesting the roots do not interact. Right: the surface has genus 1, suggesting
the roots interact.

Figure 11 shows two pairs of roots and the zero sets of the corre-
sponding functions. We computed the persistence diagrams for both
pairs, using an oct-tree generated with value-dependent thresholding
that maintains the zero set (Figure 12). The zero set of the first pair
of roots has trivial homology, while that of the second pair has a 1-
dimensional class. The robustness of that 1-dimensional class is suffi-
ciently large to be reassured that it is not an artifact of small inaccura-
cies in the measurements or the reconstruction.

-

Fig. 12: Left: triangle in the persistence diagram of the difference in distance from two
non-interacting root systems. Right: the same for two interacting root systems.

Trading speed for accurate robustness. Computing the exact
diagrams in Figure 12 took 1.5 hours for the non-interacting, and 4
hours for the interacting roots.2 For the interacting roots, the resulting
dual complex contains about 14 million vertices. As a more practical
alternative, we approximated the persistence diagrams using oct-trees.
Aiming to analyze the robustness of the 1-cycle in the zero set, we
used value-dependent thresholding when assigning priorities to exter-
nal nodes. Figure 13 shows two approximations, using 40,000 and
640,000 external nodes, together with the exact diagram. The approx-
imations took 23 and 166 seconds to compute. We can see that the
1-cycle in the zero set already appears for the rather coarse approx-
imation with 40,000 nodes. For 640,000 nodes, we get a (visually)
closer approximation, the fitness of the oct-tree is about 1.36, and
the dot representing the 1-cycle has coordinates (—3.88;4.99). The
corresponding approximation to its robustness is 3.88. Using the Ro-
bustness Inference Theorem from Section 4.2, the robustness of that
1-cycle with respect to fyox is greater than 1.2. We can infer that this
cycle is still present under 1-perturbations of the function d; for exam-
ple, if we have made a rendering error that either expanded or retracted
the boundary of one root by one voxel.

2The difference in timing is explained by different input resolutions.

To appear in an IEEE VGTC sponsored conference proceedings

Fig. 13: Cutout of the triangle diagram for the interacting roots in Figure 11. From top to
bottom, we display approximations for 40,000 and 640,000 external nodes as well as the
exact diagram. The dots of 1-dimensional classes are black, and those of other homology
classes are gray.

| n? | #Nodes || Lscan | Ipri | Inodes || P

160K 0.34 0.09 0.02 0.025

753 320K 0.34 0.09 0.03 0.022
640K 0.34 0.09 0.04 0.000

160K 2.71 0.69 0.03 0.037

150° 320K 2.65 0.69 0.07 0.032
640K 3.06 0.68 0.14 0.013

160K 22.30 7.89 0.05 0.043

300° 320K 22.17 8.01 0.13 0.038
640K 2223 791 0.28 0.020

Table 1: Results for computing the oct-tree of the distance function of a single root system.
We write fy,, for the time to scan the input data, ,,; for the time to compute the priorities
(and perform a few other technical operations related to Byox), fnodes fOr the time to compute
the external nodes of the oct-tree, and @ for the fitness of the resulting oct-tree. All timings
are given in seconds.

Performance. We finally investigate the performance of the three
main steps of the algorithm, which are: 1. compute the oct-tree with a
predefined number of external nodes, 2. turn the oct-tree into a simpli-
cial complex via the dualization, 3. compute the persistence diagram
of the filtration of the simplicial complex; see Section 3.

Part of Step 1 is the computation of the priority of an oct-tree node,
which requires us to scan through all the voxels contained in the node.
Our implementation computes the priorities of all possible oct-tree
vertices that can appear during the subdivision in a bottom-up fash-
ion. This requires us to store the completely subdivided oct-tree, Byox.,
which occupies a lot of memory and also creates some computational
overhead. On the other hand, all priorities can be computed by scan-
ning the input voxels only once. Also, this step can be seen as a pre-
processing step; the persistence diagram of more and more refined
oct-trees can afterwards be computed without reconsidering the input
data again. Table 1 displays results for the case of one plant root, using
uniform thresholding (the results are essentially the same for all tested
instances). We see that the running times for getting the external nodes
is negligible, once the node priorities are known. Computing priori-
ties (and other overhead caused by Byox) takes less time than scanning
the input once. The last column denotes the fitness of the oct-tree, B,
where we have normalized the distance function to the unit interval.

Steps 2 and 3 of the algorithm are independent of the image size.
The performance of Step 2 is determined by the number of external
nodes, whereas Step 3 mainly depends on the number of simplices
created in Step 2. In all tested examples, the ratio between produced
simplices and input nodes was in a range between 23 and 26, closely
matching the upper bound proved in Section 3.2. Table 2 lists the run-
ning times for computing the simplicial complex and its persistence
diagram. We conclude that the time needed to construct the complex
is linear in the number of external nodes, as expected. Computing per-
sistence needs more time, but it still shows a roughly linear behavior.
This is consistent with previous observations that the running time of

| #Nodes | #Simplices | Ratio || Leplx tpers || #dots |
40K 1,004K | 25.11 1.33 4.85 25
80K 2,008K | 25.10 2.69 10.20 39
160K 4,037K | 25.23 5.31 20.84 55
320K 8,170K | 25.53 10.26 42.58 86
640K 16,250K | 25.39 21.10 97.45 255
1,280K 32,678K | 25.53 4233 | 205.47 310

Table 2: We write t.pix for the time to compute the dual simplex of an oct-tree, and fpers to
compute its persistence. The number of simplices in the complex is shown, as well as the
ratio between number of simplices and number of external nodes. Finally, the number of
dots in the resulting persistence diagram is given. All timings are in seconds.

the persistence algorithm seems to be roughly linear although it has
been shown to be cubic in the worst case [13]. In summary, we ob-
serve that all operations other than scanning the input voxels take time
roughly linear in the number of external nodes of the approximating
oct-tree.

6 DiscussION

The main contributions of this paper are a fast and hierarchical al-
gorithm for computing persistence and robustness information for 3-
dimensional image data, a detailed analysis of its accuracy depend-
ing on the accuracy of the image representation, and an application of
these tools to root systems of agricultural plants. The results raise a
number of questions:

To what extent is the observed performance of our algorithm de-
pendent on design details? How would it change if we use mean and
standard deviation of function values to control the construction of the
oct-tree? Can a subdivision rule that aims at improving the piecewise
linear as opposed to the piecewise constant approximation improve
the performance? Do the results reported in this paper generalize to
4- and higher-dimensional images? In particular, is the dual complex
of a balanced d-dimensional orth-tree geometrically realized in R%?
How does the time and memory required to compute the persistence
diagram scale as the dimension increases?

Regarding the software part, it would be nice to have a mapping
between the persistence diagram and the 3-dimensional image. This
could be achieved by displaying the simplices that give birth and death
to a homology class represented by a user-selected dot. A somewhat
more advanced implementation would display a representative cycle
of the class. The authors feel it is important to mention that the tools
described in the paper are in no way tailored to the root systems data
studied in Section 5. Indeed, they apply to any voxel data, including
medical images.

Acknowledgments
We thank Philip Benfey’s Lab at Duke University for sharing the photographs of their

rice root systems. We thank Ying Zheng for sharing her software that reconstructs a 3-
dimensional model from a series of photographs. We thank Dmitriy Morozov for sharing
his Dionysus software implementing persistent homology for simplicial complex data and
for answering our questions regarding this software. The first and third authors thank Duke
University for hosting them during the Spring semester of 2010.

REFERENCES

[1] C.L.BAJAJ, A. GILLETTE AND S. GOSWAMI. Topology based selec-
tion and curation of level sets. In Topology-Based Methods in Visualiza-
tion 11, H.-C. Hege, K. Polthier, G. Scheuermann (eds.), Springer-Verlag,
45-58, 2009.

[2] C. L. BAJAJ, V. PAscucci AND D. R. SCHIKORE. The contour spec-
trum. In “Proc. 8th IEEE Conf. Visualization, 1997, 167-173.

[3] P. BENDICH, H. EDELSBRUNNER, D. MOROZOV AND A. PATEL.
Robustness of level and interlevel sets. Manuscript, IST Austria,
Klosterneuburg, Austria, 2009.

[4] M. BERN, D. EPPSTEIN AND J. GILBERT. Provably good mesh genera-
tion. J. Comput. Sys. Sci. 48 (1994), 384—409.

[5] G. CARLSSON, T. ISHKHANOV, V. DE SILVA AND A. ZOMORODIAN.
On the local behavior of spaces of local images. Internat. J. Comput.
Vision 76 (2008), 1-12.

(6]
(71

(8]
91

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

A. CERRI, M. FERRI AND D. GIORGI. Retrieval of trademark images
by means of size functions. Graphical Models 68 (2006), 451-471.

M. K. CHUNG, P. BUBENIK AND P. T. KIM. Persistence diagrams
of cortical surface data. In Information Processing in Medical Imaging,
Springer-Verlag, LNCS 5636, 2009, 386-397.

V. DE SILVA AND R. GHRIST. Coverage in sensor networks via persistent
homology. Alg. Geom. Topology 7 (2007), 339-358.

M.-L. DEQUEANT, S. AHNERT, H. EDELSBRUNNER, T. M. A. FINK,
E. F. GLYNN, G. HATTEM, A. KUDLICKI, Y. MILEYKO, J. MORTON,
A.R. MUSHEGIAN, L. PACHTER, M. ROWICKA, A. SHIU, B. STURM-
FELS AND O. POURQUIE. Comparison of pattern detection methods in
microarray time series of the segmentation clock. PLoS ONE 3 (2008),
€2856, doi:10.1371/journal.pone.0002856.

H. EDELSBRUNNER AND J. L. HARER. Computational Topology. An
Introduction. Amer. Math. Soc., Providence, Rhode Island, 2009.

H. EDELSBRUNNER, D. MOROZOV AND A. PATEL. Quantifying
transversality by measuring the robustness of intersections. Manuscript,
Dept. Comput. Sci., Duke Univ., Durham, North Carolina, 2009.

A. GYULASSY, V. NATARAJAN, V. PAscuccl, P.-T. BREMER AND B.
HAMANN. A topological approach to simplification of three-dimensional
scalar functions. IEEE Trans. Vis. Comput. Graph. 12 (2006), 474-484.
D. MOROZOV. Persistence algorithm takes cubic time in worst case. In
BioGeometry News, Dept. Comput. Sci., Duke Univ., Durham, North Car-
olina, 2005.

J. R. MUNKRES. Elements of Algebraic Topology. Perseus, Cambridge,
Massachusetts, 1984.

T. S. NEWMAN AND H. YI. A survey of the marching cube algorithm.
Computers and Graphics 30 (2006), 854-879.

V. PAscucct, G. SCORZELLI, P.-T. BREMER AND A. MASCAREN-
HAS. Robust on-line computation of Reeb graphs: simplicity and speed.
ACM Trans. Graphics 26 (2007), 58.

H. SAMET. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, Massachusetts, 1990.

M. SONKA, V. HLAVAC AND R. BOYLE. Image Processing, Analysis
and Machine Vision. Second edition, PWS Publishing, Pacific Grove,
California, 1999.

M. VAN KREFELD, R. VAN OOSTRUM, C. L. BAJAJ, V. PAscuccI
AND D. R. SCHIKORE. Contour trees and small seed sets for isosurface
traversal. /n “Proc. 13th Ann. Sympos. Comput. Geom., 19977, 212-220.
Y. WANG, P. K. AGARWAL, P. BROWN, H. EDELSBRUNNER AND J.
RUDOLPH. Coarse and reliable geometric alignment for protein docking.
In “Proc. Pacific Sympos. Biocomput., 20057, 65-75.

10

