Covering and Packing with Spheres
by Diagonal Distortion in R™ *
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Abstract. We address the problem of coveril®@§ with congruent balls, while
minimizing the number of balls that contain an average pddunsidering the
1-parameter family of lattices defined by stretching or cagsping the integer
grid in diagonal direction, we give a closed formula for ttevering density
that depends on the distortion parameter. We observe thidamily contains
the thinnest lattice coverings in dimensiolh$o 5. We also consider the prob-
lem of packing congruent balls iR", for which we give a closed formula for
the packing density as well. Again we observe that our familgtains optimal
configurations, this time densest packings in dimenskoasds3.

Keywords. Packing, covering, spheres, balls, cubes, latticedimensional Euclidean space.

1 Introduction

The starting point for the work described in this paper is dyvbation of the integer
grid designed to resolve ambiguities in the neighborhodatioa of the cubes in an
n-dimensional image [7]. Generalizing the perturbation ie@arameter family of dis-
tortions, we noted its relation with some well-known la¢dn the sphere covering and
packing literature; see Conway and Sloane [4], Fejes Téthand Rogers [16]. For
example, inR?3, we get the body-centered cubic, or BCC lattice by compngssith

a factor1/2, and we get the face-centered cubic, of FCC lattice by $tirgcwith a
factor2. We will explain the significance of these lattices for theexing and packing
of congruent balls shortly.

Background. In the Euclidean plane, there is a single lattice that gitesthinnest
covering of congruent disks as well as the densest packiegrofruent disks. This is
the hexagonal lattice, which consists of all integer coratioms of the vectors
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Placing disks of radius/2/3 centered at the lattice points, we get a covering, and
reducing the radius td/+/6, we get a packing. Both are optimal in the sense that no
other covering achieves a smaller covering density (seshfer [12]), and no other
packing achieves a larger packing density (see Thue [2Hydat proofs of both results
can be found in Fejes Toth [8].

The situation gets more complicated alreadRihy where the lattice that gives the
thinnest covering is different from the one that gives thesdést packing. For covering,
the BCC lattice gives the smallest density of a lattice ciogp(see Bambah [1]), but
the existence of an even thinner non-lattice covering hagetdeen contradicted. For
packing, the FCC lattice gives the highest density (see 3@li)3and the claim that no
non-lattice packing can be denser has become known as tHerKagnjecture, one of
the foremost mathematical questions of our time [20]. Statd 611, the conjecture re-
mained open until Hales gave a computer-assisted proofrounj Kepler's conjecture
in 2005 [11].

Even less is known in dimensions beydhdlhe generalization of the BCC lattice
gives thin coverings that are known to be optimal amongclaitbverings in dimension
4 (see Delone and Ryskov [5]) and in dimensip(see Ryskov and Baranovskii [17]).
The thinnest known coverings in dimensidhi® 24 can be found in [18, 19] and the re-
lated websit& In contrast, the generalization of the FCC lattice failgite the densest
packing already in dimensich Nevertheless, the densest lattice packings are known in
dimensionsl and5 (see Korkine and Zolotareff [13]), and in dimensi@n§ and8 (see
Blichfeldt [2]). No further optimality results are availebuntil dimensior24 in which
the Leech lattice, discovered independently by Witt in 1) and by Leech in 1965
[15], gives a surprisingly thin covering and dense packifige optimality among the
lattice packings has recently been established by Cohn anthK|[3].

Results.In this paper, we give a complete analysis of the coveringsatkings gen-
erated by the lattices obtained by a diagonal distortiomefinteger grid. Specifically,
we give closed-form expressions of the covering and padtérgsities as functions of
0 > 0, the distortion parameter. The complete analysis is plesbicause we get only
a small number of combinatorially different Delaunay coexgls for thel-parameter
family of lattices. For0 < § < 1, the distortion is a compression, and the Delaunay
complex consists of copies of the Freudenthal triangulatibthe unit cube. Among
these lattices, we find the thinnest coveringsdfet 1/v/n + 1, giving optimal cover-
ing densities among lattices for dimensidns, 4, and5. Ford = 1, the distortion is
the identity, and the Delaunay complex consists of copigh@init cube. Fot < ¢,
the distortion stretches the integer grid, and the Delaaonayplex consists of distorted
diagonal slices of the unit cube. Among these lattices, wetfie densest packings for
0 = +/n + 1, giving optimal packing densities for dimensiaghand3.

Outline. Section 2 introduces two decompositions of theube: the Freudenthal trian-
gulation and the slice decomposition. Section 3 explaing adattice inR™ defines a
covering and a packing, and how we measure their densitgesio® 4 gives a complete
analysis of the covering density as a function of the digiartSection 5 does the same
for the packing density. Section 6 concludes the paper.

! http://www.math.uni-magdeburg.de/lattigeometry/
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2 Decomposing the n-Cube

In this section, we introduce the two decompositions of tht@edhat are instrumental in
the analysis of the covering and packing densities ofl tharameter family of lattices.

Freudenthal triangulationWe write[n] = {1, 2, ..., n} for the set of coordinate direc-
tions inR™ ande; for the unit vector in thé-th coordinate direction. The-dimensional
unitcubeU™ = [0, 1], has2™ verticesus, each corresponding to a subget [n] such
thatu; = Ziel e;. We sayu; precedes.; if I C J andl # J. This defines a partial
order on the vertices, with a unique smallest vefiex gy, and a unique largest ver-
tex1 = up,). A chainis a sequence of distinct vertices in which each vertex plese
the next one. Itéengthis the number of vertices. Each chain of length- 1 defines a
k-simplex, namely the convex hull of its+ 1 vertices. Thd-reudenthal triangulation
of then-cube, denoted ag™ = F(U™), is the set of all simplices defined by chains [9,
14]; see Figure 1.

g

(e,

Fig. 1: Left: the Freudenthal triangulation of tAecube consisting of six tetrahedra sharing the
edge that connect8 with 1. Right: the slice decomposition of tt82cube consisting of two
tetrahedra sandwiching an octahedron.

Define thesilhouetteof the n-cube as its projection along the diagonal direction,
which is an(n—1)-dimensional convex polytope. It is not difficult to see thlivertices
other tharD and1 project to vertices of the silhouette. The faces of the siéiite have
dimension betweefhandn — 2. We can triangulate these faces such that the join of the
preimage of everyk — 2)-simplex with the edge connectifigwith 1 gives ak-simplex
of the Freudenthal triangulation.

Slice decompositionLet U; be the subset of vertices; with card J = 4, and letH;
be the(n — 1)-dimensional hyperplane orthogonal to the diagonal dvedhat passes
through the vertices df/;, for 0 < ¢ < n. Then + 1 hyperplanes cut the-cube inton
slices each of widthl //n. We call this theslice decompositioaf then-cube, denoted
atS™ = S(U™); see Figure 1. We note that for each edge ofitheube, there is a
uniques such that its endpoints belongg_, and toU;. In other words, the edge does
not cross any of the hyperplanes and therefore belongs taaeuslice. It follows that
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thei-th slice is the convex hull of the pointsif_; U U; and that its number of vertices
is (,",) + (7). Furthermore, thé-th slice is the central reflection of thie — i + 1)-st
slice whose vertices are the pointdip_; U U,,—;41.

~ — —

Fig. 2: The sliced circumsphere of tBecube in the middle, with its compressed and stretched
images on the left and the right.

The hyperplanes can also be used to cut the circumsc(ibed1)-sphere,S, of
the unitn-cube; see Figure 2. FOr< i < n, letS; = S N H; and note that, = 0,
S, = 1, and all otheiS; are(n — 2)-dimensional spheres. The radiusdis \/n/2. We
can therefore compute the radius$fas

m:ﬁ—(@—ﬁf _fi-2 ®

As n goes to infinity, the radius o, converges td, while the radius of,, /5 is /n/2

and thus diverges. Remarkably, the point#/inare nevertheless vertices of the silhou-
ette of then-cube. Note that the; are also the distances of the vertices of the silhouette
from its center.

1 (SilhouetteLemma) Let s; and s; be the projections ofi; and u;. Assuming
I,J # 0, [n], both are vertices of the silhouette afigl || < ||s,|| iff (card I — 2)* >
(card J — 2)2.

This fact will be relevant in Section 5, where we analyze thelfing density of a-
parameter family of lattices. Now consider compressingt@tshing the cube and its
circumsphere along the diagonal direction. If we compressget an ellipsoid opan-
caketype, and the Delaunay complex of the points is the compressed Freudenthal
triangulation; see [7] for a proof. If we stretch, we get dipsbid ofcigar type, and the
Delaunay complex of thg™ vertices is the stretched slice decomposition; see Figure 1

3 Lattices

In this section, we introduce thieparameter family of lattices and explain how they
define packings and coverings. Writing for the (»-dimensional) volume of the-
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dimensional unit ba)lB™ = {x € R™ | ||z| < 1}, we have

Vo %/() if n is even
T\ w2 /allif nis odd

wheren!! =n - (n—2)-...-3-1isthe double factorial; see e.qg. [4].

Covering and packingA lattice in R™ consists of all integer combinations oflin-
early independent vectots. Important numbers of a latticé are itsdeterminantits
covering radiusand itspacking radius

det £ = det[l}ll}g ]
R(L) = max min Hx —al,
zeR™ aeLl

r(L) = Ogl;chaH/Z

Suppose we choose a radiugnd replace each poiat € £ by the ball of radiug:
centered at.. Thedensityof the resulting set of balls is the number of balls that cionta
an average point:

Vr®
olr) = 277 2)

Forr > R(L), we get acoveringin which the balls cover every point at least once.
The density is therefore greater than or equal .téor» < (L), we get apacking

in which the balls have disjoint interiors. The density ieréfore less than or equal
to 1. Two lattices ardsomorphicif they are related by a similarity. In this case, the
two lattices give the same densities. We are interested dinfinthe lattices that give
smallest possible covering density and the largest pespéatking density.

The mother of all lattices is thenteger grid £ = Z™. We havedet L = 1,
r(£) = 1/2, andR(L) = +/n/2. The corresponding packing densitylis /2" and
the corresponding covering densityig V,, /2™. For small values of,, these are given
in Table 1.

n || volume of unit ball || covering density ||  packing density

2 m=3.141... /2= 1.570... /4 =0.785...
3 47/3 = 4.188. .. V3T/2 = 2.720... /6 =0.523...
4 72/2 =4.934. .. n2/2 = 4.934...| =%/32=0.308...
5| 87%/15=5.263...]| 5V56m%/12= 9.195...| 7*/60=0.164...
6 7%/6 = 5.167 ... 973 /16 = 17.441...|| 7°/384 = 0.060...
7 |[167% /105 = 4.724 . . .||49v/773 /120 = 33.497 .. .|| =*/840 = 0.036...
8 7t/24 = 4.058 . .. 2t /3 = 64.939 .. .||7* /6144 = 0.015 . ..

Table 1: From left to right: the volume @™, the covering density of the integer gridlf', and
the packing density of the same grid.
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Distortion. To describe d-parameter family of distortions of the integer grid, we in-
troduce thediagonal height functionA : R™ — R, which maps every point =
(z1,22,...,2,) 10 A(z) = (2,1) = Y| 2;. Itis y/n times the (signed) Euclidean
distance ofr from thediagonal hyperplaneA=1(0). For eachs € R, we construct a
lattice £5 by mapping the-th unit vector toe; + D - 1, whereD = (§ — 1)/n. The
corresponding linear transformatidfy, : R™ — R"™, is given by

Ts(x) =x + DA(z) - 1. 3)

Hence,Ls; = T5(Z™), and we note thaf; = Z". For vanishing distortion paramet&r
we get a set of points ild—!(0), which has only» — 1 dimensions. This set is again a
lattice and, more specifically, one in oluparameter family, as we now prove.

2 (Lattice Projection Lemma) The diagonal projection of the-dimensional integer
grid, Ty (Z"), is isometric tols(Z"~1), for § = 1//n.

Proof. Let L be the set of lines ifR™ obtained by drawing a line in diagonal direction
through every point irZ". Intersectingl with the hyperplan&: spanned by the first
n — 1 coordinate axes, we gét'~!. Intersecting. with H = A~1(0), wet getlp(Z").
Both are sets im — 1 dimensions, and we can interpolate between them by rotating
the hyperplane arour@d N H, from G to H. This interpolation is exactly the distortion
of Z"~! defined above. It remains to show thiatN L is the distorted integer grid for
§ = 1/4/n. To see this, we consider the two lineslirthat pass through and through
1’ =(1,...,1,0) in R™. They intersect7 in 0 and1’ and they intersedd in 0 and1”,
the projection ofl’ onto H. The distance betwedhand1’ is v/n — 1. To compute the
distance betwee® and1”, we consider the triangles spannedy, 1’ and byo, 1/,
1”; see Figure 3. The two triangles are similar, which impliet the distance between

0 v
1

Fig. 3: Two similar right-angled triangles IR™.

the two intersection points if is

0-1 1
jo—17) = 1 -1 1=~ i L
01| n

The distortion factor is the ratio of the distance betw8emd1” in H and betweel®
andl’in G, whichisé = 1//n.
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We will see shortly that the distortion of tH@ — 1)-dimensional integer grid for
§ = 1/4/n provides the thinnest covering in thigparameter family we consider in this
paper.

Projected Freudenthal simpleX\Ve are interested in the diagonal projection ofran
dimensional Freudenthal simplex and the radius of its anstribed sphere. Take the
n-simplex spanned by the poings = Z;Zl ej, for0 < i < n, noting thaty, = 0 and
yn = 1. The projection ofy; onto H = A=1(0) is z; = To(y;), where
1 . o )

T = E(n—z,...,n—z,—z,...,—z)
is a point withi equal leading coordinates and- i equal trailing coordinates. Since
xo = x,, We get onlyn different points which span afn — 1)-simplex in H, the
projection of then-simplex. Perhaps surprisingly, it is not difficult to findetieenter
and radius of the circumsphere of the — 1)-simplex. For that purpose, we consider
the point

1
z=—-(n—-1,n-2,...,1,0)
n

and note that\(z) = 1577 'i = 221 The projection of onto H is therefore

T g me1 Gl
2" = To(z) = z — %= - 1, which gives

1
z/:%(nf1,n73,...,—n+3,7n+1).

To compute the distance between the two projected pointgjritethe vectors ofna;,
2nz', and2n(x; — 2'):
(2n —2i,...,2n — 20 ; —2i,...,—2i),
n—1,....n—=2i+1;n—-2i—1,...,—n+1),
(n—2i+1,....n—1;-n+1,....n—2i—1),
showing thel-st, i-th, (: 4+ 1)-st, andn-th coordinates. We can read the difference as a
cyclic rotation of the vectof—n + 1, —n+3,...,n — 1). In other words, all vectors of
the formz; — 2’ are cyclic rotations of each other, which implies thatthe1 pointsz;

all have the same distance frarh This distance is also the radius of the circumscribed
sphere of thén — 1)-simplex:

We will use this radius in the analysis of the covering densitSection 4.
4 Covering

To compute the covering radius, we need to understand trengodiagram ofLs or,
equivalently, the Delaunay complex. Fortunately, thegeaarly two types.
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Radius of a slice.Foré > 1, the Delaunay complex consists of distorted copies of the
slice decomposition:

Del(Ls) = Ts(S™ +Z™).

We may restrict ourselves to the slices in the decompositidhe distorted unit cube.
The center of the circumsphere of every slice lies on theaiaand between the two
delimiting hyperplanes. It follows that the circumradiitbg slices increase toward the
middle, similar to the radii of thén — 2)-spheres in the Silhouette Lemma. For odd
we have a unique middle slice, and for everwe have two symmetric slices separated
by the middle hyperplane.

Assume first that is odd. The circumscribeth — 1)-sphere of the middle slice
passes through tw: — 2)-spheres of radius

\/nl (n—1)2 1 [ 1
r= — = —\/n——
2 dn 2 n

and distanc@d = §/+/n from each other; see (1). The radius of the— 1)-sphere is
therefore

R(S) = V2 + & = %\/Tﬂ S (5)

Now assume that is even. The radii of the twén — 2)-spheres defining a slice next
to the middle hyperplane are

-2 —2)2 1
7q:\/n (n—2) = Ln-

2 4n

S|

and./n/2; see again (1). The distance between the two supporting plgmes isi; +
dy = §/+/n. We computel; such that?+d; = 2+d3. This givest; = (62+1)/256y/n
andds = (6% — 1)/26+/n. The radius of the circumscribéd — 1)-sphere is therefore

1 1
R(é)\/z+d§—2\/ﬁ\/52+n22+6—2. (6)

Radius of a simplexFor0 < § < 1, the Delaunay complex consists of distorted copies
of the Freudenthal triangulation:

Del(Ls) = Ts(F" + Z™).

All n-simplices are of the same type, and it suffices to computeitbemradius of the
one spanned by the images of the points- Z;Zl ej, for0 < i < n. Atthe beginning
of the distortion, wher = 1, the circumsphere of the Freudenthadimplex has radius
half the length of the diagonal edge, and at the end, wherD, the circumsphere has
a radius specified in (4). We will make use of the fact that #aius of any distorted
image of then-simplex can be expressed in termsjodnd the radii at = 1 and at

0 = 0. To state the result formally, we lefd) andR(d) be the center and the radius of
then-simplex at distortion valué < § < 1.
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3 (Distortion Lemma) The squared radius of the circumsphere of the distorted @nag
of the Freudenthah-simplex satisfie®?(5) = 62R? + (1 — 262 + §*)R2.

A proof is given in Appendix A. Using?? = n/4 andR3 = (n? — 1)/(12n) from (4),
we get

_ [P (2w - )

@) 4 12n
_ \/(m — 1)+ (n? _;227352 + (n2 — 1)54- @

In summary, we have three different formulas for the cowgradius: the one in (5) for

1 < ¢ in odd dimension, the one in (6) far< ¢ in even dimension, and the one in (7)
for0 <¢§<1.

Covering density.Given the radius? = R(J), we get the corresponding covering
density asy(é) = V,,R™/§ from (2). We show below that(d) has two local minima:
one in the first interval ai = 1/+/n + 1, and the other in the second intervaliat
vn + 1; see Figure 4. By comparing with the graphs for the packimgitgin the same
figure, we note that the minima for covering coincide with thaxima for packing.

We analyzey, distinguishing between the three cases we encounterglddaovering
radius.

CAasel. 0< 4 <1.Then

n 5 8
(I2n)2 9§ ®
whered = (n? — 1) + (n? + 2)6% + (n? — 1)§*. We compute the derivative as

V,  mSARIA A3 v i
(6) = —21 . 2 —_n A3,
LA TmE: 5 (2n)2 7

)

wherea = (2n? +n — 1)62 + (n? + 2) — 2£L. The only factor that can vanish is
a, so we gety’(§) = 0iff 5 = 2. This critical point can only be a minimum.
CAasg2.1. § > 1 andn is odd. Then

() = —om B ©)

T oonps§

whereB = §2 + n? — 1. The derivative is

Vo .B3 1.}

7' (0) =

©onps

whereb = (n — 1)(1 — 51). The only factor that can vanish is so we have
7'(8) = 0iff 62 = n + 1. This can only be a minimum.
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CASE2.2. 6 > 1 andn is even. Then

w3

Vo C

v(6) = P (10)

whereC' = §2 + 5% +n? — 2. As before, we compute the derivative and get

V(B) = gt O

T oonps

wherec = n — 55— 1— "2_2. The last factor that can vanishdsso we have

7/(8) = 0iff 62 = n + 1, as in Case 2.1. Again, this can only be a minimum.

60 0.99
504
40 0.8
304

204
0.6

0.5
0.4+
0.3
0.2+

0.1

T
(&

w
v

0:5 1' é é 21 0.5 1 2 3 4
Fig. 4: Left, from bottom to top: the graphs of the coveringgity in dimension to 8. All
functions have two local minima, the lesserdat= \/n + 1 and the global minimum af =
1/+/n + 1. Right, from top to bottom: the graphs of the packing densitgdimensions2 to 8.
All functions have two local maxima, the lesserdat= 1/+/n + 1 and the global maximum at
0 = +/n + 1. Some of the axes use logarithmic scale for clarity.

Examples.In the plane, the minimum covering density is achieved byhteagonal
lattice, with~(1/v/3) = v(v/3) = 1.209.. ... More generally, we get

R +25+4)for0<s <1,
7(5){%(5+%+5L3) for1 <4,

using the formulas (8) and (10) fer = 2; see the lowest graph in Figure 4 on the
left. Note the local maximum for the square lattice, witfl) = 1.570.... We have
v(8) = ~v(1/6) forall § > 0. InRR?, we get the thinnest covering fdr, /», with covering
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densityy(4) = 1.463. ... Compare this withy(2) = 2.094. ... for the FCC lattice and
with v(1) = 2.720... . for the cubic lattice. More generally, we get

w(8+115624854)3/2

2 (8) = { 77(8165225)3/2 for0 <6 <1,

SETV for1 < §;

see the second lowest graph in Figure 4 on the left. Thedatig, is isomorphic to the
BCC lattice, which is commonly described as the set of intpgints plus the integer
points shifted by(%, 1, 3).

Recall that forn = 2, the two local minima correspond to the same lattice and
thus give the same covering density. In contrast, for dinoeiss: > 3, we get a
smaller density foo = 1/v/n+ 1 than for§ = y/n + 1. Using (4) and the Lattice
Projection Lemma, we get the corresponding covering radg&ishe square root of

(n? + 2n)/(12n + 12). The best covering density within ourparameter family is
therefore

V1V FT) = Vavn ¥ 1 (71”2(&121)))7 :

see the left half of Table 2.

covering density|| packing density

2.551... 2.464..| 0.244... 0.372...
3.059... 2.900..| 0.147... 0.295...
8 ||3.665... 3.142..| 0.084... 0.253...
Table 2: Left: the covering densities 6§ for 6 = 1/4/n + 1 up to dimensiom = 8, and the best
known covering densities for comparison. Right: the pagldensities ofCs for § = /n + 1,

and the best known packing densities for comparison. Desshat are known to be optimal for
lattices are displayed in bold.

n ||v() best |lp(vn+1) best
2 || 1.209... 0.906...

3 || 1.463... 0.740...

4 || 1.765... 0.551... 0.616...
5 ||2.124... 0.379... 0.465...
6

7

5 Packing

In this section, we give a formula for the packing density &snation of the distortion
parameter.
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Packing radius. To get the packing radius dis, we consider the poir@ and find the
closest other lattice point. Using the Silhouette Lemmanf&ection 2, we observe that
there are only three possibilities:

Ts(e1) = (1+D,D,..., D),
T5(€1 — 62) = (1, 71,0, .o .,0),
Ts(1) = (5,6,...,95).

The distance t@’s(e; — e2) is v/2, and that tdl5(1) is §1/n. The distance to the image
of the first unit vector is

[Tyten)l = VT + DR+ 002 =14 5L

Pluggingd? = n + 1 into the formula, we gefiTs(e1)| = v/2, and plugging’?> =
1/(n + 1) into it, we get||Ts(eq)|| = dv/n. We thus have three intervals in which the
packing radius has qualitatively different behavior:

16y/n  for0<é < \/nl_+17

— 1 62—1 1
r(Ls) =Q 3/1+ & for L= < <Vn+1,
iV2  foryn+1<6.

Packing densityGiven the radius = r(£), we get the corresponding packing density
asp(d) = V,r™/5 from (2). In the first interval, the density grows liké—!, and in
the last interval, it shrinks liké /5. We now prove that in the middle intervat,has a
single minimum, which it attains at= 1. Indeed, we have

V, E:
J) = =
#(0) 2"nz2 4

whereE = 62 + n — 1. The derivative with respect to the distortion parameter is
o= o BEIEZET Y,
2nn s 02 2nn s
wheree = (n — 1)(1 — 5z). The only factor that can vanish és Restricting ourselves
to non-negative values of the distortion parameter, we ha® = 0 iff 6 = 1. This
critical point can only be a minimum. In summary, the pacldegsity has local maxima

ato = 1/v/n+1andd = v/n+ 1, alocal minimum at = 1, and goes to zero as
goes td) or to co; see the graphs in Figure 4.

; (11)

n_
.E2 1'6

)

Examples.In the plane, the maximum packing density is attainedsfer 1/+/3 and

§ = /3. For both values of the distortion parametg,is isomorphic to the standard
hexagonal lattice, with packing densigf1/v/3) = ¢(v/3) = 0.906. ... More gener-
ally, we havep(§) = Var?/§, whereVs = 7 andr = r(Ls). Using the above formulas
for the radius, we thus have

z forogégig,
p(d) = %(5+%)f0f%§5§\/§,
Z  forv3<g;
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see the highest graph in Figure 4 on the right. Note ¢ = ¢(3) forall § > 0

and that this function has a local minimum for the squarécktte(1) = 0.785. . ;

compare this with the graph of the covering density in the@ldnR3, we get local
maxima at = 1/2 andé = 2. More generally, we have

V3ms? 1
V3r8® forg <4< 1,

p(d) = "D qor L <5< 2,

ol )
T for2 < ¢;

see the second highest graph in Figure 4 on the right. Thidifimhas a local minimum
for the cubic lattice app(1) = 0.523. ... In contrast to the plane, the values at the two
maxima are not the same and we get the higher densijty2at= 0.740 . . ., whereL,

is isomorphic to the FCC lattice. Most commonly, that latis described as the set of
integer points for which the sum of coordinates is even. Hitge differs fromLs by

a rotation of60° around the line that passes throuygand1.

Recall that forn = 2, the two local maxima correspond to the same lattice and
thus give the same packing density. In contrast, for dinwerssi > 3, we get a higher
density foré = +/n + 1 than foré = 1/v/n + 1. The best packing density within our
1-parameter family is therefore

Va

Vitl)=——n

see the right half of Table 2.

6 Discussion

Our simple distortion of the integer grid in diagonal diientleads to al-parameter
family of lattices that contains optimal lattice coveringslimensiong, 3, 4, and5 and
optimal packings in dimensioresad 3. It misses the best lattices in dimensions higher
than listed. We therefore pose the question whether ouroagprcan be extended to
include the other optimal lattice coverings and packingsparticular the lattices of
typesD andE and the Leech lattice [4], or even discover lattices withtdredensities
than currently known. Can ourparameter analysis be broadened to allow for two or
more independent parameters? Alternatively, can we desgn -parameter families
that are easy to analyze and explore the parameter spadig?oca
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Appendix A

In this appendix, we give a proof of the Distortion Lemma, evhis instrumental in the
analysis of the covering radius. We begin with a review ofghétd points and their
polar representation as hyperplanes and points; see g.g. [6

Weighted pointsWe construct a convenient framework to express distanaéagak by
generalizing spheres to allow for imaginary radiiwg&ighted pointn n — 1 dimensions
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is a pointz; € R"~! together with a weighty; € R. The power distancef a point
z € R"~! from the weighted pointz;, w; ) is @;(z) = ||z — z:]|* — w;. Two weighted
points areorthogonalif

s — 5]|” = w; + w;. (12)

If w; andw; are both positive then (12) characterizes the situationicwthe spheres
with centersr; andz; and radii,/w; and,/w; intersect each other in a right angle.
LetnowH be a hyperplaneiR", z a pointinH, y; a pointinR", x; the orthogonal
projection ofy; onto H, andw,; = —||z; — yi||2 the negative of the squared distance
of y; from H. Then it is easy to see that the square of the distance betwandy;
equals the power distance offrom the pointz; with weightw; in H: ||z — y:||> =
w;(z). Lettingw = ||z — y;||°, we can rewrite this relation ds: — z;||> = w; + w.
In words, the weighted pointse;, w;) and (z,w) in H are orthogonal. We will use
this observation to reduce thedimensional problem of computing the circumscribed
sphere of am-simplex to the(n — 1)-dimensional problem of computing the weighted
point that is simultaneously orthogonahtamther weighted points.

Lifting and polarity. It will be convenient to recast the relation between weidlpteints
in R"~! in terms of hyperplanes (graphs of affine functions) andtsoimR". Given a
pointz; € R"~! with weightw; € R, we introduce the affine functiaiy : R*~! — R
via hi(z) = 2(z;, x) — ||z;])* + w;. Starting with two orthogonal weighted points in
R™1, we thus get

i — 2] = w; + w; iff
2 2 -
lzill” — 2(zs, 25) — wi = —||lz;]|” + w; iff
2
hi(zj) = |lz;]|” — w;.

This motivates us to introduce the pojt = (z;, ijHQ —wj) € R™. Traditionally,
this point and the hyperplarggaph(h;) in R” are said to bgolar to each other. We
now express what we just proved in terms of these hyperpkmépoints.

4 (Ortho-dence Lemma) The pointsz;, z; € R"~! with weightsw;, w; € R are
orthogonal iffp; € graph(h,) iff p; € graph(h;).

Proof of Distortion LemmaWe are now ready to formulate the proof of the Distortion
Lemma stated in Section 4. Recall that this result concéra$teudenthat-simplex
with verticesy ., e;, for0 < i < n, and its distorted images under the linear transfor-
mationsTy : R™ — R", for0 < § < 1. It will be convenient to translate thesimplex
so it is cut in half by the hyperplane of fixed poinfd, = A~1(0). We thus define
Yy =v— 31+ > e withv -1 =0, for0 < i < n, and we letY’ be then-
simplex spanned by thg. This translation does not affect our analysis becdy$¥)
is a translate of the distorted originalsimplex, for every.

Let z(d) be the center an®(¢) the radius of the circumscribga — 1)-sphere of
T5(Y). A benefit of the translation is tha(d) € H for all 6. Indeed,z(0) is equally
far from the distorted images g@f, andy,, and therefore lies in the bisector of the two
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points, which isH. We will see that the set of pointg4) is the line segment with
endpointsz; = z(1) andzy, = z(0). To show this, we replace each vertEx(y;) of
the n-simplex by the weighted poirft:;, w;(9)), wherex; = Ty(y;) is the orthogonal
projection ontoH, andw; (§) = —§2A?(y;)/n is the negative of the squared distance
of Ts(y;) from H. By what we said above, the points) € H with weight R%(6) is
orthogonal to(z;, w;(§)), for all 0 < i < n. Note that inR”~*, we have a common
orthogonal weighted point for every generic collectiomofeighted points. Here there
aren + 1 weighted points, but two are the same, nanely, w(9)) = (,, wn(9)).

In the next step, we replace ea@h, w;(d)) by the affine functiorh; (5), and we re-
place each point(§) € R™~! with weight R2(6) by the pointp(6) = (z(6), ||z(0)||* —
R2(5)) in R™. Since(z(5), R*(4)) is orthogonal to allx;, w;(d)), the pointp(d) lies
on all hyperplanes of the forgraph(%;(9)) in R”™. Now observe what happens whe&n
changes continuously frointo 0. It is convenient to parametrize this motion by= 42,
which also goes front to 0. Writing down the formula for the affine map:

2
n8) () = 2, ) — ol — 2L,
we note that changiny corresponds to an affine vertical translation of each hypagp
It follows that the common intersection, the poijit ), traces out the line segment from
p1 = p(1) topg = p(0) and, more specifically,

p(A) = Ap1 + (1 = A)po. (13)

It follows that the projection to the first— 1 coordinates satisfies the same relationship,
namelyz(A) = Az + (1 — A)z. Similarly, we have the same relationship for the
n-th coordinate. After some rearrangements, we get the squadius as the linear
interpolation of the squared radii at the extremes plus eection term:

R*(\) = AR + (1 — MR + C, with
C = [l2WII* = Ml zall” = (1 = M)l

To simplify the remaining computations, we now choose th&oren the initial trans-
lation of then-simplex asv = —(z1 + z0)/2. With this choice, the midpoint between
the two centers is the origin so that = —z, and we can writel? = ||z = ||z0|*.
Furthermore||z(\)[|* = 4(\? — 1)2d? and therefore” = 4\(\ — 1)d?. On the other
hand, the distance betweenandz is 2d = Ry, so we getC = A\(1 — \)RZ. Adding
things up, we get

R*(\) = ART + (1 — 22 + AR5,

Substitutings? for )\, we get the equation claimed in the Distortion Lemma.



