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ABSTRACT
We introduce a new descriptor of the weblike pattern in the distribution of galaxies and matter: the

scale dependent Betti numbers which formalize the topological information content of the cosmic mass
distribution. While the Betti numbers do not fully quantify topology, they extend the information
beyond conventional cosmological studies of topology in terms of genus and Euler characteristic used
in earlier analyses of cosmological models. The richer information content of Betti numbers goes
along with the availability of fast algorithms to compute them. When measured as a function of scale
they provide a “Betti signature” for a point distribution that is a sensitive yet robust discriminator
of structure. The signature is highly effective in revealing differences in structure arising in different
cosmological models, and is exploited towards distinguishing between different dark energy models
and may likewise be used to trace primordial non-Gaussianities.

In this study we demonstrate the potential of Betti numbers by studying their behaviour in simu-
lations of cosmologies differing in the nature of their dark energy.
Subject headings: Cosmology: theory — large-scale structure of Universe — Methods: data analysis

— Methods: numerical

1. INTRODUCTION

The large scale distribution of matter mapped by
galaxy surveys like the 2dF, SDSS and 2MASS redshift
surveys (Colless et al. 2003; Gott et al. 2005; Huchra et
al. 2005) shows a complex network of interconnected fil-
amentary galaxy associations. This network, which has
become known as the Cosmic Web (Bond et al. 1996),
contains structures from a few megaparsecs up to tens
and even hundreds of megaparsecs in size. Galaxies and
mass exist in a wispy web-like spatial arrangement con-
sisting of dense compact clusters, elongated filaments,
and sheet-like walls, amidst large near-empty voids, with
similar patterns existing at earlier epochs, albeit over
smaller scales (for a review, see van de Weygaert & Bond
2008).

Given the structural richness of the Cosmic Web, in
this paper we address the question of how we can exploit
the information content in the structure of the Cosmic
Web to differentiate cosmological models having differ-
ent dark energy content. Different dark energy models,
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viewed at the same redshift, show subtly different struc-
tures in the matter distribution. This is simply a conse-
quence of the different growth rates for cosmic structure
in the different models.

Despite the multitude of descriptions, it has remained
a major challenge to characterize the structure, geometry
and topology of the Cosmic Web. Many of the attempts
to describe, let alone identify, the features and compo-
nents of the Cosmic Web have been of a rather heuristic
nature. Moreover, the overwhelming complexity of both
the individual structures as well as their connectivity, the
lack of structural symmetries, its intrinsic multi-scale na-
ture and the wide range of densities in the cosmic matter
distribution has prevented the use of simple and straight-
forward methods.

Here we introduce a new topological measure that is
particularly suited to differentiating web-like structures.
To this end, we advance the topological characterization
of the Cosmic Web to a more complete description, the
homology of the distribution as measured by the scale-
dependent Betti numbers of the sample (Edelsbrunner &
Muecke 1994; Edelsbrunner & Harer 2010; Robins 2006;
van de Weygaert et al. 2010, 2011). The Betti numbers
underlie genus analysis and may be regarded as funda-
mental topological structure indicators that specifically
characterise the homology of the distribution. While a
full quantitative characterization of the topology of the
cosmic mass distribution may not be feasible, the homol-
ogy is an attractive compromise, providing a usefully de-
tailed summary measurement of topology with relatively
low computational overhead (e.g. Delfinado & Edelsbrun-
ner 1993; Edelsbrunner & Muecke 1994).

1.1. Dark energy and the Cosmic Web
The parameters for what might now be called “the

standard model for cosmology” have been established
with remarkable precision. However, there remains the
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Fig. 1.— Slices of thickness 0.2h−1Mpc from two cosmological
models: ΛCDM (left), SUGRA (right). Top: 200h−1×200h−1Mpc
slices. Middle & Bottom: zoom-in, 40h−1×40h−1Mpc slices. Mid-
dle: density field. Bottom: halo distribution, superimposed.

great mystery of the nature of the so-called “dark en-
ergy” which appears to make up some 73% of the to-
tal cosmic energy density. The simplest model for the
dark energy is Einstein’s cosmological constant, Λ: this
makes a constant, time independent, contribution to the
total energy density in the Friedman-Lemaitre equations.
Models based on this are referred to as “ΛCDM models”.
However, there are numerous, possibly more plausible,
models in which the dark energy evolves as a function of
time. These models are generally described in terms of a
time or redshift dependent function w(z) that describes
the history of equation of state of the dark energy com-
ponent:

p = w(z)ρc2 (1)

Different models for dark energy produce different func-
tions w(z). The Einstein cosmological constant corre-
sponds to w(z) = −1.

The aim of this paper is to compare, at redshift z =
0, the topology of the cosmic structure in simulations
of three cosmological models having different dark en-
ergy content that evolved from the same initial condi-
tions (fig. 1). The equation of state of the dark en-
ergy models are those of the standard ΛCDM model and
two quintessence models. The latter assume that the
Universe contains an evolving quintessence scalar field,

whose energy content manifests itself as dark energy.
The two quintessence models are the Ratra-Peebles (RP)
model and the SUGRA model (for a detailed description,
see Ratra & Peebles 1988; Amendola 2000; Brax & Mar-
tin 1999; Perrotta et al. 2000; de Boni et al. 2011; Bos et
al. 2011).

2. TOPOLOGY AND HOMOLOGY

2.1. Betti Numbers
Formally, homology groups and Betti numbers charac-

terize the topology of a space in terms of the relation-
ship between the cycles and boundaries we find in the
space10(Munkres 1995; Zomorodian 2005; Edelsbrunner
& Harer 2010).

For example, if the space is a d-dimensional manifold,
M, we have cycles and boundaries of dimension p from
0 to d. Correspondingly, M has one homology group
Hp(M) for each of d + 1 dimensions, 0 ≤ p ≤ d. By
taking into account that two cycles should be considered
identical if they differ by a boundary, one ends up with a
group Hp(M) whose elements are the equivalence classes
of p-cycles. The rank of the homology group Hp(M) is
the p-th Betti number, βp = βp(M).

In heuristic - and practical - terms, the Betti numbers
count topological features and can be considered as the
number of p-dimensional holes. When talking about a
surface in 3-dimensional space, the zeroth Betti number,
β0, counts the components or “islands”, the first Betti
number, β1, counts the tunnels, and the second Betti
number, β2, counts the enclosed voids. All other Betti
numbers are zero.

2.2. Genus and the Euler characteristic
Numerous cosmological studies have considered the

genus of the isodensity surfaces defined by the mega-
parsec galaxy distribution (Gott et al. 1986; Hamilton et
al. 1986; Choi et al. 2010), which specifies the number of
handles defining the surface11. The genus has a simple
relation to the Euler characteristic, χ, of the isodensity
surface. Consider a 3-manifold subset M of the Universe
and its boundary, ∂M, which is a 2-manifold. With ∂M
consisting of c = β0(∂M) components, the Gauss-Bonnet
Theorem states that the genus of the surface is given by

G= c− 1
2
χ(∂M), (2)

where the Euler characteristic χ(∂M) is the integrated
Gaussian curvature of the surface

χ(∂M)=
1
2π

∮

x

dx

R1(x)R2(x)
. (3)

10 Assuming the space is given as a simplicial complex, a p-cycle
is a p-chain with empty boundary, where a p-chain, γ, is a sum of
p-simplices. The standard notation is γ =

P
aiσi, where the σi

are the p-simplices and the ai are the coefficients. For example,
a 1-cycle is a closed loop of edges, or a finite union of such loops,
and a 2-cycle is a closed surface, or a finite union of such surfaces.
Adding two p-cycles, we get another p-cycle, and similar for the
p-boundaries. Hence, we have a group of p-cycles and a group of
p-boundaries.

11 For consistency, it is important to note that the definition
in previous cosmological topology studies slightly differs from this.
The genus, g, in these studies has been defined as the number of
holes minus the number of connected regions: g = G− c.
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Fig. 2.— Illustration of alpha shapes. For two different values of α (top: large α; bottom: small α), we show the relation between the
2-dimensional point distribution, the value of α, and the resulting alpha shape. Around each point in the sample, we draw a circle of radius
α. The outline of the corresponding Voronoi tessellation is indicated by the edges (left). All Delaunay simplices dual to the decomposition
of the union of disks by the Voronoi polygons are shown in black (vertices and edges) and red (triangles) (center). The resulting alpha
shape is shown on the right.

Here R1(x) and R2(x) are the principal radii of curvature
at point x of the surface. The integral of the Gaussian
curvature is invariant under continuous deformation of
the surface: perhaps one of the most surprising results
in differential geometry.

According to the Euler-Poincaré Formula, the Euler
characteristic of the manifold M is equal to the alternat-
ing sum of its Betti numbers,

χ(M) = β0(M)− β1(M) + β2(M) (4)

For practical circumstances the third Betti number van-
ishes, β3(M) = 0. The Euler characteristic of the bound-
ary, ∂M, is directly proportional to that of the Euler
characteristic of the 3-manifold, M,

χ(∂M)=2χ(M). (5)

The combination of these equations for the Euler char-
acteristic establishes a fundamental relationship between
differential geometry and algebraic topology.

In the analysis described in this paper, we will restrict
ourselves to the three Betti numbers, β0, β1, and β2,
of the 3-manifolds with boundary defined by the cosmic
mass distribution. In an upcoming paper, we study the
Betti number characteristics for Gaussian fields (Park et
al. 2011).

3. ALPHA SHAPES

One of the key concepts in the field of Computational
Topology is alpha shapes, introduced by Edelsbrunner
and collaborators (Edelsbrunner et al. 1983; Muecke
1993; Edelsbrunner & Muecke 1994; Edelsbrunner 2009).
They generalize the convex hull of a point set and are

concrete geometric objects that are uniquely defined for
a particular point set S and a scale α. For their defini-
tion, we look at the union of balls of radius α centered
on the points in the set, and its decomposition by the
corresponding Voronoi tessellation. The alpha complex
consists of all Delaunay simplices that record the subsets
of Voronoi cells that have a non-empty common intersec-
tion within this union of balls (fig. 2.1).

The alpha complex thus consists of all simplices in the
Delaunay triangulation that have an empty circumsphere
with radius less than or equal to α. Here “empty” means
that the open ball bounded by the sphere does not in-
clude any points of S. For an extreme value α = 0, the
alpha complex merely consists of the vertices of the point
set. There is also a smallest value, αmax, such that for
α ≥ αmax, the alpha complex is the Delaunay triangu-
lation. The alpha shape is the union of simplices in the
alpha complex and for α ≥ αmax the alpha shape is the
convex hull of the point set.

The alpha shape is the union of all simplices in the
alpha complex. It is a polytope in a fairly general sense:
it can be concave and even disconnected. Its compo-
nents can be three-dimensional clumps of tetrahedra,
two-dimensional patches of triangles, one-dimensional
strings of edges, and collections of isolated points, as well
as combinations of these four types.

Alpha shapes reflect the topological structure of a
point distribution on a scale parameterized by the real
number α. Figure 3 shows the α-shape applied to a slice
of a cosmological model. The three inserts show α-shapes
at three different α values.
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Fig. 3.— Top: α shape of a GIF ΛCDM simulation, slice through
simulation box. Bottom: α shape at 3 different values of α.

3.1. Filtrations
The concept of “filtration” is an important source of

information about the topology of a point distribution. A
filtration provides a view of the topology as a function of
scale. Formally, given a space M, a filtration is a nested
sequence of subspaces:

∅ =M0 ⊆M1 ⊆ . . . ⊆Mm =M. (6)

The nature of the filtrations depends, amongst other
things, on the representation of the mass distribution.
For a discrete point distribution, the set if alpha shapes,
ordered by scale, constitute a filtration of the Delaunay
tessellation.

The set of real numbers α leads to a family of shapes
capturing the intuitive notion of the overall versus fine
shape of a point set. Starting from the convex hull grad-
ually decreasing α, the shape of the point set gradually
shrinks and starts to develop enclosed voids. These voids
may join to form tunnels and larger voids. For negative
α, the alpha shape is empty.

Although the alpha shape is defined for all real num-
bers α, there are only a finite number of different alpha
shapes for any finite point set. In other words, the al-
pha shape process proceeds discretely with increasing α,
marked by the addition of new Delaunay simplices once
α exceeds the corresponding threshold.

3.2. Computing Betti Numbers
The standard algorithm in 2-D and 3-D for calculat-

ing Betti numbers of an α-complex is due to Delfinado
& Edelsbrunner (1993). First, the Delaunay tessellation
of the point set is constructed. Its simplices - vertices,
edges, triangles - can be ordered by the radius of the
smallest sphere that touches the points defining the given
simplex and contains no other data points. Because of
this ordering a nested sequence of subcomplexes can be
constructed, each member of the sequence being con-
structed from the preceding one by the addition of a new

simplex having a larger scale. If for example the added
simplex is an edge, it will either connect two previously
disjoint components or close a loop (thereby creating a
tunnel).

Cycling through all its simplices, in three dimensions
the calculation is based on the following straightforward
considerations. When a vertex is added to the alpha com-
plex, a new component is created and β0 is increased by
1. Similarly, if an edge is added, it connects two vertices,
which either belong to the same or to different compo-
nents of the current complex. In the former case, the
edge creates a new tunnel, so β1 is increased by 1. In
the latter case, two components get connected into one,
so β0 is decreased by 1. If a triangle is added, it either
completes a void or it closes a tunnel. In the former
case, β2 is increased by 1, and in the latter case, β1 is
decreased by 1. Finally, when a tetrahedron is added, a
void is filled, so β2 is lowered by 1. Following this pro-
cedure, the algorithm has to include a technique for de-
termining whether a p-simplex belongs to a p-cycle. For
vertices and tetrahedra, this is rather trivial. For edges
and triangles, a more elaborate procedure is necessary
(Delfinado & Edelsbrunner 1993).

For software that implements these algorithmic ideas,
we resort to the Computational Geometry Algorithms
Library, CGAL 12 (Caroli & Teillaud 2011; Da & Yvinec
2011).
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Fig. 4.— Evolution of the dark energy equation of state param-
eter w(z) for ΛCDM (solid), SUGRA (dotted) and RP (dashed).

4. TOPOLOGICAL ANALYSIS OF SIMULATIONS

4.1. Our simulations
We investigate the evolved structure in the standard

ΛCDM model, the Ratra-Peebles (RP) model, and the
SUGRA model. All simulations start with the primor-
dial perturbation amplitudes and phases. The imprint
of dark energy on the mass distribution is expressed via
the different expansion history of the universe as a result
of the differently evolving equation of state parameter
w(z) (fig. 4). This is determined by the evolution of the
quintessence scalar field φ, forced by a parameterized po-
tential V (φ). The DE model parameters (table 1 in Bos

12 CGAL is a C++ library of algorithms and data structures for
computational geometry, see www.cgal.org.
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et al. (2011)) are chosen such that the models differ sig-
nificantly from ΛCDM, while still in accordance with ob-
servations. For example, the slope of the quintessence
potentials is set to ζRP = 0.347 and ζSUGRA = 2.259.

The models we consider are described by WMAP7
(Larson et al. 2011) best-fit value parameters (h = 0.704,
Ωm = 0.272, ΩΛ = 0.728, σ8 = 0.809 and ns = 0.963).
For each model we ran 5123 and 2563 particle simula-
tions, in a periodic box of 200h−1Mpc width, starting at
z ≈ 63. The baryonic content of the universe is incorpo-
rated as dark matter particles, using Ωm = Ωdm + Ωb =
0.272.

We use the SUBFIND algorithm (Springel et al. 2001)
to identify the gravitationally bound haloes in the re-
sulting particle distributions. At z = 0 the simula-
tion boxes contain 170740 (ΛCDM), 172949 (RP) and
175332 (SUGRA) halos with mass higher than M ∼
1.4 × 1011h−1M¯ (> 32 particles). They trace the gen-
eral structures present in the field, even though a lot of
the detailed structure is lost or diluted (fig. 1).

Slices from two simulations, at z = 0, are shown in fig-
ure 1. The left hand panel displays the standard ΛCDM
model and the right hand panel shows the SUGRA
model. The slices as shown in the upper panels are
perceptually indistinguishable. Differences can only be
perceived at higher resolution and lower contrast: this is
shown in the lower panels of figure 1, for the dark matter
density field as well as the haloes. Different filaments ap-
pear, the subclustering is different in the big cluster and
there are a number of different voids. The voids differ in
size and shape, and their degree of merging (cf. Sheth &
van de Weygaert 2004).

4.2. The analysis - Betti signatures
We analyse the clustering of the haloes in these three

simulations using the Betti Numbers. In order to com-
pute the Betti numbers for a point distribution in 3 di-
mensions, we generate the Delaunay tessellation from the
point sample and from this the nested sequence of alpha
shapes. Subsequently, we determine the Betti numbers
of the set of alpha shapes as a function of α. The re-
sulting Betti number versus α curves are the Betti sig-
nature of the point distribution. In Figure 4 we show
the Betti signatures for the scale dependence of β0(α),
β1(α), and β2(α) in the three simulations. The error bars
in all panels are derived on the basis of estimates from 8
sub-cubes. There are significant differences between the
curves for β1(α), and β2(α) in the three models, show-
ing that the Betti signature is a sensitive discriminator
of structure, even in a single redshift slice. This remains
true when taking into account differences in β0 and σ8.
In subsequent papers we follow the evolution of the Betti
signature with time and assess their dependence on halo
mass and show that it provides a sensitive measure of
the nature of dark energy.

5. DISCUSSION AND CONCLUSIONS

We have presented a powerful topology-based method
for classifying the structure that develops in cosmological
N-body simulations. The Betti signatures are an effective
way of discriminating between models that superficially
look the same. The method is an important generalisa-
tion of the genus and Minkowski functional approaches,
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in that Betti analysis of alpha shapes is able to discrim-
inate structural content at a deeper level (Robins 2006;
van de Weygaert et al. 2010, 2011).

The Betti signatures of the cosmological simulations
are shown to be capable of discriminating between mod-
els that are difficult to distinguish by other means. This
may involve dark energy signatures or traces of primor-
dial non-Gaussianities in the cosmic mass distribution.
This is because dark energy affects the expansion of the
universe, which affects the formation of nonlinear ob-
jects, while non-Gaussian initial conditions will change
the formation history of galaxies and thus Betti num-
bers.

It is also important to put our approach in terms
of Betti analysis in perspective relative to other mea-
sures of structure, in particular the Minkowski function-
als (Mecke et al. 1994; Schmalzing & Buchert 1997).
While the Euler characteristic and Betti numbers give
information about the connectivity of a manifold, the
other three Minkowski functionals are sensitive to local
manifold deformations. The Minkowski functionals give
information about the metric properties of a manifold
on the basis of which broad-brush structural character-
istics such as shape can be defined (Sahni et al. 1998).
The Betti numbers focus on its topological properties,
the scale dependence likewise providing some metric in-
formation.

In a series of following papers we shall be adding the
powerful notion of topological persistence (Edelsbrunner
et al. 2002) to our analysis of filtrations (Pranav et al.
2011). Betti analysis is an integral part of an intrinsi-
cally much richer topological language which addresses
the hierarchical substructure of the Cosmic Web in an el-

egant and natural description (for a cosmological applica-
tion, see Sousbie 2011; Sousbie et al. 2011). In standard
practice, the multiscale nature of the mass distribution
tends to be investigated by means of user-imposed filter-
ing. Persistence entails the conceptual framework and
language for separating scales of a spatial structure, and
rationalizes the multiscale approach by considering the
range of filters at once. At the same time, it deepens
the approach by combining it with topological measure-
ments. Within the context of hierarchical cosmic struc-
ture formation, persistence therefore provides a natural
formalism for a multiscale topology study of the Cosmic
Web. Alpha shapes provide the perfect context for un-
derstanding the concept: the position of a feature within
the structural hierarchy is determined by the α inter-
val over which it persists. It even provides a natural
path towards removing topological noise, which would
be identified as features with small persistence (see van
de Weygaert et al. 2011).

We thank Manuel Caroli for the CGAL based software
for computing alpha shapes and Betti numbers. RvdW,
PP, GV and MW gratefully acknowledge the hospitality
of INRIA/Sophia-Antipolis and financial support by the
OrbiCG INRIA Associate Teams program. Part of this
project was carried out within the context of the CG
Learning project. The project CG Learning acknowl-
edges the financial support of the Future and Emerg-
ing Technologies (FET) programme within the Seventh
Framework Programme for Research of the European
Commission, under FET-Open grant number: 255827.
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