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Abstract. Quantitative languages are an extension of boolean languages that as-
sign to each word a real number. Mean-payoff automata are finite automata with
numerical weights on transitions that assign to each infinite path the long-run av-
erage of the transition weights. When the mode of branching of the automaton is
deterministic, nondeterministic, or alternating, the corresponding class of quan-
titative languages is not robust as it is not closed under the pointwise operations
of max, min, sum, and numerical complement. Nondeterministic and alternating
mean-payoff automata are not decidable either, as the quantitative generalization
of the problems of universality and language inclusion is undecidable.
We introduce a new class of quantitative languages, defined by mean-payoff
automaton expressions, which is robust and decidable: it is closed under the
four pointwise operations, and we show that all decision problems are decidable
for this class. Mean-payoff automaton expressions subsume deterministic mean-
payoff automata, and we show that they have expressive power incomparable to
nondeterministic and alternating mean-payoff automata. We also present for the
first time an algorithm to compute distance between two quantitative languages,
and in our case the quantitative languages are given as mean-payoff automaton
expressions.

1 Introduction

Quantitative languages L are a natural generalization of boolean languages that assign
to every word w a real number L(w) ∈ R instead of a boolean value. For instance,
the value of a word (or behavior) can be interpreted as the amount of some resource
(e.g., memory consumption, or power consumption) needed to produce it, or bound the
long-run average available use of the resource. Thus quantitative languages can specify
properties related to resource-constrained programs, and an implementation LA satis-
fies (or refines) a specification LB if LA(w) ≤ LB(w) for all words w. This notion of
refinement is a quantitative generalization of language inclusion, and it can be used to
check for example if for each behavior, the long-run average response time of the sys-
tem lies below the specified average response requirement. Hence it is crucial to identify
some relevant class of quantitative languages for which this question is decidable. The
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other classical decision questions such as emptiness, universality, and language equiva-
lence have also a natural quantitative extension. For example, the quantitative emptiness
problem asks, given a quantitative languageL and a threshold ν ∈ Q, whether there ex-
ists some word w such that L(w) ≥ ν, and the quantitative universality problem asks
whether L(w) ≥ ν for all words w. Note that universality is a special case of language
inclusion (where LA(w) = ν is constant).

Weighted mean-payoff automata present a nice framework to express such quanti-
tative properties [4]. A weighted mean-payoff automaton is a finite automaton with nu-
merical weights on transitions. The value of a word w is the maximal value of all runs
over w (if the automaton is nondeterministic, then there may be many runs over w),
and the value of a run r is the long-run average of the weights that appear along r.
A mean-payoff extension to alternating automata has been studied in [5]. Determinis-
tic, nondeterministic and alternating mean-payoff automata are three classes of mean-
payoff automata with increasing expressive power. However, none of these classes is
closed under the four pointwise operations of max, min (which generalize union and
intersection respectively), numerical complement4, and sum (see Table 1). Determinis-
tic mean-payoff automata are not closed under max, min, and sum [6]; nondeterministic
mean-payoff automata are not closed under min, sum and complement [6]; and alter-
nating mean-payoff automata are not closed under sum [5]. Hence none of the above
classes is robust with respect to closure properties.

Moreover, while deterministic mean-payoff automata enjoy decidability of all quan-
titative decision problems [4], the quantitative language-inclusion problem is undecid-
able for nondeterministic and alternating mean-payoff automata [10], and thus also all
decision problems are undecidable for alternating mean-payoff automata. Hence al-
though mean-payoff automata provide a nice framework to express quantitative proper-
ties, there is no known class which is both robust and decidable (see Table 1).

In this paper, we introduce a new class of quantitative languages that are defined
by mean-payoff automaton expressions. An expression is either a deterministic mean-
payoff automaton, or it is the max, min, or sum of two mean-payoff automaton ex-
pressions. Since deterministic mean-payoff automata are closed under complement,
mean-payoff automaton expressions form a robust class that is closed under max, min,
sum and complement. We show that (a) all decision problems (quantitative empti-
ness, universality, inclusion, and equivalence) are decidable for mean-payoff automaton
expressions; (b) mean-payoff automaton expressions are incomparable in expressive
power with both the nondeterministic and alternating mean-payoff automata (i.e., there
are quantitative languages expressible by mean-payoff automaton expressions that are
not expressible by alternating mean-payoff automata, and there are quantitative lan-
guages expressible by nondeterministic mean-payoff automata that are not expressible
by mean-payoff automata expressions); and (c) the properties of cut-point languages
(i.e., the sets of words with value above a certain threshold) for deterministic automata
carry over to mean-payoff automaton expressions, mainly the cut-point language is ω-
regular when the threshold is isolated (i.e., some neighborhood around the threshold
contains no word). Moreover, mean-payoff automaton expressions can express all ex-
amples in the literature of quantitative properties using mean-payoff measure [1, 6, 7].

4 The numerical complement of a quantitative languages L is −L.



Closure properties Decision problems
max min sum comp. empt. univ. incl. equiv.

Deterministic × × × X
5

X X X X

Nondeterministic X × × × X × × ×

Alternating X X × X
5

× × × ×

Expressions X X X X X X X X

Table 1. Closure properties and decidability of the various classes of mean-payoff automata.
Mean-payoff automaton expressions enjoy fully positive closure and decidability properties.

Along with the quantitative generalization of the classical decision problems, we also
consider the notion of distance between two quantitative languagesLA andLB, defined
as supw|LA(w)−LB(w)|. When quantitative language inclusion does not hold between
an implementation LA and a specification LB, the distance is a relevant information to
evaluate how far they are from each other, as we may accept implementations that over-
spend the resource but we would prefer the least expensive ones. We present the first
algorithm to compute the distance between two quantitative languages: we show that
the distance can be computed for mean-payoff automaton expressions.

Our approach to show decidability of mean-payoff automaton expressions relies on
the characterization and algorithmic computation of the value set {LE(w) | w ∈ Σω}
of an expressionE, i.e. the set of all values of words according to E. The value set can
be viewed as an abstract representation of the quantitative language LE, and we show
that all decision problems, cut-point language and distance computation can be solved
efficiently once we have this set.

First, we present a precise characterization of the value set for quantitative lan-
guages defined by mean-payoff automaton expressions. In particular, we show that it
is not sufficient to construct the convex hull conv(SE) of the set SE of the values of
simple cycles in the mean-payoff automata occurring in E, but we need essentially to
apply an operator Fmin(·) which given a set Z ⊆ Rn computes the set of points y ∈ Rn

that can be obtained by taking pointwise minimum of each coordinate of points of a set
X ⊆ Z. We show that while we need to compute the set VE = Fmin(conv(SE)) to
obtain the value set, and while this set is always convex, it is not always the case that
Fmin(conv(SE)) = conv(Fmin(SE)) (which would immediately give an algorithm to
compute VE). This may appear counter-intuitive because the equality holds in R2 but
we show that the equality does not hold in R3 (Example 2).

Second, we provide algorithmic solutions to computeFmin(conv(S)), for a finite set
S. We first present a constructive procedure that given S constructs a finite set of points
S′ such that conv(S ′) = Fmin(conv(S)). The explicit construction presents interesting
properties about the set Fmin(conv(S)), however the procedure itself is computationally
expensive. We then present an elegant and geometric construction of Fmin(conv(S)) as
a set of linear constraints. The computation of Fmin(conv(S)) is a new problem in

5 Closure under complementation holds because LimInfAvg-automata and LimSupAvg-
automata are dual. It would not hold if only LimInfAvg-automata (or only LimSupAvg-
automata) were allowed.



computational geometry and the solutions we present could be of independent interest.
Using the algorithm to compute Fmin(conv(S)), we show that all decision problems for
mean-payoff automaton expressions are decidable. Due to lack of space, most proofs
are given in the fuller version [3].

Related works. Quantitative languages have been first studied over finite words in
the context of probabilistic automata [17] and weighted automata [18]. Several works
have generalized the theory of weighted automata to infinite words (see [14, 12, 16, 2]
and [13] for a survey), but none of those have considered mean-payoff conditions. Ex-
amples where the mean-payoff measure has been used to specify long-run behaviours
of systems can be found in game theory [15, 20] and in Markov decision processes [8].
The mean-payoff automata as a specification language have been investigated in [4, 6,
5], and extended in [1] to construct a new class of (non-quantitative) languages of infi-
nite words (the multi-threshold mean-payoff languages), obtained by applying a query
to a mean-payoff language, and for which emptiness is decidable. It turns out that a
richer language of queries can be expressed using mean-payoff automaton expressions
(together with decidability of the emptiness problem). A detailed comparison with the
results of [1] is given in Section 5. Moreover, we provide algorithmic solutions to the
quantitative language inclusion and equivalence problems and to distance computation
which have no counterpart for non-quantitative languages. Related notions of metrics
have been addressed in stochastic games [9] and probabilistic processes [11, 19].

2 Mean-Payoff Automaton Expressions

Quantitative languages. A quantitative language L over a finite alphabet Σ is a func-
tion L : Σω → R. Given two quantitative languages L1 and L2 over Σ, we denote by
max(L1, L2) (resp., min(L1, L2), sum(L1, L2) and −L1) the quantitative language
that assigns max(L1(w), L2(w)) (resp., min(L1(w), L2(w)), L1(w) + L2(w), and
−L1(w)) to each word w ∈ Σω. The quantitative language −L is called the comple-
ment of L. The max and min operators for quantitative languages correspond respec-
tively to the least upper bound and greatest lower bound for the pointwise order� such
that L1 � L2 if L1(w) ≤ L2(w) for all w ∈ Σω. Thus, they generalize respectively the
union and intersection operators for classical boolean languages.

Weighted automata. A Q-weighted automaton is a tuple A = 〈Q, qI , Σ, δ,wt〉, where

– Q is a finite set of states, qI ∈ Q is the initial state, and Σ is a finite alphabet;
– δ ⊆ Q×Σ ×Q is a finite set of labelled transitions. We assume that δ is total, i.e.,

for all q ∈ Q and σ ∈ Σ, there exists q′ such that (q, σ, q′) ∈ δ;
– wt : δ → Q is a weight function, where Q is the set of rational numbers. We assume

that rational numbers are encoded as pairs of integers in binary.

We say that A is deterministic if for all q ∈ Q and σ ∈ Σ, there exists (q, σ, q′) ∈ δ for
exactly one q′ ∈ Q. We sometimes call automata nondeterministic to emphasize that
they are not necessarily deterministic.

Words and runs. A word w ∈ Σω is an infinite sequence of letters from Σ. A lasso-
word w in Σω is an ultimately periodic word of the form w1 · w

ω
2 , where w1 ∈ Σ∗



is a finite prefix, and w2 ∈ Σ+ is a finite and nonempty word. A run of A over an
infinite word w = σ1σ2 . . . is an infinite sequence r = q0σ1q1σ2 . . . of states and
letters such that (i) q0 = qI , and (ii) (qi, σi+1, qi+1) ∈ δ for all i ≥ 0. We denote by
wt(r) = v0v1 . . . the sequence of weights that occur in r where vi = wt(qi, σi+1, qi+1)
for all i ≥ 0.

Quantitative language of mean-payoff automata. The mean-payoff value (or limit-
average) of a sequence v̄ = v0v1 . . . of real numbers is either

LimInfAvg(v̄) = lim inf
n→∞

1

n
·

n−1
∑

i=0

vi, or LimSupAvg(v̄) = lim sup
n→∞

1

n
·

n−1
∑

i=0

vi.

Note that if we delete or insert finitely many values in an infinite sequence of num-
bers, its limit-averages do not change, and if the sequence is ultimately periodic, then
the LimInfAvg and LimSupAvg values coincide (and correspond to the mean of the
weights on the periodic part of the sequence). However in general the LimInfAvg and
LimSupAvg values do not coincide.

For Val ∈ {LimInfAvg, LimSupAvg}, the quantitative language LA of A is defined
by LA(w) = sup{Val(wt(r)) | r is a run of A over w} for all w ∈ Σω. Accordingly,
the automatonA and its quantitative languageLA are called LimInfAvg or LimSupAvg.
Note that for deterministic automata, we have LA(w) = Val(wt(r)) where r is the
unique run of A over w.

We omit the weight function wt when it is clear from the context, and we write
LimAvg when the value according to LimInfAvg and LimSupAvg coincide (e.g., for
runs with a lasso shape).

Decision problems and distance. We consider the following classical decision prob-
lems for quantitative languages, assuming an effective presentation of quantitative lan-
guages (such as mean-payoff automata, or automaton expressions defined later). Given
a quantitative language L and a threshold ν ∈ Q, the quantitative emptiness problem
asks whether there exists a word w ∈ Σω such that L(w) ≥ ν, and the quantitative
universality problem asks whether L(w) ≥ ν for all words w ∈ Σω.

Given two quantitative languages L1 and L2, the quantitative language-inclusion
problem asks whether L1(w) ≤ L2(w) for all words w ∈ Σω, and the quantitative
language-equivalence problem asks whether L1(w) = L2(w) for all words w ∈ Σω.
Note that universality is a special case of language inclusion where L1 is constant.
Finally, the distance betweenL1 andL2 isDsup(L1, L2) = supw∈Σω |L1(w)−L2(w)|.
It measures how close is an implementation L1 as compared to a specification L2.

It is known that quantitative emptiness is decidable for nondeterministic mean-
payoff automata [4], while decidability was open for alternating mean-payoff automata,
and for the quantitative language-inclusion problem of nondeterministic mean-payoff
automata. From recent undecidability results on games with imperfect information and
mean-payoff objective [10] we derive that these problems are undecidable (Theorem 5).

Robust quantitative languages. A class Q of quantitative languages is robust if the
class is closed under max,min, sum and complementation operations. The closure
properties allow quantitative languages from a robust class to be described composi-
tionally. While nondeterministic LimInfAvg- and LimSupAvg-automata are closed un-
der the max operation, they are not closed under min and complement [6]. Alternating



LimInfAvg- and LimSupAvg-automata6 are closed under max and min, but are not
closed under complementation and sum [5]. We define a robust class of quantitative
languages for mean-payoff automata which is closed under max, min, sum, and com-
plement, and which can express all natural examples of quantitative languages defined
using the mean-payoff measure [1, 6, 7].

Mean-payoff automaton expressions. A mean-payoff automaton expression E is ob-
tained by the following grammar rule:

E ::= A | max(E,E) | min(E,E) | sum(E,E)

whereA is a deterministic LimInfAvg- or LimSupAvg-automaton. The quantitative lan-
guage LE of a mean-payoff automaton expression E is LE = LA if E = A is a
deterministic automaton, and LE = op(LE1

, LE2
) if E = op(E1, E2) for op ∈

{max,min, sum}. By definition, the class of mean-payoff automaton expression is
closed under max, min and sum. Closure under complement follows from the fact that
the complement of max(E1, E2) is min(−E1,−E2), the complement of min(E1, E2)
is max(−E1,−E2), the complement of sum(E1, E2) is sum(−E1,−E2), and the
complement of a deterministic LimInfAvg-automaton can be defined by the same au-
tomaton with opposite weights and interpreted as a LimSupAvg-automaton, and vice
versa, since − lim sup(v0, v1, . . . ) = lim inf(−v0,−v1, . . . ). Note that arbitrary linear
combinations of deterministic mean-payoff automaton expressions (expressions such
as c1E1 + c2E2 where c1, c2 ∈ Q are rational constants) can be obtained for free since
scaling the weights of a mean-payoff automaton by a positive factor |c| results in a
quantitative language scaled by the same factor.

3 The Vector Set of Mean-Payoff Automaton Expressions

Given a mean-payoff automaton expression E, let A1, . . . , An be the determin-
istic weighted automata occurring in E. The vector set of E is the set VE =
{〈LA1

(w), . . . , LAn
(w)〉 ∈ Rn | w ∈ Σω} of tuples of values of words according

to each automaton Ai. In this section, we characterize the vector set of mean-payoff
automaton expressions, and in Section 4 we give an algorithmic procedure to compute
this set. This will be useful to establish the decidability of all decision problems, and
to compute the distance between mean-payoff automaton expressions. Given a vector
v ∈ Rn, we denote by ‖v‖ = maxi |vi| the∞-norm of v.

The synchronized product of A1, . . . , An such that Ai = 〈Qi, q
i
I , Σ, δi,wti〉 is the

Qn-weighted automatonAE = A1×· · ·×An = 〈Q1×· · ·×Qn, (q
1
I , . . . , q

n
I ), Σ, δ,wt〉

such that t = ((q1, . . . , qn), σ, (q′1, . . . , q
′
n)) ∈ δ if ti := (qi, σ, q

′
i) ∈ δi for all

1 ≤ i ≤ n, and wt(t) = (wt1(t1), . . . ,wtn(tn)). In the sequel, we assume that all Ai’s
are deterministic LimInfAvg-automata (hence, AE is deterministic) and that the under-
lying graph of the automatonAE has only one strongly connected component (scc). We
show later how to obtain the vector set without these restrictions.

6 See [5] for the definition of alternating LimInfAvg- and LimSupAvg-automata that generalize
nondeterministic automata.
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H = conv(SE)

Fmin(H)

Fig. 1. The vector set of E = max(A1, A2) is Fmin(conv(SE)) ) conv(SE).

For each (simple) cycle ρ in AE , let the vector value of ρ be the mean of the tuples
labelling the edges of ρ, denoted Avg(ρ). To each simple cycle ρ in AE corresponds a
(not necessarily simple) cycle in eachAi, and the vector value (v1, . . . , vn) of ρ contains
the mean value vi of ρ in each Ai. We denote by SE the (finite) set of vector values of
simple cycles in AE . Let conv(SE) be the convex hull of SE .

Lemma 1. Let E be a mean-payoff automaton expression. The set conv(SE) is the
closure of the set {LE(w) | w is a lasso-word}.

The vector set of E contains more values than the convex hull conv(SE), as shown
by the following example.

Example 1. Consider the expression E = max(A1, A2) where A1 and A2 are deter-
ministic LimInfAvg-automata (see Fig. 1). The product AE = A1 × A2 has two sim-
ple cycles with respective vector values (1, 0) (on letter ‘a’) and (0, 1) (on letter ‘b’).
The set H = conv(SE) is the solid segment on Fig. 1 and contains the vector values
of all lasso-words. However, other vector values can be obtained: consider the word
w = an1bn2an3bn4 . . . where n1 = 1 and ni+1 = (n1 + · · ·+ ni)

2 for all i ≥ 1. It is
easy to see that the value ofw according toA1 is 0 because the average number of a’s in
the prefixes an1bn2 . . . anibni+1 for i odd is smaller than n1+···+ni

n1+···+ni+ni+1
= 1

1+n1+···+ni

which tends to 0 when i→∞. Since A1 is a LimInfAvg-automaton, the value of w is 0
inA1, and by a symmetric argument the value ofw is also 0 inA2. Therefore the vector
(0, 0) is in the vector set of E. Note that z = (z1, z2) = (0, 0) is the pointwise mini-
mum of x = (x1, x2) = (1, 0) and y = (y1, y2) = (0, 1), i.e. z = fmin(x, y) where
z1 = min(x1, y1) and z2 = min(y1, y2). In fact, the vector set is the whole triangular
region in Fig. 1, i.e. VE = {fmin(x, y) | x, y ∈ conv(SE)}. ut

We generalize fmin to finite sets of points P ⊆ Rn in n dimensions as fol-
lows: fmin(P ) ∈ Rn is the point p = (p1, p2, . . . , pn) such that pi is the minimum
ith coordinate of the points in P , for 1 ≤ i ≤ n. For arbitrary S ⊆ Rn, define
Fmin(S) = {fmin(P ) | P is a finite subset of S}. As illustrated in Example 1, the next
lemma shows that the vector set VE is equal to Fmin(conv(SE)).

Lemma 2. Let E be a mean-payoff automaton expression built from deterministic
LimInfAvg-automata, and such that AE has only one strongly connected component.
Then, the vector set of E is VE = Fmin(conv(SE)).



For a general mean-payoff automaton expression E (with both deterministic
LimInfAvg- and LimSupAvg automata, and with multi-scc underlying graph), we can
use the result of Lemma 2 as follows. We replace each LimSupAvg automaton Ai

occurring in E by the LimInfAvg automaton A′
i obtained from Ai by replacing ev-

ery weight wt by −wt. The duality of lim inf and lim sup yields LA′

i
= −LAi

. In
each strongly connected component C of the underlying graph of AE , we compute
VC = Fmin(conv(SC)) (where SC is the set of vector values of the simple cycles in C)
and apply the transformation xi → −xi on every coordinate i where the automaton Ai

was originally a LimSupAvg automaton. The union of the sets
⋃

C VC where C ranges
over the strongly connected components of AE gives the vector set of E.

Theorem 1. Let E be a mean-payoff automaton expression built from deterministic
LimInfAvg-automata, and let Z be the set of strongly connected components in AE .
For a strongly connected component C let SC denote the set of vector values of the
simple cycles in C. The vector set of E is VE =

⋃

C∈Z Fmin(conv(SC)).

4 Computation of Fmin(conv(S)) for a Finite Set S

It follows from Theorem 1 that the vector set VE of a mean-payoff automaton expres-
sion E can be obtained as a union of sets Fmin(conv(S)), where S ⊆ Rn is a fi-
nite set. However, the set conv(S) being in general infinite, it is not immediate that
Fmin(conv(S)) is computable. In this section we consider the problem of computing
Fmin(conv(S)) for a finite set S. In subsection 4.1 we present an explicit construction
and in subsection 4.2 we give a geometric construction of the set as a set of linear
constraints. We first present some properties of the set Fmin(conv(S)).

Lemma 3. If X is a convex set, then Fmin(X) is convex.

By Lemma 3, the set Fmin(conv(S)) is convex, and since Fmin is a monotone oper-
ator and S ⊆ conv(S), we have Fmin(S) ⊆ Fmin(conv(S)) and thus conv(Fmin(S)) ⊆
Fmin(conv(S)). The following proposition states that in two dimensions the above sets
coincide.

Proposition 1. Let S ⊆ R2 be a finite set. Then, conv(Fmin(S)) = Fmin(conv(S)).

We show in the following example that in three dimensions the above proposition
does not hold, i.e., we show that Fmin(conv(SE)) 6= conv(Fmin(SE)) in R3.

Example 2. We show that in three dimension there is a finite set S such that
Fmin(conv(S)) 6⊆ conv(Fmin(S)). Let S = {q, r, s} with q = (0, 1, 0), r =
(−1,−1, 1), and s = (1, 1, 1). Then fmin(r, s) = r, fmin(q, r, s) = fmin(q, r) =
t = (−1,−1, 0), and fmin(q, s) = q. Therefore Fmin(S) = {q, r, s, t}. Consider
p = (r + s)/2 = (0, 0, 1). We have p ∈ conv(S) and fmin(p, q) = (0, 0, 0).
Hence (0, 0, 0) ∈ Fmin(conv(S)). We now show that (0, 0, 0) does not belong to
conv(Fmin(S)). Consider u = αq ·q+αr ·r+αs ·s+αt ·t such that u in conv(Fmin(S)).
Since the third coordinate is non-negative for q, r, s, and t, it follows that if αr > 0 or
αs > 0, then the third coordinate of u is positive. If αs = 0 and αr = 0, then we have
two cases: (a) if αt > 0, then the first coordinate of u is negative; and (b) if αt = 0,
then the second coordinate of u is 1. It follows (0, 0, 0) is not in conv(Fmin(S)). ut



4.1 Explicit construction

Example 2 shows that in general Fmin(conv(S)) 6⊆ conv(Fmin(S)). In this section we
present an explicit construction that given a finite set S constructs a finite set S′ such
that (a) S ⊆ S′ ⊆ conv(S) and (b) Fmin(conv(S)) ⊆ conv(Fmin(S′)). It would follow
that Fmin(conv(S)) = conv(Fmin(S′)). Since convex hull of a finite set is computable
and Fmin(S′) is finite, this would give us an algorithm to compute Fmin(conv(S)). For
simplicity, for the rest of the section we write F for Fmin and f for fmin (i.e., we drop
the min from subscript). Recall that F (S) = {f(P ) | P finite subset of S} and let
Fi(S) = {f(P ) | P finite subset of S and |P | ≤ i}. We consider S ⊆ Rn.

Lemma 4. Let S ⊆ Rn. Then, F (S) = Fn(S) and Fn(S) ⊆ Fn−1
2 (S).

Iteration of a construction γ. We will present a construction γ with the following
properties: input to the construction is a finite set Y of points, and the output γ(Y )
satisfies the following properties

1. (Condition C1). γ(Y ) is finite and subset of conv(Y ).
2. (Condition C2). F2(conv(Y )) ⊆ conv(F (γ(Y ))).

Before presenting the construction γ we first show how to iterate the construction to
obtain the following result: given a finite set of points X we construct a finite set of
points X ′ such that F (conv(X)) = conv(F (X ′)).

Iterating γ. Consider a finite set of points X , and let X0 = X and X1 = γ(X0). Then

conv(X1) ⊆ conv(conv(X0)) (since by Condition C1 we have X1 ⊆ conv(X0))

and hence conv(X1) ⊆ conv(X0); and

F2(conv(X0)) ⊆ conv(F (X1)) (by Condition C2)

For i ≥ 2, let Xi = γ(Xi−1), and then by iteration we obtain that for Xn−1 we have

(1) conv(Xn−1) ⊆ conv(X0) (2) Fn−1
2 (conv(X0)) ⊆ conv(F (Xn−1))

From (1) and (2) above, along with the aid of Lemma 4 and Lemma 3, we show the
following properties:

(A) F (conv(X0)) = Fn(conv(X0)) ⊆ F
n−1
2 (conv(X0)) ⊆ conv(F (Xn−1))

(B) conv(F (Xn−1)) ⊆ conv(F (conv(Xn−1))) ⊆ F (conv(X0))

By (A) and (B) above we have F (conv(X0)) = conv(F (Xn−1)). Thus given the fi-
nite set X , we have the finite set Xn−1 such that (a) X ⊆ Xn−1 ⊆ conv(X) and
(b) F (conv(X)) = conv(F (Xn−1)). We now present the construction γ to complete
the result.

The construction γ. Given a finite set Y of points Y′ = γ(Y ) is obtained by adding
points to Y in the following way:



– For all 1 ≤ k ≤ n, we consider all k-dimensional coordinate planes Π supported
by a point in Y ;

– Intersect each coordinate planeΠ with conv(Y ) and the result is a convex polytope
YΠ ;

– We add the corners (or extreme points) of each polytope YΠ to Y .

The proof that the above construction satisfies condition C1 and C2 is given in the fuller
version [3], and thus we have the following result.

Theorem 2. Given a finite set S ⊆ Rn such that |S| = m, the following assertion
holds: a finite set S ′ with |S′| ≤ m2n

· 2n2+n can be computed in mO(n·2n) · 2O(n3)

time such that (a) S ⊆ S ′ ⊆ conv(S) and (b) Fmin(conv(S)) = conv(Fmin(S′)).

4.2 Linear constraint construction

In the previous section we presented an explicit construction of a finite set of points
whose convex hull gives us Fmin(conv(S)). The explicit construction shows interest-
ing properties of the set Fmin(conv(S)), however, the construction is inefficient com-
putationally. In this subsection we present an efficient geometric construction for the
computation of Fmin(conv(S)) for a finite set S. Instead of constructing a finite set
S′ ⊆ conv(S) such that conv(S ′) = Fmin(conv(S)), we represent Fmin(conv(S)) as a
finite set of linear constraints.

Consider the positive orthant anchored at the origin in Rn, that is, the set of points
with non-negative coordinates: Rn

+ = {(z1, z2, . . . , zn) | zi ≥ 0, ∀i}. Similarly, the
negative orthant is the set of points with non-positive coordinates, denoted as Rn

− =
−Rn

+. Using vector addition, we write y + Rn
+ for the positive orthant anchored at y.

Similarly, we write x + Rn
− = x − Rn

+ for the negative orthant anchored at x. The
positive and negative orthants satisfy the following simple duality relation: x ∈ y+Rn

+

iff y ∈ x− Rn
+.

Note that Rn
+ is an n-dimensional convex polyhedron. For each 1 ≤ j ≤ n, we

consider the (n− 1)-dimensional face Lj spanned by the coordinate axes except the j th

one, that is, Lj = {(z1, z2, . . . , zn) ∈ Rn
+ | zj = 0}.

We say that y + Rn
+ is supported by X if (y + Lj) ∩ X 6= ∅ for every 1 ≤ j ≤ n.

Assuming y + Rn
+ is supported by X , we can construct a set Y ⊆ X by collecting

one point per (n − 1)-dimensional face of the orthant and get y = f(Y ). It is also
allowed that two faces contribute the same point to Y . Similarly, if y = f(Y ) for a
subset Y ⊆ X , then the positive orthant anchored at y is supported by X . Hence, we
get the following lemma.

Lemma 5 (Orthant Lemma). y ∈ Fmin(X) iff y + Rn
+ is supported by X .

Construction. We use the Orthant Lemma to construct Fmin(X). We begin by describ-
ing the set of points y for which the j th face of the positive orthant anchored at y has
a non-empty intersection with X . Define Fj = X − Lj , the set of points of the form
x− z, where x ∈ X and z ∈ Lj .

Lemma 6 (Face Lemma). (y + Lj) ∩ X 6= ∅ iff y ∈ Fj .



Proof. Let x ∈ X be a point in the intersection, that is, x ∈ y + Lj . Using the duality
relation for the (n− 1)-dimensional orthant, we get y ∈ x− Lj . By definition, x− Lj

is a subset of X − Lj , and hence y ∈ Fj . ut

It is now easy to describe the set defined in our problem statement.

Lemma 7 (Characterization). Fmin(X) =
⋂n

j=1 Fj .

Proof. By the Orthant Lemma, y ∈ Fmin(X) iff y + Rn
+ is supported by X . Equiva-

lently, (y + Lj) ∩ X 6= ∅ for all 1 ≤ j ≤ n. By the Face Lemma, this is equivalent to
y belonging to the common intersection of the sets Fj = X − Lj . ut

Algorithm for computation of Fmin(conv(S)). Following the construction, we get an
algorithm that computes Fmin(conv(S)) for a finite set S of points in Rn. Let |S| = m.
We first represent X = conv(S) as intersection of half-spaces: we require at most mn

half-spaces (linear constraints). It follows that Fj = X − Lj can be expressed as mn

linear constraints, and hence Fmin(X) =
⋂n

j=1 Fj can be expressed as n · mn linear
constraints. This gives us the following result.

Theorem 3. Given a finite set S ofm points in Rn, we can construct in O(n ·mn) time
n ·mn linear constraints that represent Fmin(conv(S)).

5 Mean-Payoff Automaton Expressions are Decidable

Several problems on quantitative languages can be solved for the class of mean-payoff
automaton expressions using the vector set. The decision problems of quantitative
emptiness and universality, and quantitative language inclusion and equivalence are all
decidable, as well as questions related to cut-point languages, and computing distance
between mean-payoff languages.

Decision problems and distance. From the vector set VE = {〈LA1
(w), . . . , LAn

(w)〉 ∈
Rn | w ∈ Σω}, we can compute the value set LE(Σω) = {LE(w) | w ∈ Σω}
of values of words according to the quantitative language of E as follows. The set
LE(Σω) is obtained by successive application of min-, max- and sum-projections
pmin

ij , pmax
ij , psum

ij : Rk → Rk−1 where i < j ≤ k, defined by

pmin
ij ((x1, . . . , xk)) = (x1, . . . , xi−1,min(xi, xj), xi+1, . . . , xj−1, xj+1, . . . xk),

psum
ij ((x1, . . . , xk)) = (x1, . . . , xi−1, xi + xj , xi+1, . . . , xj−1, xj+1, . . . xk),

and analogously for pmax
ij . For example, pmax

12 (pmin
23 (VE)) gives the setLE(Σω) of word

values of the mean-payoff automaton expression E = max(A1,min(A2, A3)).
Assuming a representation of the polytopes of VE as a boolean combination ϕE of

linear constraints, the projection pmin
ij (VE) is represented by the formula

ψ = (∃xj : ϕE ∧ xi ≤ xj) ∨ (∃xi : ϕE ∧ xj ≤ xi)[xj ← xi]



where [x ← e] is a substitution that replaces every occurrence of x by the expression
e. Since linear constraints over the reals admit effective elimination of existential quan-
tification, the formula ψ can be transformed into an equivalent boolean combination
of linear constraints without existential quantification. The same applies to max- and
sum-projections.

Successive applications of min-, max- and sum-projections (following the structure
of the mean-payoff automaton expression E) gives the value set LE(Σω) ⊆ R as a
boolean combination of linear constraints, hence it is a union of intervals. From this set,
it is easy to decide the quantitative emptiness problem and the quantitative universality
problem: there exists a word w ∈ Σω such that LE(w) ≥ ν if and only if LE(Σω) ∩
[ν,+∞[ 6= ∅, and LE(w) ≥ ν for all words w ∈ Σω if and only if LE(Σω)∩ ] −
∞, ν[ = ∅.

In the same way, we can decide the quantitative language inclusion problem “is
LE(w) ≤ LF (w) for all words w ∈ Σω ?” by a reduction to the universality problem
for the expression F −E and threshold 0 since mean-payoff automaton expressions are
closed under sum and complement. The quantitative language equivalence problem is
then obviously also decidable.

Finally, the distance between the quantitative languages of E and F can be com-
puted as the largest number (in absolute value) in the value set of F −E. As a corollary,
this distance is always a rational number.

Comparison with [1]. The work in [1] considers deterministic mean-payoff automata
with multiple payoffs. The weight function in such an automaton is of the form wt :
δ → Qd. The value of a finite sequence (vi)1≤i≤n (where vi ∈ Qd) is the mean of the
tuples vi, that is a d-dimensional vector Avgn = 1

n
·
∑n−1

i=0 vi. The “value” associated
to an infinite run (and thus also to the corresponding word, since the automaton is
deterministic) is the set Acc ⊆ Rd of accumulation points of the sequence (Avgn)n≥1.

In [1], a query language on the set of accumulation points is used to define multi-
threshold mean-payoff languages. For 1 ≤ i ≤ n, let pi : Rn → R be the usual projec-
tion along the ith coordinate. A query is a boolean combination of atomic threshold con-
ditions of the form min(pi(Acc)) ∼ ν or max(pi(Acc)) ∼ ν where ∼∈ {<,≤,≥, >}
and ν ∈ Q. A word is accepted if the set of accumulation points of its (unique) run satis-
fies the query. Emptiness is decidable for such multi-threshold mean-payoff languages,
by an argument based on the computation of the convex hull of the vector values of the
simple cycles in the automaton [1] (see also Lemma 1). We have shown that this convex
hull conv(SE) is not sufficient to analyze quantitative languages of mean-payoff au-
tomaton expressions. It turns out that a richer query language can also be defined using
our construction of Fmin(conv(SE)).

In our setting, we can view a d-dimensional mean-payoff automatonA as a product
PA of 2d copies Ai

t of A (where 1 ≤ i ≤ d and t ∈ {LimInfAvg, LimSupAvg}), where
Ai

t assigns to each transition the ith coordinate of the payoff vector in A, and the au-
tomaton is interpreted as a t-automaton. Intuitively, the set Acc of accumulation points
of a word w satisfies min(pi(Acc)) ∼ ν (resp. max(pi(Acc) ∼ ν) if and only if the
value of w according to the automatonAi

t for t = LimInfAvg (resp. t = LimSupAvg) is
∼ ν. Therefore, atomic threshold conditions can be encoded as threshold conditions on
single variables of the vector set for PA. Therefore, the vector set computed in Section 4



allows to decide the emptiness problem for multi-threshold mean-payoff languages, by
checking emptiness of the intersection of the vector set with the constraint correspond-
ing to the query.

Furthermore, we can solve more expressive queries in our framework, namely where
atomic conditions are linear constraints on LimInfAvg- and LimSupAvg-values. For ex-
ample, the constraint LimInfAvg(wt1) + LimSupAvg(wt2) ∼ ν is simply encoded as
xk + xl ∼ ν where k, l are the indices corresponding to A1

LimInfAvg and A2
LimSupAvg re-

spectively. Note that the trick of extending the dimension of the d-payoff vector with,
say wtd+1 = wt1+wt2, is not equivalent because Lim

{

Sup
Inf

}

Avg(wt1)±Lim
{

Sup
Inf

}

Avg(wt2)
is not equal to Lim

{

Sup
Inf

}

Avg(wt1 ± wt2) in general (no matter the choice of
{

Sup
Inf

}

and ±).
Hence, in the context of non-quantitative languages our results also provide a richer
query language for the deterministic mean-payoff automata with multiple payoffs.

Complexity. All problems studied in this section can be solved easily (in polynomial
time) once the value set is constructed, which can be done in quadruple exponential
time. The quadruple exponential blow-up is caused by (a) the synchronized product
construction forE, (b) the computation of the vector values of all simple cycles in AE ,
(c) the construction of the vector set Fmin(conv(SE)), and (d) the successive projec-
tions of the vector set to obtain the value set. Therefore, all the above problems can be
solved in 4EXPTIME.

Theorem 4. For the class of mean-payoff automaton expressions, the quantitative
emptiness, universality, language inclusion, and equivalence problems, as well as dis-
tance computation can be solved in 4EXPTIME.

Theorem 4 is in sharp contrast with the nondeterministic and alternating mean-
payoff automata for which language inclusion is undecidable (see also Table 1). The
following theorem presents the undecidability result that is derived from the results
of [10].

Theorem 5. The quantitative universality, language inclusion, and language equiva-
lence problems are undecidable for nondeterministic mean-payoff automata; and the
quantitative emptiness, universality, language inclusion, and language equivalence
problems are undecidable for alternating mean-payoff automata.

6 Expressive Power and Cut-point Languages

We study the expressive power of mean-payoff automaton expressions (i) according to
the class of quantitative languages that they define, and (ii) according to their cut-point
languages.

Expressive power comparison. We compare the expressive power of mean-payoff au-
tomaton expressions with nondeterministic and alternating mean-payoff automata. The
results of [6] show that there exist deterministic mean-payoff automataA1 andA2 such
that min(A1, A2) cannot be expressed by nondeterministic mean-payoff automata. The
results of [5] shows that there exists deterministic mean-payoff automata A1 and A2



such that sum(A1, A2) cannot be expressed by alternating mean-payoff automata. It
follows that there exist languages expressible by mean-payoff automaton expression
that cannot be expressed by nondeterministic and alternating mean-payoff automata. In
Theorem 6 we show the converse, that is, we show that there exist languages expressible
by nondeterministic mean-payoff automata that cannot be expressed by mean-payoff
automaton expression. It may be noted that the subclass of mean-payoff automaton ex-
pressions that only uses min and max operators (and no sum operator) is a strict subclass
of alternating mean-payoff automata, and when only the max operator is used we get a
strict subclass of the nondeterministic mean-payoff automata.

Theorem 6. Mean-payoff automaton expressions are incomparable in expressive
power with nondeterministic and alternating mean-payoff automata: (a) there exists
a quantitative language that is expressible by mean-payoff automaton expressions, but
cannot be expressed by alternating mean-payoff automata; and (b) there exists a quan-
titative language that is expressible by a nondeterministic mean-payoff automaton, but
cannot be expressed by a mean-payoff automaton expression.

Cut-point languages. Let L be a quantitative language over Σ. Given a threshold η ∈
R, the cut-point language defined by (L, η) is the language (i.e., the set of words)
L≥η = {w ∈ Σω | L(w) ≥ η}. It is known for deterministic mean-payoff automata
that the cut-point language may not be ω-regular, while it is ω-regular if the threshold η
is isolated, i.e. if there exists ε > 0 such that |L(w)− η| > ε for all words w ∈ Σω [6].

We present the following results about cut-point languages of mean-payoff automa-
ton expressions. First, we note that it is decidable whether a rational threshold η is
an isolated cut-point of a mean-payoff automaton expression, using the value set (it
suffices to check that η is not in the value set since this set is closed). Second, iso-
lated cut-point languages of mean-payoff automaton expressions are robust as they re-
main unchanged under sufficiently small perturbations of the transition weights. This
result follows from a more general robustness property of weighted automata [6] that
extends to mean-payoff automaton expressions: if the weights in the automata occur-
ring in E are changed by at most ε, then the value of every word changes by at most
max(k, 1) · εwhere k is the number of occurrences of the sum operator inE. Therefore
Dsup(LE, LF ε)→ 0 when ε→ 0 where F ε is any mean-payoff automaton expression
obtained from E by changing the weights by at most ε. As a consequence, isolated cut-
point languages of mean-payoff automaton expressions are robust. Third, the isolated
cut-point language of mean-payoff automaton expressions is ω-regular. To see this, note
that every strongly connected component of the product automatonAE contributes with
a closed convex set to the value set of E. Since the max-, min- and sum-projections
are continuous functions, they preserve connectedness of sets and therefore each scc C
contributes with an interval [mC ,MC ] to the value set of E. An isolated cut-point η
cannot belong to any of these intervals, and therefore we obtain a Büchi-automaton for
the cut-point language by declaring to be accepting the states of the product automaton
AE that belong to an scc C such that mC > η. Hence, we get the following result.

Theorem 7. Let L be the quantitative language of a mean-payoff automaton expres-
sion. If η is an isolated cut-point of L, then the cut-point language L≥η is ω-regular.



7 Conclusion and Future Works

We have presented a new class of quantitative languages, the mean-payoff automaton
expressions which are both robust and decidable (see Table 1), and for which the dis-
tance between quantitative languages can be computed. The decidability results come
with a high worst-case complexity, and it is a natural question for future works to either
improve the algorithmic solution, or present a matching lower bound. Another question
of interest is to find a robust and decidable class of quantitative languages based on the
discounted sum measure [4].
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