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Abstract
Considering a continuous self-map and the induced en-
domorphism on homology, we study the eigenvalues and
eigenspaces of the latter. Taking a filtration of representa-
tions, we define the persistence of the eigenspaces, effec-
tively introducing a hierarchical organization of the map.
The algorithm that computes this information for a finite
sample is proved to be stable, and to give the correct an-
swer for a sufficiently dense sample. Results computed with
an implementation of the algorithm provide evidence of its
practical utility.
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1 Introduction
In recent years, the theory of persistent homology [10, 22]
has become a useful tool in several areas, including shape
analysis [11], scientific visualization [12], high-dimensional
data analysis [2], but also in mathematics itself [20]. The
specific aim of this paper is an approach to the persistence
of endomorphisms induced in homology by continuous self-
maps. The long term goal is to embed persistence in the
computational analysis of dynamical systems, as pursued in
[13] and the related literature.

In the case of finitely generated homology with field co-
efficients, the homomorphism induced by a continuous map
between topological spaces is a linear map between finite-
dimensional vector spaces. Such a map ϕ : Y → X is
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characterized up to conjugacy by its rank. This is in con-
trast to a linear self-map, φ : X → X , which in the case
of an algebraically closed field1 is characterized up to con-
jugacy by its Jordan form. A weaker piece of information
are the eigenvectors, which in our setting capture the ho-
mology classes that are invariant under the self-map. There-
fore, it is natural to study the persistence of eigenvalues and
eigenspaces as a first step to the full understanding of the
persistence of the map. We define it in terms of the persis-
tence of vector spaces, a concept that has been around for
some time. Specifically, it has been presented as the general
idea of zigzag persistence [1], which is based on the theory
of quivers [8]. Since we need an algorithm that provides not
only the persistence intervals but also a special basis, we give
an independent presentation of the concept. We believe this
presentation is elementary and in the spirit of the theory of
persistent homology. We also note that its generalization to
zigzag persistence is straightforward. Beyond describing the
algorithm for the persistence of eigenvalues and eigenspaces,
we analyze its performance, proving that the persistence di-
agram it produces is stable under perturbations of the input,
and the algorithm converges to the homology of the studied
map, reaching the correct ranks for a sufficiently fine sample.
In addition, we exhibit results obtained with a software im-
plementation, which suggest that the persistent homology of
eigenspaces picks up the important dynamics already from a
relatively small sample.

We motivate the technical work in this paper with a small
toy example, designed to highlight one of the main difficul-
ties we encounter. Writing S1 for the circle in the complex
plane, we consider the map defined by f(z) := z2, which
doubles the angle of the input point. Sampling S1 at eight
equally spaced locations, xj := cos jπ4 + i sin jπ

4 , we can
check that f(xj) = x2j , where indices are taken modulo 8.
Assuming the space and the map are unknown, other than
at the sampled points and their images, we consider the fil-

1A field is algebraically closed if every non-constant polynomial over
the field has a root.



tration K1 ⊆ K2 ⊆ K3 ⊆ K4 ⊆ K5 shown in the top
row of Figure 1. Each complex Ki consists of all simplices
spanned by the eight points whose diameters do not exceed
a given threshold, and this threshold increases from left to
right. The most persistent homology classes in this filtration
are the component that appears in K1 and lasts to K5 and
the loop that appears in K2 and lasts to K4. We would hope

K2 K3 K4 K5

x6

K1

x2
x3 x1

x4 x0

x5 x7

domκ2 domκ3 domκ4 domκ5domκ1

Figure 1: Five simplicial complexes in the filtration of the eight data
points at the top, and the domains of the induced partial simplicial
maps at the bottom.

that f extends to simplicial maps on these complexes, but
this is unfortunately not the case in general. For instance,
f maps the endpoints of the edge x1x7 in K3 to the points
x2 and x6, but they are not endpoints of a common edge in
K3. The reason for this situation is the expanding character
of f . To still make sense of the map, we construct the max-
imal partial simplicial maps, κi : Ki9Ki consistent with
f . Figure 1 shows the domains of these maps in the bottom
row, and for i = 3, 4, we can see how κi wraps the con-
vex octagon twice around the hole in Ki shown right above.
This reflects the fundamental feature of f , namely that its
image wraps around the circle twice. To see this more for-
mally, we compare the homology classes in the domains with
their images. For i = 1, 3, 5 the inclusion of the domain of
κi in Ki induces an isomorphism in homology. The com-
parison therefore reduces to the study of eigenvectors of an
endomorphism. The lack of isomorphism for i = 2, 4 may
be overcome by the study of eigenvectors of pairs of linear
maps. In this particular case, we are able to conclude that the
eigenspace for eigenvalue t = 2 appears in K3 and lasts to
K4, thus reconstructing the essential character of f from a
very small sample.

To summarize, there are differences between the partial
simplicial maps and the underlying continuous map; see in
particular the reorganization that takes place at i = 2 and
i = 4. The hope to recover the properties of the latter from
the former is based on the ability of persistence to provide
a measure that transcends fluctuations and identifies what
stays the same when things change.

Outline. Section 2 introduces the categories of partial
functions, matchings, and linear maps. Section 3 discusses
towers within these categories and introduces the concept of
persistence. Section 4 describes the algorithm that computes
the persistent homology of an endomorphism from a hierar-
chical representation of the underlying self-map. Section 5
proves that the algorithm converges and produces stable per-
sistence diagrams. Section 6 presents results obtained with
our implementation of the algorithm. Section 7 concludes
the paper.

2 Categories
We find the language of category theory convenient to talk
about persistent homology; see MacLane [15] for a standard
reference. Most importantly, we introduce the category of
finite sets and matchings, which will lead to an elementary
exposition of persistence.

Partial functions. We recall that a category consists of ob-
jects and (directed) arrows between objects. Importantly,
there is the identity arrow from every object to itself, and
arrows compose associatively. An arrow, θ : K → L, is in-
vertible if it has an inverse, θ−1 : L → K, such that θ−1θ
and θθ−1 are the identity arrows for K and L. If there is an
invertible arrow from K to L, then the two objects are iso-
morphic. Every category in this paper contains a zero object,
which is characterized by having exactly one arrow to and
one arrow from every other object. It is unique up to iso-
morphisms. Two arrows, κ : K → K ′ and λ : L → L′

are conjugate if there are invertible arrows θ : K → L and
θ′ : K ′ → L′ that commute with κ and λ; that is: θ′κ = λθ.
A functor is an arrow between categories, assigning to each
object and each arrow of the first category an object and an
arrow of the second category in such a way that the identity
arrows are mapped to identity arrows and the functor com-
mutes with the composition of the arrows.

We use a category whose arrows generalize functions be-
tween sets as the basis of other categories. Specifically, a
partial function is a relation ξ ⊆ X × Y such that every
x ∈ X is either not paired or paired with exactly one ele-
ment in Y [14]. We denote it by ξ : X9Y , observing that
there is a largest subset X ′ ⊆ X such that the restriction
ξ : X ′ → Y is a function. We call dom ξ := X ′ the domain
and ker ξ := X −X ′ the kernel of ξ. For each x ∈ X ′, we
write ξ(x) for the unique element y ∈ Y paired with x, as
usual. Similarly, we write ξ(A) for the set of elements ξ(x)
with x ∈ A ∩ X ′. The image of ξ is of course the entire
reachable set, im ξ := ξ(X). If ξ : X9Y and η : Y9Z are
partial functions, then their composition is the partial func-
tion ηξ : X9Z consisting of all pairs (x, z) ∈ X × Z for
which there exists y ∈ Y such that y = ξ(x) and z = η(y).
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Thus, we have a category of sets and partial functions, which
we denote as Part. The zero object in this category is the
empty set, which is connected to all other sets by empty par-
tial functions. It will be convenient to limit the objects in this
category to finite sets.

Matchings. We call an injective partial function α : A9B
a matching. Its restriction to the domain and the image is
a bijection, hence the name. Bijections have inverses and
so do matchings, namely α−1 : B9A with (b, a) ∈ α−1

iff (a, b) ∈ α.2 Clearly, the composition of two matchings is
again a matching. We therefore have a category, and we write
Mch for this subcategory of Part: its objects are finite sets
and its arrows are matchings. Writing [k] := {1, 2, . . . , k},
we may assume that A = [p] and B = [q], in which p and q
are the cardinalities of A and B. Representing the matching
by its matrix, M = (Mij), we thus get

Mij =

{
1 if (j, i) ∈ α,
0 otherwise,

for j ∈ [p] and i ∈ [q]. Matrices of matchings are char-
acterized by having at most one non-zero entry in each row
and in each column. It follows that there are equally many
non-zero rows (the cardinality of the image) as there are non-
zero columns (the cardinality of the domain). The rank of the
matching is this common cardinality, rankα := #domα =
#imα. The simple structure of matchings makes it easy to
compute the ranks of compositions. Letting β : B9C be
another matching, the rank of βα : A9C is the cardinality
of imα ∩ domβ; see Figure 2. We can rewrite this as

β

α

BA C

Figure 2: The composition of two matchings. Its domain and image
are the dark regions in A and in C.

#(domβ − imα) = rankβ − rankβα. (1)

It will be useful to extend this relation to the composition of
three matchings, adding γ : C9D to the two we already
have. The number of elements in the domain of β that are
neither in the image of α nor map to the domain of γ is

#(domβ − imα− dom γβ) =

rankβ − rankβα− rank γβ + rank γβα. (2)
2To be more precise, we should call it a weak inverse, because α−1α

and αα−1 are identities on the domain and image of α and not necessarily
on A and B. We simplify language by ignoring this subtlety.

To see the second line, we construct a set Ω, first by taking
the disjoint union of the setsA,B,C,D, and second by iden-
tifying two elements if they occur in a common pair, which
may be in α, β, or γ. After identification, each matching
is a subset of Ω, namely α = A ∩ B, βα = A ∩ B ∩ C,
etc. Using the identification, the left-hand side of (2) may be
rewritten as the cardinality of the set

(B ∩ C)− (A ∩ B)− (B ∩ C ∩ D) =

(B ∩ C)− [(A ∩ B ∩ C) ∪ (B ∩ C ∩ D)]. (3)

By elementary inclusion-exclusion, its cardinality is the
right-hand side of (2).

Linear maps. Assuming a fixed field, we now consider the
category Vect, whose objects are the finite-dimensional vec-
tor spaces over this field, and whose arrows are the linear
maps between these vector spaces. The dimension of a vec-
tor space, U , is of course the cardinality of its basis, which
we denote as dimU . Letting υ : U → V be a linear map,
we write ker υ := υ−1(0) for the kernel, im υ := υ(U)
for the image, and rank υ := dim υ(U) for the rank of υ.
Given bases A of U and B of V , we construct the matrix
M = (Mij) of υ in these bases. In particular, Mij is the
coefficient of the i-th basis vector of B in the representation
of the image of the j-th basis vector of A. It is generally
not the matrix of a matching because υ does generally not
map A to B. However, if M is the matrix of a matching,
then the partial function α : A9B, consisting of all pairs
(a, b) ∈ A × B with υ(a) = b, is a matching that satis-
fies kerα = ker υ ∩ A, imα = im υ ∩ B, and, most impor-
tantly,

rankα = rank υ. (4)

A matching with this property exists, and we can compute
it by reducing M to Smith normal form. However, it is not
necessarily unique. On the other hand, any two matchings
α : A9B and α′ : A′9B′ that satisfy (4) – albeit possibly
for different basesA,A′ of U andB,B′ of V – are conjugate
in Mch. Indeed, we have #A = #A′, #B = #B′, and
rankα = rankα′ from (4), which suffices for the existence
of bijections that imply the conjugacy of α and α′.

Eigenvalues and eigenspaces. Still assuming the same
field, we consider a vector space, U , and a linear self-map,
φ : U → U . Letting t be an element in the field, we set

Et(φ) := {u ∈ U | φ(u) = tu}. (5)

If Et(φ) 6= 0, then t is an eigenvalue of φ, and Et(φ) is the
corresponding eigenspace. As usual, the non-zero elements
of Et(φ) are referred to as the eigenvectors of φ and t. It
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should be clear that Et(φ) is a subspace of U and thus a
vector space itself. We find it convenient to formalize the
transition from the linear self-map to its eigenspaces. To this
end, we consider another endomorphism, φ′ : U ′ → U ′, and
a linear map υ : U → U ′ such that

U U

U ′ U ′
?
υ

-φ

?
υ

-φ
′

(6)

commutes. We can think of this diagram as an arrow in a new
category Endo(Vect); see e.g. [18]. In particular, the objects
in Endo(Vect) are the endomorphisms in Vect, and the ar-
rows are the linear maps that commute with the endomor-
phisms. Fixing t, we now map φ to Et(φ) and φ′ to Et(φ′),
which are objects in Vect. Since (6) commutes, the image of
an eigenvector in Et(φ) belongs to Et(φ′). This motivates
us to define the restriction of υ to Et(φ) and Et(φ′) as the
image of υ under Et, thus completing the definition of Et as
the eigenspace functor from Endo(Vect) to Vect.

Eigenspace functor for pairs. The situation in this paper
is more general, and we need an extension from endomor-
phisms to pairs of linear maps. Let ϕ,ψ : U → V be such a
pair, and define Ēt(ϕ,ψ) := {u ∈ U | ϕ(u) = tψ(u)}. This
is a subspace of U , but it contains the entire intersection of
the two kernels, which we remove by taking the quotient:

Et(ϕ,ψ) := Ēt(ϕ,ψ)/ (kerϕ ∩ kerψ) . (7)

Assuming Et(ϕ,ψ) 6= 0, we call t an eigenvalue of the pair,
and Et(ϕ,ψ) the corresponding eigenspace. The non-zero
elements of Et(ϕ,ψ) are the eigenvectors of ϕ, ψ, and t.
Similar to the case of endomorphisms, Et(ϕ,ψ) is a vector
space, although its elements are not the original vectors but
equivalence classes of such. To formalize the transition, we
consider a second pair ϕ′, ψ′ : U ′ → V ′ and linear maps υ
and ν such that

V U V

V ′ U ′ V ′
?
ν

?
υ

�ϕ -ψ

?
ν

�ϕ
′

-ψ
′

(8)

commutes. We can think of this diagram as an arrow in a new
category as follows. The objects in Pairs(Vect) are the hor-
izontal pairs of linear maps, and the arrows are the vertical
pairs of linear maps that form commutative diagrams, as in
(8). Fixing t, we can now map ϕ, ψ toEt(ϕ,ψ) and ϕ′, ψ′ to
Et(ϕ

′, ψ′), which are objects in Vect. Since (8) commutes,
the images of the vectors in a class [u] ∈ Et(ϕ,ψ) form an
equivalence class [υ(u)] ∈ Et(ϕ

′, ψ′). We thus define the
arrow that maps [u] to [υ(u)] as the image of υ, ν under Et.

This completes the definition ofEt as the eigenspace functor
from Pairs(Vect) to Vect.

It is easy to see that if the vertical maps in (8) are isomor-
phisms, then Et(ϕ,ψ) and Et(ϕ′, ψ′) are isomorphic. Start-
ing with (8), suppose now that V = V ′ = U ′ and that ν and
ϕ′ are identities, and redraw the diagram in triangular form:

U

V V
��	
ϕ

@@R
ψ

-ψ′ . (9)

If ϕ is an isomorphism, then so is υ, which implies that
Et(ϕ,ψ) and Et(ψ′) are isomorphic. This little fact will be
useful in Section 5, when we analyze our algorithm by com-
paring eigenspaces obtained from endomorphisms and from
pairs of linear maps.

3 Towers and Persistence
In this section, we study subcategories defined by paths in a
category. Parallel paths in Vect and Mch will naturally lead
to the concept of persistent homology, now within a more
general framework than in the traditional literature.

Paths and categories of paths in a category. A tower is a
path with finitely many non-zero objects in a category. More
formally, it consists of objects Xi and arrows ξi : Xi →
Xi+1, for all i ∈ Z, in which all but a finite number of theXi

are the zero object. We denote this tower asX = (Xi, ξi). In
later discussions, we will refer to compositions of the arrows,
so we write ξii for the identity arrow of Xi and define

ξji := ξj−1 . . . ξi+1ξi : Xi → Xj , (10)

for i < j. Suppose Y = (Yi, ηi) is a second tower in the
same category, and there is a vector of arrows ϕ = (ϕi),
with ϕi : Xi → Yi, such that ηiϕi = ϕi+1ξi for all i. Refer-
ring to this vector of arrows as a morphism, we denote this
by ϕ : X → Y . To verify that the towers and morphisms
form a new category, we note that the identity morphism is
the vector of identity arrows, and that morphisms compose
naturally. The zero object is the tower consisting solely of
zero objects. Finally, an isomorphism is an invertible mor-
phism; it consists of invertible arrows between objects that
commute with the arrows of the towers. We remark that ar-
rows and morphisms are alternative terms for the same no-
tion in category theory. We find it convenient to use both so
we can emphasize different levels of the construction.

Persistence in a tower of matchings. As a first concrete
case, we consider a tower A = (Ai, αi) of matchings. Re-
call that rankαji is the number of pairs in αji . We formalize
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this notion by introducing the rank function a : Z×N0 → Z
defined by aji := a(i, j − i) := rankαji , where N0 is the
set of non-negative integers. It can alternatively be under-
stood by counting intervals, as we now explain. Letting A
be the disjoint union of the Ai, we call a non-empty partial
function a : Z9A an interval in A if the domain of a is
an interval [k, `] in Z, ai = a(i) belongs to Ai for every
k ≤ i ≤ `, and ai+1 = αi(ai) whenever k ≤ i < `; see
Figure 3. The interval is maximal if it cannot be extended at
either end. Specifically, a is maximal iff ak 6∈ imαk−1 and
a` ∈ kerα`. Finally, by a persistence interval3 we mean the
domain of a maximal interval in A. It should be clear that

α4→α3→α2→α1→A1 A2 A3 A4 A5

Figure 3: A tower of matchings with maximal intervals [1, 2], [1, 3],
[1, 4], twice [1, 5], [2, 2], [2, 5], [3, 5], [4, 4], [4, 5].

a`k is the number of intervals inA with domain [k, `]. Equiv-
alently, it is the number of maximal intervals with domains
that contain [k, `]. We can also reverse the relationship and
compute the number of persistence intervals from the rank
function. Letting #[i,j] = #[i,j](A) denote the number of
maximal intervals with domain [i, j], we have

#[i,j] = aji − aji−1 − aj+1
i + aj+1

i−1 . (11)

To see this, we consider againA and identify elements if they
belong to a common pair in any of the αi. After identifica-
tion, every point a in A corresponds to a maximal interval.
The domain of this maximal interval is [i, j] iff a belongs to
the domain of αji but not to the image of αi−1 and not to
the domain of αj+1

i . The relation (11) now follows from (2)
applied to α = αi−1, β = αji , γ = αj .

This relationship motivates us to introduce the persistence
diagram of A as the multiset of persistence intervals, which
we denote as Dgm(A). Note that #[i,j] is the multiplic-
ity of [i, j]. The number of intervals in the persistence dia-
gram, counted with multiplicities, is therefore #Dgm(A) =∑
i≤j #[i,j]. It is important to observe that the persistence

diagram characterizes the tower up to isomorphisms.

EQUIVALENCE THEOREM A. LettingA and B be towers
in Mch, the following conditions are equivalent:

3We note a difference in convention to most of the related literature, in
which persistence intervals are defined half-open. In particular, [k, `] in our
notation corresponds to [k, ` + 1) in [9]. Reading them as intervals in Z,
they are the same.

(i) A and B are isomorphic;
(ii) the rank functions of A and B coincide;

(iii) the persistence diagrams of A and B are the same.

PROOF. (i)⇒ (ii). Since A and B are isomorphic, we have
invertible arrows θi : Ai → Bi that commute with the arrows
in A and B. It follows that rankαji = rankβji , for all i ≤ j.

(ii) ⇒ (iii). The rank function determines the multiplici-
ties of the intervals in the persistence diagram by (11).

(iii) ⇒ (i). We use induction over the cardinality of the
common diagram. If the cardinality is zero, then both towers
consist of empty matchings only, so they are isomorphic. As-
suming the implication for cardinality at most n, we consider
#Dgm(A) = #Dgm(B) = n+ 1. Picking up a persistence
interval in the common diagram and removing its images in
A and B, we obtain towers A′, B′ with coinciding persis-
tence diagrams of cardinality at most n. Thus, the towers are
isomorphic. The extension of the isomorphisms of A′ and
B′ to isomorphisms of A and B is now straightforward.

Persistence in a tower of linear maps. We return to as-
suming a fixed field, and consider a tower U = (Ui, υi) in
the category of vector spaces over this field.4 For each i, let
Ai be a basis of Ui. Restricting υi to Ai and Ai+1, we get a
partial function αi : Ai9Ai+1, again for every i.

DEFINITION. We call the tower of partial functions A =
(Ai, αi) a basis of the tower U if αi is a matching and
rankαi = rank υi, for every i.

We have seen in Section 2 that for each υi : Ui → Ui+1,
there are bases Ai and Ai+1 of the two vector spaces such
that the implied partial function αi : Ai9Ai+1 is a match-
ing that satisfies rankαi = rank υi; see (4). We will show
shortly that such bases exist for all vector spaces in the tower
simultaneously; see the Basis Lemma below. For now, we
assume that A = (Ai, αi) is such a basis, deferring the
proof to later. Considering compositions αji , we note that
rankαji = rank υji . Consequently, the rank functions of A
and U are the same. The basis of U is not necessarily unique,
but the rank function does not depend on the choice. Thus,
we can define the persistence diagram of U as the persis-
tence diagram of a basis, Dgm(U) := Dgm(A). We also
write #[i,j](U) := #[i,j](A) for the multiplicity of the inter-
val [i, j] in the persistence diagram of U . Writing uji for the
rank of υji , we thus get

#[i,j](U) = uji − uji−1 − uj+1
i + uj+1

i−1 (12)

4Part of the theory in this section can be developed for the more general
case of finitely generated modules over a principal ideal domain. For rea-
sons of simplicity, and because the crucial connection to matchings relies on
stronger algebraic properties, we limit this discussion to vector spaces over
a field right from the start.
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from (11). Similarly, we can generalize the Equivalence The-
orem A to the case of linear maps between finite-dimensional
vector spaces.

EQUIVALENCE THEOREM B. Letting U and V be towers
in Vect, the following conditions are equivalent:

(i) U and V are isomorphic;
(ii) the rank functions of U and V coincide;

(iii) the persistence diagrams of U and V are the same.

Tower bases. We now prove the technical result assumed
above to get Equivalence Theorem B. It is not new and can
be found in different words and with a less elementary proof
in [1].

BASIS LEMMA. Every tower in Vect has a basis.

PROOF. We construct the basis in two phases of an algorithm,
as sketched in Figure 4. Let U = (Ui, υi) be a tower in Vect,
and for each i, let Mi be the matrix that represents the map
υi in terms of the given bases of Ui and Ui+1.

Phase 1 Phase 2

Ui

Mi

U
i+

1

Figure 4: Two-phase reduction of the matrix. The shaded areas
contain zeros and non-zeros, the white areas contain only zeros,
and all dark squares are 1.

In Phase 1, we use column operations to turn Mi into col-
umn echelon form, as sketched in Figure 4 in the middle. We
get a strictly descending staircase of non-zero entries, with
zeros and non-zeros below and zeros above the staircase.
Here, we call the collection of topmost non-zero entries in
the columns the staircase, and we multiply with inverses so
that all entries in the staircase are equal to 1. By definition,
each column contains at most one element of the staircase,
and by construction, each row contains at most one element
of the staircase. The reduction to echelon form is done from
right to left in the sequence of matrices; that is, in the order
of decreasing index i. Indeed, every column operation in Mi

changes the basis of Ui, so we need to follow up with the
corresponding row operation in Mi−1. Since Mi−1 has not
yet been transformed to echelon form, there is nothing else
to do.

In Phase 2, we use row operations to turn the column ech-
elon into the normal form, as sketched in Figure 4 on the
right. Equivalently, we preserve the staircase and turn all
non-zero entries below it into zeros. To do this for a single
column, we add multiples of the row of its staircase element

to lower rows. Processing the columns from left to right, this
requires no backtracking. The reduction to normal form is
done from left to right in the sequence of matrices; that is,
in the order of increasing index i. Each row operation in Mi

changes the basis of Ui+1, so we need to follow up with the
corresponding column operation in Mi+1. This operation is
a right-to-left column addition, which preserves the echelon
form. Since Mi+1 has not yet been transformed to normal
form, there is nothing else to do.

In summary, we have an algorithm that turns each matrix
Mi into a matrix in which every row and every column con-
tains at most one non-zero element, which is 1. This is the
matrix of a matching. Since we use only row and column op-
erations, the ranks of the matrices are the same as at the be-
ginning. Each column operation in Mi has a corresponding
operation on the basis of Ui. Similarly, each row operation
in Mi has a corresponding operation on the basis of Ui+1.
By performing these operations on the bases of the vector
spaces, we arrive at a basis of the tower.

Persistent homology and derivations. Persistent homol-
ogy as introduced in [10, 22] may be viewed as a special case
of the persistence of towers of vector spaces. To see this, let
C = (Ci, γi) be a tower of chain complexes, with γi the
inclusion of Ci in Ci+1, and obtain H = (Hi, ηi) by apply-
ing the homology functor. Assuming coefficients in a field,
the latter is a tower of vector spaces. The persistent homol-
ogy groups are the images of the ηji . A version of persistent
homology, recently introduced in [1], studies a sequence of
vector spaces Ui and linear maps, some of which go forward,
from Ui to Ui+1, while others go backward, from Ui+1 to Ui.
This is a zigzag module if we have exactly one map between
any two contiguous vector spaces. It turns out that the the-
ory of persistence generalizes to this setting. In view of our
approach based on matchings, this is not surprising. Indeed,
the inverse of a matching is again a matching, so that there is
no difference at all in the category of matchings. To achieve
the same in the category of vector spaces, we only need to
adapt the above algorithm to obtain the zigzag generalization
of the Basis Lemma. The adaptation is also straightforward,
running the algorithm on a sequence of matrices that are the
original matrices for the forward maps and the transposed
matrices for the backward maps.

There are several ways one can derive towers from tow-
ers, and we discuss some of them. Letting U = (Ui, υi) and
V = (Vi, νi) be towers in Vect, we call V a subtower of U if
Vi ⊆ Ui and νi is the restriction of υi to Vi and Vi+1, for each
i. Given U and a subtower V , we can take quotients and de-
fine the quotient tower, U/V = (Ui/Vi, %i), where %i is the
induced map from Ui/Vi to Ui+1/Vi+1. Similarly, we can
construct towers from a morphism ϕ : U → V , where we no
longer assume that V is a subtower of U . Taking kernels and
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images, we get the tower of kernels, which is a subtower of
U , and the tower of images, which is a subtower of V . Tak-
ing the quotients, Ui/kerϕi and Vi/imϕi, we furthermore
define the towers of coimages and of cokernels. In [6], tow-
ers of kernels are used in the analysis of sampled stratified
spaces and introduced along with the towers of images and
cokernels. The benefit of the general framework presented
in this section is that persistence is now defined for all these
towers, without the need to prove or define anything else.

Suppose now that V = U , and let φ : U → U be an en-
domorphism. We can iterate φ and thus obtain a sequence of
endomorphisms. The generalized kernel of the component
φi : Ui → Ui is the union of the kernels of its iterated com-
positions. Similarly, the generalized image is the intersection
of the images of the iterated compositions:

gker φi :=

∞⋃
k=1

ker φ◦ki , (13)

gimφi :=

∞⋂
k=1

imφ◦ki , (14)

where φ◦ki is the k-fold composition of φi with itself. Similar
to before, we define two subtowers of U : the tower of gener-
alized kernels, denoted as gker φ, and the tower of general-
ized images, denoted as gimφ. By assumption, Ui has finite
dimension, which implies that both the generalized kernel
and the generalized image are already defined by finite com-
positions of φi. Furthermore, the ranks of gker φi and gimφi
add up to the rank of Ui. A trivial example of an element in
the generalized image is an eigenvector of φi, but gimφi also
contains the eigenvectors of the iterated compositions of φi
and the spaces they span.

Of particular interest are the quotient towers, U/gker φ
and U/gimφ, because of their relation to the Leray func-
tor [17] and Conley index theory [7, 16]. They may be of
interest in the future study of the persistence of the Conley
index applied to sampled dynamical systems.

Tower of eigenspaces. Of particular interest to this paper
is the tower of eigenspaces. When studying the eigenvec-
tors of the endomorphisms, we do this for each eigenvalue
in turn. To begin, we note that φ : U → U is a tower
in the category Endo(Vect). Indeed, each φi : Ui → Ui
is an object, and υi : Ui → Ui+1 commutes with φi and
φi+1. Applying the eigenspace functor, Et, we get the
tower Et(φ) = (Et(φi), δt,i) in Vect. Its objects are the
eigenspaces, Et(φi), and its arrows are the restrictions, δt,i,
of the υi to Et(φi) and Et(φi+1). We refer to it as the
eigenspace tower of φ for eigenvalue t.

Much of the technical challenge we face in this paper de-
rives from the difficulty in constructing linear self-maps from
sampled self-maps. This motivates us to extend the above

construction to a pair of morphisms. Let V = (Vi, νi) be
a second tower in Vect, let ϕ,ψ : U → V be morphisms
between the two towers, and recall that this gives a tower
in Pairs(Vect). Its objects are the pairs ϕi, ψi : Ui → Vi,
and its arrows are the commutative diagrams with vertical
maps υi and νi, as in (8). Similar to the single-map case,
we apply the eigenspace functor, Et, now from Pairs(Vect)
to Vect. This gives the tower Et(ϕ,ψ) = (Et(ϕi, ψi), εt,i)
in Vect. Its objects are the eigenspaces, and its arrows are
the linear maps that map [u] ∈ Et(ϕi, ψi) to [υi(u)] ∈
Et(ϕi+1, ψi+1). We refer to it as the eigenspace tower of
the pair (ϕ,ψ) for the eigenvalue t. This is the main new
tool in our study of self-maps. Of particular interest will be
the persistence module of this tower.

4 Algorithm
Assuming a hierarchical representation of an endomorphism,
we explain how to compute the persistent homology of its
eigenspaces in three steps. The general setting consists of a
filtration and an increasing sequence of self-maps. In Step
1, we compute the bases of the two towers obtained by ap-
plying the homology functor to the filtrations of spaces and
domains. In Step 2, we construct matrix representations of
the linear maps in the morphism between the two towers. In
Step 3, we compute the eigenvalues and the corresponding
eigenspaces as well as their persistence.

Hierarchical representation. The algorithm does its com-
putations on a simplicial complex, K, and a partial simpli-
cial map, κ : K9K. More precisely, κ is a partial map
on the underlying space of K, but we will ignore this dif-
ference. In addition, we assume a filtration of the complex,
∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, and of the domain,

domκ0 ⊆ domκ1 ⊆ . . . ⊆ domκn, (15)

with κi : Ki9Ki being the two-sided restriction of κ to Ki.
Writing Simp for the category of simplicial complexes and
simplicial maps, we use the two filtrations to form a tower in
Pairs(Simp). Its objects are the pairs ιi, κ′i : domκi → Ki,
in which ιi is the inclusion and κ′i is the further restriction
of κi to the domain. Its arrows are the commuting diagrams
connecting contiguous objects by inclusions. Applying the
homology functor, we get a tower in Pairs(Vect), and ap-
plying the eigenspace functor, we get a tower in Vect. The
algorithm in this section computes the persistence diagram
of the latter tower.

In principle, it is irrelevant how K and κ are obtained. In
the context of sampling an unknown map, we may construct
both from a finite sample of that map. We explain this in
detail. Write VertK for the vertex set of K, and let g :
VertK9VertK be a partial function from the vertex set to
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itself. If the vertices of a simplex σ ∈ K map to the vertices
of a simplex τ ∈ K, then we extend the vertex map linearly
to σ as follows. Letting x0, x1, . . . , xp be the vertices, and
x =

∑p
i=0 λixi a point of σ, where

∑p
i=0 λi = 1 and λi ≥ 0

for all i, we define

κ(x) :=

p∑
i=0

λig(xi), (16)

which is a point of τ . Doing this for all such simplices σ,
we get a partial simplicial map, κ : K9K. Its domain con-
sists of all simplices whose vertices map to the vertices of a
simplex in K. Having constructed κ, it is now easy to con-
struct the partial simplicial maps on the subcomplexes of K.
Letting gi : VertKi9VertKi be the restriction of g to the
vertex set of Ki, we get κi : Ki9Ki by linear extension as
before; it is also the restriction of κ to Ki, as mentioned ear-
lier. We observe that the image is not necessarily the same
as the domain. This difference is the reason we construct the
tower in Pairs(Simp) and not in Endo(Simp), as explained
above. Finally, we note that the domains of the κi form the
filtration (15), as required. Indeed, if the vertices of a sim-
plex σ in Ki map to the vertices of a simplex τ in Ki, then
σ ∈ domκj for all i ≤ j ≤ n.

Assuming the above hierarchical representation of the
sampled map, we explain now how to compute the persis-
tent homology of its eigenspaces in three steps. In Step 1,
we compute the bases of the two towers obtained by apply-
ing the homology functor to the filtrations of spaces and do-
mains. In Step 2, we construct matrix representations of the
linear maps in the morphism between the two towers. In
Step 3, we compute the eigenvalues and the corresponding
eigenspaces as well as their persistence.

Step 1: spaces. Applying the homology functor, we get the
tower X = (Xi, ξi) from the filtration of domains domκi,
and the tower Y = (Yi, ηi) from the filtration of complexes
Ki. In this step, we compute the bases of these towers, which
we explain for X . Importantly, we represent all domains and
maps in a single data structure, and we compute the basis in
a single step that considers all maps at once.

Call domκi − domκi−1 the i-th block of simplices, and
sort domκ as σ1, σ2, . . . , σm such that each simplex suc-
ceeds its faces, and the i-th block succeeds the (i − 1)-st
block, for every 1 ≤ i ≤ n. Let D be the ordered bound-
ary matrix of domκ; that is: D[k, `] is non-zero if σk is a
codimension-1 face of σ`, and D[k, `] = 0, otherwise. The
ordering implies that the submatrix consisting of the first i
blocks of rows and the first i blocks of columns is the bound-
ary matrix of domκi, for each i. We use the original per-
sistence algorithm [9, Chapter VII.1] to construct the basis.
Similar to the echelon form, it creates a collection of distin-
guished non-zero entries, at most one per column and row,

but to preserve the order, it does not arrange them in a stair-
case. Specifically, the algorithm uses left-to-right column
additions to get D into reduced form, which is a matrix R
so that the lowest non-zero entries of the columns belong to
distinct rows. Suppose R[k, ` + 1] is the lowest non-zero

k

k

2-nd

...

......

`+ 1

n-th block1-st

Figure 5: The rows and columns of the reduced matrix are decom-
posed into n blocks each. The k-th column is zero, and the lowest
non-zero entry in the (` + 1)-st column belongs to the k-th row.
Since the k-th and (` + 1)-st columns belong to the first and the
second blocks, the corresponding persistence interval is [1, 1].

entry in column ` + 1, as in Figure 5. Then R[., k] = 0
and b`+1 := R[., ` + 1] is the boundary of a chain that con-
tains σ`+1. We note that b`+1 existed as early as Xk but not
earlier, and that it changed to a boundary in X`+1 but not
earlier. In other words, b`+1 6∈ im ξk−1 and b`+1 ∈ ker ξ`,
as required for a maximal interval. Assuming σk belongs to
the i-th block of simplices, and σ`+1 belongs to the (j + 1)-
st block, the corresponding persistence interval is [i, j]. It is
empty if i = j + 1. In the persistence literature, the above
situation is expressed by saying that b` is born atXi and dies
entering Xj+1. It is also possible that a cycle is born but
never dies, in which case we do not have a corresponding
lowest non-zero entry in the matrix. But this case can easily
be avoided, for example by adding the cone over the entire
complex as a last block of simplices to the filtration.

Given an index 1 ≤ i ≤ n, we identify the persistence
intervals that contain i and get a basis of Xi by gathering the
vectors in the corresponding columns of R. The collection
of these bases form a basis of X ; see Section 3. Running the
same algorithm on the filtration of K, we get a basis of Y .

Step 2: maps. Let ϕ,ψi : X → Y be the morphisms such
that ϕi is induced by ιi : domκi → Ki and ψi is induced by
κ′i : domκi → Ki. In the second step of the algorithm, we
construct matrix representations of the two morphisms. Both
matrices, Φ for ϕ and Ψ for ψ, have their columns indexed by
the non-zero columns of the reduced matrix of X and their
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rows indexed by the non-zero columns of the reduced matrix
of Y . We explain the computations for Ψ.

Letting R[., ` + 1] be a non-zero column in the reduced
matrix of X , we recall that b`+1 = R[., ` + 1] is a cycle in
domκ. First, we compute its image, c`+1 := κ(b`+1), which
either collapses to zero or is a cycle of the same dimension
in imκ. Second, we write the homology class of c`+1 as a
linear combination of the basis vectors of Yj , assuming σ`
belongs to the j-th block of simplices, as before. Most effec-
tively, this is done as part of the reduction of the boundary
matrix ofK. Indeed, we can insert the images of the columns
into the boundary matrix so that their representation as linear
combinations of basis vectors of Y falls out as a by-product
of the reduction. Running the same algorithm for ϕ, we get
the matrix Φ.

Figure 6: Extracting the matrix representation of ψi from Ψ. For
each persistence interval that contains i, we show the row or column
that stores the corresponding cycle.

The two computed matrices represent the morphisms, ϕ
and ψ, from which the matrices Φi and Ψi representing the
arrows, ϕi and ψi, can be extracted. To do so, we first find
all persistence intervals that contain i, as before. Second,
we collect the intersections of all corresponding rows and
columns, as illustrated in Figure 6.

Step 3: eigenspaces. We recall that Step 2 provides pre-
sentations of ϕ and ψ in terms of the same bases, namely
those of X and of Y as computed in Step 1. In this step, we
compute the filtration of eigenspaces and their persistence,
separately for each eigenvalue t 6= 0. Fixing the eigenvalue,
we compute the eigenspaces of ϕi and ψi and we take the
quotient relative to the intersection of kernels:

Ēt(ϕi, ψi) = ker (ϕi − tψi), (17)
Et(ϕi, ψi) = Ēt(ϕi, ψi)/ (kerϕi ∩ kerψi) . (18)

It might be interesting to do the computations incrementally,
as in Steps 1 and 2, but here we have to add as well as re-
move rows and columns, which makes the update operation

complicated. Besides, the matrices at this stage tend to be
small (see Table 1), so we decide to do the computations for
each index i from scratch. At the same time, we extract the
kernels of ϕi and ψi from Φi and Ψi, and we use standard
methods from linear algebra to compute the quotient. Next,
we compute the maps ξi : domκi → domκi+1 and their
restrictions εt,i : Et(ϕi, ψi) → Et(ϕi+1, ψi+1), thus com-
pleting the construction of the eigenspace tower defined by
ϕ and ψ. Finally, we compute the persistence of this tower
as explained in Section 3.

5 Analysis
Given a finite set of sample points and their images, we apply
the algorithm of Section 4 to compute information about the
otherwise unknown map acting on an unknown space. In this
section, we prove that under mild assumptions – about the
space, the map, and the sample – this information includes
the correct dimension of the eigenspaces. We also show that
the persistence diagrams of the eigenspace towers are stable
under perturbations of the input.

Graphs and distances. Let f : X → X be a continuous
map acting on a topological space. For convenience, we as-
sume that X is a subset of R`, with topology induced by the
Euclidean metric.5 While we are interested in exploring f ,
we assume that all we know about it is a finite set, S ⊆ X,
and the image, f(s), for every point s ∈ S. Assuming that
the image of every point is again in S, we write g : S → S
for the restriction of f .6 The goal is to show that under rea-
sonable conditions, f and g are similar so that we can learn
about the former by studying the latter. To achieve this, we
need some way to measure distance between two functions
whose domains need not be the same. To this end, we con-
sider the graphs of the functions,

Gf := {(x, f(x)) | x ∈ X}, (19)
Gg := {(s, g(s)) | s ∈ S}, (20)

which are both subsets of R` × R`. Using the product met-
ric, the distance between (x, x′) and (y, y′) in the product
space is the larger of the two Euclidean distances, ‖x− y‖
and ‖x′ − y′‖. We compare two maps using the Hausdorff
distance between their graphs. Recall that the Hausdorff dis-
tance between two sets is the infimum radius, r, such that
every point of either set has a point at distance at most r in

5With occasionally more elaborate formalism, everything we say can be
generalized to X embedded in a general metric space.

6In cases in which the image of a point is not in S, we can snap the image
to the nearest point in S, which usually implies only a small perturbation of
the map. Similarly, we can relax the assumption that g be a restriction of
f to allow for errors due to noise, for imprecision of measurement, and for
approximations in computation.
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the other set. We note that the Hausdorff distance between
the domains of the two functions is bounded from above by
the Hausdorff distance between their graphs:

Hdf(X, S) ≤ Hdf(Gf,Gg), (21)

simply because the distance between two points in R` × R`
is at least the distance between their projections to the first
factor. The Hausdorff distance between two sets is related to
the difference between the distance functions they define. To
explain this, let dX, dS : R` → R be the functions that map
each point y to the infimum distance to a point in X and S,
respectively. Similarly, let dGf , dGg : R` × R` → R be the
corresponding distance functions in the product space. Then
we have

‖dX − dS‖∞ = Hdf(X, S), (22)
‖dGf − dGg‖∞ = Hdf(Gf,Gg). (23)

The conditions under which we can infer properties of f
from g include that for small distance thresholds, the sub-
level sets of dX have the same homology as X. To quan-
tify this notion, we assume that dX is tame, by which we
mean that every sublevel set has finite-dimensional homol-
ogy groups, and there are only finitely many homological
critical values that are the values at which the homology of
the sublevel set changes non-isomorphically. Following [5],
we define the homological feature size of X as the small-
est positive homological critical value of dX, denoting it as
hfs(X). Similarly, we assume that dGf is tame, and we de-
fine hfs(Gf).

We note that there are functions f for which hfs(X) <
hfs(Gf), but there are also functions for which the relation is
reversed. For example, the graph of the function that wraps
the unit circle in R2 k times around itself is a curve on a
torus in R4. For large values of k, thickening this curve by
a small radius suffices to get the same homotopy type as the
torus, while thickening the circle by the same radius does not
change its homotopy type.

Sublevel sets. If f and g are similar, then the sublevel sets
of their distance functions are similar. To make this more
precise, we write Ar := d−1A [0, r], where A may be X, S,
Gf , Gg, or some other set. Then

Xr ⊆ Sr+ε ⊆ Xr+2ε, (24)
Gfr ⊆ Ggr+ε ⊆ Gfr+2ε, (25)

provided ε ≥ Hdf(Gf,Gg), which we recall is at least the
Hausdorff distance between X and S. This suggests that we
compare f and g based on the sublevel sets of the four dis-
tance functions, which is the program we follow.

To apply the algorithms in Section 4, we use an indirect
approach that encodes the sublevel sets in computationally

more amenable simplicial complexes. To explain this con-
nection, we construct a complex by drawing a ball of ra-
dius r around each point of S, and let Kr = Kr(S) be
the nerve of this collection. It is sometimes referred to as
the Čech complex of S and r; see [9, Chapter III]. Simi-
larly, we let Lr = Lr(Gg) be the Čech complex of Gg and
r.7 While the complexes are abstract, they are constructed
over geometric points, which we use to form maps. Specif-
ically, we write pr : Lr → Kr for the simplicial map we
get by projecting R` × R` to the first factor, and we write
qr : Lr → Kr if we project to the second factor. Both are
simplicial maps because for every simplex in Lr, its projec-
tions to the two factors both belong to Kr. Note that pr is
injective, which implies that its inverse is a partial simplicial
map, p−1r : Kr9Lr, and its restriction to the domain is a
simplicial isomorphism. Composing it with qr, we get the
partial simplicial map qrp−1r : Kr9Kr.

We are now ready to relate this construction with the set-
up we use for our algorithm in Section 4. There, we begin
with a partial simplicial map, κ : K9K, and a filtration of
K. The filtration is furnished by the sequence of Čech com-
plexes of S, which ends with the complete simplicial com-
plex K over the points in S, and κ is the partial simplicial
map defined by g : S → S. In this case, κ happens to be a
simplicial map because K is complete. For each radius, r,
we have defined κr : Kr9Kr as the restriction of κ, which
is a partial simplicial map. It is not difficult to prove that κr
is equal to the map we have obtained by composing p−1r and
qr before. We state this result and its consequence for towers
of eigenvalues without proof.

PROJECTION LEMMA. Let κr : Kr9Kr be the par-
tial simplicial map obtained by restricting κ to Kr, and let
pr, qr : Lr → Kr be the simplicial maps induced by project-
ing to the two factors. Then κr = qrp

−1
r , for every r ≥ 0.

Recall that κ′r is the restriction of κr to the domain, and
ιr : domκr → Kr is the inclusion map. In view of the
Projection Lemma, we can freely move between the tower
of eigenspaces we get for (ι, κ′) and (p, q), which we do in
the sequel.

Interleaving. We prepare the main results of this section
with a technical lemma about interleaving arrows between
eigenspaces. Let U,V ⊆ R`, let h : U → U and k : V →
V be self-maps, and set ε := Hdf(Gh,Gk). Projecting a
sublevel set of the distance function of the graph to those of
the two factors, we get an object in Pairs(Top) for h, and

7A practically more convenient alternative is the Vietoris-Rips complex
that consists of all simplices spanned by the data points whose diameters
do not exceed 2r. We will use it for the computations discussed in Section
6, but for now we stay with the Čech complex, which has the theoretical
advantage that its homotopy type agrees with that of the sublevel set for the
same r.
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another such object for k. Choosing the distance thresholds
so they satisfy r + ε ≤ r′, we have inclusions and therefore
an arrow in Pairs(Top):

Ur Ghr Ur

Vr′ Gkr′ Vr′
? ?

�pr -qr

?
�pr′ -qr′

. (26)

Applying now the homology functor, we get an arrow in
Pairs(Vect), where we write ϕr, ψr and υr′ , νr′ for the maps
induced in homology. Next applying the eigenspace functor,
we get the arrow Et(ϕr, ψr) → Et(υr′ , νr′) in Vect. The
technical lemma states two kinds of interleaving patterns,
(27) and (28), with the main difference being the reversed
direction on the right.

INTERLEAVING LEMMA. Let U,V ⊆ R`, and h : U →
U, k : V→ V be such that the associated distance functions
are tame. Set ε := Hdf(Gh,Gk). If a+ ε ≤ b ≤ c ≤ d− ε,
then

Et(ϕa, ψa) Et(ϕd, ψd)

Et(υb, νb) Et(υc, νc)

-

?
-

6 (27)

commutes. If a + ε ≤ b ≤ c and a ≤ d ≤ c − ε, then the
following diagram commutes:

Et(ϕa, ψa) Et(ϕd, ψd)

Et(υb, νb) Et(υc, νc)

-

? ?
-

. (28)

PROOF. We prove (27) using the commutative diagram of
inclusions and projections in Figure 7. Within each disk, we
have an object of Pairs(Top), and for every pair of adjacent
disks, we have an arrow of Pairs(Top). The vertical arrows
are replicas of (26), which are justified by a+ ε ≤ b and c ≤
d− ε. Each horizontal arrow connects objects in Pairs(Top)
induced by the same self-map, so we only need a ≤ d and
b ≤ c, which we get from the assumptions. Applying the
homology functor, we get the same diagram, with spaces and
maps replaced by the corresponding vector spaces and linear
maps. Indeed, the horizontal maps are clear, and the vertical
maps are induced by the inclusions that exist because of the
assumed relations between a, b, c, d, and ε. Applying now
the eigenspace functor, we get the diagram in (27), which is
easily seen to commute. The proof for the diagram in (28) is
similar and omitted.

Ghd

Ud

VcVb

q

q

Ua

Ud

Vc

q

q

p

p

p

p

Vb

Ua

Gkc

Gha

Gkb

Figure 7: Sublevel sets of the distance functions and their contain-
ment relations. All maps labeled p or q are projections, and all other
maps are inclusions.

Small thickenings. To further prepare our first main result,
we recall that the projections from the graph of a continuous
map commute with the map itself, a fact best expressed using
a commutative diagram:

Gf, Y

X, X X, X
��+

p,µ
QQs
q,ν

-f,φ
. (29)

Here, we write Y for the homology group ofGf , µ : Y → X
for the map induced on homology by p : Gf → X, etc.
The restriction of p to Gf and X is a homeomorphism. We
can therefore apply the result stated at the end of Section 2,
which implies that Et(µ, ν) and Et(φ) are isomorphic, for
every eigenvalue t. This property persists for small thick-
enings of X and Gf assuming the two spaces are compact
absolute neighborhood retracts; see [19, p. 290, Thm. 10].
While the name is intimidating, the requirements for a space
to be called an absolute neighborhood retract are mild. Since
X and Gf are homeomorphic, the graph is a compact ab-
solute neighborhood retract whenever X is one. The result
about thickening such spaces will be useful in the proof of
our first main result, so we state this observation more for-
mally, but without proof.

ANR LEMMA. Let X ⊆ R` be a compact absolute neigh-
borhood retract, let f : X → X be such that the associated
distance functions are tame, and let r be positive but smaller
than min{hfs(X),hfs(Gf)}. Writing µr, νr for the maps in-
duced in homology by the restrictions of p, q to Gfr and Xr,
the eigenspace Et(µr, νr) is isomorphic to Et(φ), for every
eigenvalue t.
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Convergence. We are now ready to formulate our first
main result. As before, we consider a continuous self-map
f : X→ X, and write φ : X → X for the endomorphism in-
duced in homology. Let S ⊆ X be a finite sample of X, and
let g : S → S another map, perhaps the restriction of f to
S. As before, we consider the projections from a thickened
version of Gg to the two components. Letting ϕr and ψr be
the corresponding maps induced in homology, we write

εr
′

t,r : Et(ϕr, ψr)→ Et(ϕr′ , ψr′) (30)

for the map between the eigenspaces. In a nutshell, our result
is a relationship between the dimension of Et(φ) and the
rank of εr

′

t,r, for special values of r and r′.

INFERENCE THEOREM. Let X ⊆ R` be a compact abso-
lute neighborhood retract, S ⊆ X, and let f : X → X, be a
map such that the distance functions for X and Gf are tame.
Then any map g : S → S satisfies

dimEt(φ) = rank ε3εt,ε, (31)

for all Hdf(Gf,Gg) < ε < 1
4 min{hfs(X),hfs(Gf)}.

PROOF. Recall that pr, qr are the projections of Gfr to the
two components, and µr, νr are the maps induced in homol-
ogy. For r ≤ r′, we write δr

′

t,r : Et(µr, νr) → Et(µr′ , νr′)
for the induced map on eigenspaces. In view of the ANR
Lemma, it suffices to prove

dimEt(µr, νr) = rank ε3εt,ε (32)

for r < min{hfs(X),hfs(Gf). To prove (32), set h = f and
k = g in the diagram in Figure 7. Applying the eigenspace
functor now gives

Et(µa, νa) Et(µd, νd)

Et(ϕb, ψb) Et(ϕc, ψc)
?

-δ

-ε
6 . (33)

The rest of the argument does the accounting for particular
choices of the parameters. Let e > Hdf(Gf,Gg), assume
b ≤ c, and set a = b − e and d = c + e. Consider the
image of Et(µa, νa) in Et(µd, νd). We can either follow
the horizontal arrow from left to right, or the down-right-up
path, and because of commutativity, we get the same image
either way. Dropping the arrows at the end and the beginning
of the path does not decrease the dimension of the image.
We therefore get inequalities between the dimensions of the
images of the horizontal maps, which we now decorate with
their parameters:

rank δc+et,b−e ≤ rank εct,b, (34)

rank εc+et,b−e ≤ rank δct,b, (35)

where we get the second inequality by symmetry, switching
the assignments to h = g and k = f in Figure 7. Next,
choose a positive η < ε small enough such that the Hausdorff
distance between the graphs of f and g is less than ε − η.
By assumption, the homological feature sizes of X and Gf
are both larger than 4ε and therefore larger than 4(ε − η).
Substituting b = ε, c = 3ε, e = ε−η in (34), and b = 2ε−η,
c = 2ε+ η, e = ε− η in (35), we obtain

rank δ4ε−ηt,η ≤ rank ε3εt,ε ≤ rank δ2ε+ηt,2ε−η. (36)

By definition of ε and η, there are no homological critical
values of dX and dGf in [η, 4ε − η]. It follows that the di-
mensions of the images of δηt,η , δ4ε−ηt,η , and δ2ε+ηt,2ε−η are all the
same. Hence,

rank δηt,η = rank ε3εt,ε. (37)

Since rank δηt,η = dimEt(µη, νη), we see that (32) is satis-
fied for r = η.

The Inference Theorem may be interpreted as a statement
of convergence of our algorithm: if the sampling is fine
enough then we are guaranteed to get the dimensions of the
eigenspaces as dimensions of persistent homology groups.

Stability. Next, we strengthen the convergence result and
prove the stability of the persistence diagrams of the eigen-
space towers under perturbations of the input. This is in-
teresting because we may sample the same self-map twice
and wonder what we can say about the relationship between
the two results. Most of the work that allows us to give a
meaningful answer to this question has already been done.
To set the stage, we consider two self-maps, h : U→ U and
k : V → V, in which both U and V are embedded in R`.
As before, we assume that the distance functions, dU, dV,
dGh, dGk are tame. We can now form towers in Pairs(Top)
consisting of projections from the sublevel sets of dGh and
dGk to the sublevel sets of dU and dV; see Figure 7. To for-
malize the result, we define the bottleneck distance between
two persistence diagrams as the maximum distance between
pairs in an optimal bijection:

Bot(E,F) = inf
ι:E→F

max
P∈E
‖P − ι(P )‖∞. (38)

Here, P = [ab, ad) is a persistence interval in E, now using
the original convention in which ab and ad are the birth- and
death-values. If Q = [cb, cd) is another persistence interval,
then we compute ‖P −Q‖∞ = max{|ab − cb|, |ad − cd|},
as for points in the plane.8 Letting Et and Ft be the towers of
eigenspaces in Vect we get for h and k, we write Dgm(Et)
and Dgm(Ft) for their persistence diagrams.

8Following [5], we assume that each persistence diagram contains copies
of all empty intervals – points of the form (a, a) – which are used to com-
plete a bijection or decrease the maximum distance.
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STABILITY THEOREM. Let U,V ⊆ R`, and h : U → U
k : V → V such that the associated distance functions are
tame. Then

Bot(Dgm(Et),Dgm(Ft)) ≤ Hdf(Gh,Gk). (39)

PROOF. According to [3, Thm. 4.9], we only need to verify
the ε-strong interleaving of the two towers for ε equal to the
Hausdorff distance between Gh and Gk, but this is guaran-
teed by the Interleaving Lemma.

Letting h and k be finite samples of f : X → X, the
Stability Theorem implies that the information they convey
about the given function cannot be arbitrarily different. Set-
ting h = f and k = g, the theorem quantifies the extent
to which the persistence diagram for the sampled points can
deviate from that of the original self-map.

6 Experiments
In this section, we present the results of a small number of
computational experiments based on the implementation of
the algorithm described in Section 4. We begin with a brief
review of the algorithm and a discussion of the design deci-
sions used in writing the software.

Implementation. We implement the three steps of the al-
gorithm using the C++ language and methods from its STL
library. As mentioned before, we use Vietoris-Rips com-
plexes as the basis of persistence computations, as opposed
to the theoretically more satisfying but computationally more
expensive Čech complexes. With each simplex, we store the
vertices so that their images can be easily computed. Con-
versely, we use a map in STL to find the simplex for a given
set of vertices. In addition, we compute the kernels and the
quotients in Step 3 using methods from the CAPD library [23]
and the CAPD::RedHom library [24].

STEP 1: compute the bases of the towers X = (Xi, ξi) and
Y = (Yi, ηi) defined by the filtrations of the domains
and complexes. We use the original persistence algo-
rithm with a sparse-matrix representation in which the
non-zero elements of each column are stored in a data
structure referred to as a vector in C++.

STEP 2: compute the matrix representations of the mor-
phisms ϕ,ψ : X → Y . Similar to Step 1, the algorithm
works by incremental reduction of two matrices. The
result is a compact representation of the maps εt,i in the
eigenspace tower.

STEP 3: construct the sequence of eigenspaces and compute
the corresponding persistence diagram. Since the ma-
trices representing the maps εt,i tend to be small and

dense, we use their full representations and the algo-
rithm in the proof of the Basis Lemma.

All experiments are conducted with an Intel Core2 Quad
2.66GHz processor with 8GB RAM, but using only one core.
To convey a feeling for the performance of the software, Ta-
ble 1 states the time needed to process datasets of size be-
tween 40 and 140 points, giving complexes between 10 thou-
sand and 460 thousand simplices. We mention that the run-

#points skeleton Step 1 Step 2 Step 3
40 0.14 0.39 0.00 0.04
60 0.67 2.12 0.00 0.15
80 2.21 6.84 0.01 0.39

100 5.18 23.49 0.01 0.86
120 11.13 63.09 0.01 1.50
140 19.53 137.86 0.03 2.18

Table 1: Time in seconds for constructing the 2-skeleton of the
Vietoris-Rips complex and executing the steps of our algorithm for
one eigenvalue.

ning time can be further improved. In particular, the current
implementation is generic, working for any field of coeffi-
cients, and the code implementing Step 1 has not yet been
optimized. Note the dramatic drop in the running time from
Step 1 to Step 2. The reason are the surprisingly small num-
bers of generators needed in the construction of the matrices
Φ and Ψ. In the first set of experiments, we get between
3 and 21 generators for the filtration of domκ and between
5 and 24 generators for the filtration of K. Compare this
with the 10,700 to 457,450 simplices in the 2-skeleta of the
Vietoris-Rips complex which have to be processed in Step 1.
The code for Step 3 takes more time than for Step 2 because
it executes computationally demanding procedures in linear
algebra.

Expansion. In our first set of computational experiments,
we consider the unit circle in the complex plane, and the
function f : S1 → S1 defined by f(z) := z2. It maps
each point on the circle to the point with twice the angle.
The 1-dimensional homology of the circle has rank 1, with
the circle itself being a generator. Under f , the image of this
generator is the circle that wraps around S1 twice. We see
that the map expands the space, doubling the angle between
any two points. Our main interest is to see whether the meth-
ods of this paper can detect this simple fact.

We chose values for three parameters to generate the data
sets on which we run our software: the order of the cyclic
field, Zk with k = 1009, the number of points, m = 100,
and the width of the Gaussian noise, σ ∈ [0.00, 0.30]. The
finite field is used because we lack a general algorithm for
eigenvalues; instead, we try out all possible values. The
sample of the function f is computed by picking points
zj := cos( 2jπ

m ) + i sin( 2jπ
m ), for 0 ≤ i < m, where i is
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Figure 8: The representation of the function f(z) := z2 using
m = 100 points with Gaussian noise σ = 0.18. The dots mark
the points in S and the crosses mark their squares. The solid poly-
gon generates the 1-cycle visible in the persistence diagram of the
eigenspace tower for eigenvalue t = 2; its images is drawn in blue
dashed lines and wraps twice around the origin, as expected.

the imaginary unit. Next, we let xj be a point randomly cho-
sen from the isotropic Gaussian kernel with center zj and
width σ. Let S be the set of points xj . Finally, we set the
image of xj to the point in S that is closest to x2j under the
Euclidean metric in the plane. For an example, see Figure 8.
The m points define n ≤

(
m
2

)
different distances and there-

fore n + 1 different Vietoris-Rips complexes. We are only
interested in the 1-dimensional homology, so we can limit
ourselves to the 2-skeleta of these complexes. To construct
them, we use the algorithm in [21] to compute the complete
2-complex over S. Sorting the edges by length, we get the
filtration K0 ⊆ K1 ⊆ . . . ⊆ Kn. Figure 9 shows the 1-
dimensional persistence diagrams thus obtained for four dif-
ferent values of the width σ. As expected, the persistence of
the interval decreases as the noise increases. For σ = 0.30,
we get a low-persistence interval for every value of t. While
we do not observe this all the time, this is a generic phe-
nomenon, and we will shed light on it shortly. For now we
just mention that the occurrence of every field value as eigen-
value indicates that we do not have sufficient data to see the
features of the map.

Reflection. In our second set of computational experi-
ments, we let f : S1 → S1 be defined by f(z) := z̄, where
z̄ = a − ib if z = a + ib. Going around the circle once,
in a counterclockwise order, the image under f goes around
the circle once in a clockwise order. Again we are interested
whether the methods in this paper can detect this fact. The
points and their images are chosen in the same way as be-
fore, except that the image of xj is chosen to be the closest
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Figure 9: The 1-dimensional persistence diagrams of f(z) := z2

obtained for data that samples the function with Gaussian noise.
Crosses mark the persistence intervals for eigenvalue t = 2. The
dots alert us of the fact that we see this interval for all values, not
just for t = 2.

point to x̄j . Figure 10 shows the result for σ = 0.27.
Instead of showing the individual 1-dimensional persis-

tence diagrams, we superimpose them into one diagram. To
further facilitate the comparison with the first set of experi-
ments, we draw the superimposed diagrams side by side in
Figure 11. In both cases, the Gaussian noise varies between
0.00 and 0.30. We limit the comparison to the eigenvalues
t = 2 for the expansion and t = −1 for the reflection. The
diagrams clearly show that the persistence interval shrinks
with increasing noise. Indeed, the birth-coordinate grows
and the death-coordinate shrinks, so that the sum stays ap-
proximately constant, with a faint tendency to shrink. We
also see that for the larger noise levels, there are sometimes
spurious persistence intervals.

Abundance of eigenvalues. We wish to shed light on the
phenomenon that for some datasets and some complexes in
the filtration, every field value is an eigenvalue of the pair
of linear maps. While it might be surprising at first, there is
an elementary explanation that has to do with computing the
eigenvalues for a pair instead of a single map.

Here is an illustrative example. Let Yr be generated by two
loops, A and B, and let Xr be generated by a single loop, C.
Suppose also that ϕr maps both A and B to C, while ψr
maps A to C and B to 2C. Setting y = iA + jB, we have
ϕr(y) = (i + j)C and ψr(y) = (i + 2j)C. Elementary
number theoretic considerations show that for every t ∈ Zk
there are i and j such that t = i+j

i+2j . In other words, we can
find i and j such that ϕr(y) is the t-fold multiple of ψr(y).
Intersecting the two kernels, we get i + j = i + 2j = 0
and therefore i = j = 0. Hence, taking the quotient has
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Figure 10: The representation of the function f(z) := z̄ using
m = 100 points with Gaussian noise σ = 0.27. The solid poly-
gon generates the 1-cycle visible in the persistence diagram of the
eigenspace tower for eigenvalue t = −1; its image is drawn in
blue dashed lines. The dotted polygon generates a second (spuri-
ous) 1-cycle in the same diagram. Correspondingly, there are two
persistence intervals, drawn as crosses in Figure 11.

no effect, implying that Et(ϕr, ψr) has non-zero rank for
every t. Indeed, because the two loops in Yr map to different
multiples of the same loop in Xr, we have enough flexibility
to form combinations whose images under the two maps are
arbitrary multiples of each other. This can also happen for an
endomorphism φr : Yr → Yr, for example by setting C =
B, but in this case we do not have a second map to compare
and therefore get t = 2 as the only non-zero eigenvalue.

Let us now look at the linear algebra of the situation.
In Step 2, we compute matrices Φr and Ψr representing
ϕr, ψr : Yr → Xr, and in Step 3, we compute the null-
space of Φr − tΨr. The entries of this matrix are degree-
1 polynomials in t. Let t0 be a value at which the matrix
reaches its maximum rank, which we denote as k0. Clearly,
k0 ≤ min{#rows,#columns}. Note that Φr − t0Ψr has a
full-rank minor of size k0 times k0. Let ∆(t) be the deter-
minant of that minor, but now for arbitrary values t. It is a
polynomial of degree k0, and because ∆(t0) 6= 0, it is not
identically zero and therefore has at most k0 roots. By choice
of t0, this implies that the matrix has maximum rank for all
but at most k0 values of t. Correspondingly, the null-space
has minimum dimension, #columns−k0, for all but at most
k0 values of t. This is the dimension of Ēt(ϕr, ψr). We still
take the quotient by dividing with kerϕr ∩ kerψr, which
amounts to reducing the dimension by the dimension of that
intersection, which we denote as k1. The resulting dimen-
sion of the nullspace is the same for all but at most k0 values
of t, namely #columns− k0− k1. If k1 < #columns− k0,

then Et(ϕr, ψr) has positive rank for every value of t. This
is what happens for the expanding datasets generated with
width σ = 0.15, 0.24, 0.30 and for the persistence intervals
represented by the dots in the left diagram in Figure 11. In
all other cases, we have k1 = #columns− k0.

In conclusion, we mention that the extension of the eigen-
value problem to pairs of linear maps for not necessarily
square matrices is not well understood. A relevant unpub-
lished manuscript is [4], in which properties of the solution
are discussed and a reduction algorithm is given.

7 Discussion
The main concept introduced in this paper is the eigenspace
tower of a filtered self-map. Together with its persistence
diagram, it forms a powerful tool in the study of discretely
sampled dynamical systems. Besides the mathematical de-
velopment, which is based on a category theory approach to
persistence, we give an algorithm for computing persistence
diagrams of eigenspace towers, and we provide evidence of
its efficacy by presenting results obtained with a software
implementation. The work reported in this paper raises a
number of yet unanswered questions.

• Can the persistence of the eigenspace towers of a pair
of morphisms be computed directly, for all eigenvalues
simultaneously? To answer this question, we may have
to study the persistence of Jordan form representations
of endomorphisms.

• The category approach to persistence opens the door
to a number of derived towers, including generalized
kernels and generalized images. How can we use their
persistence to enhance our understanding of discretely
sampled dynamical systems?

We remark that the traditional notion of a discrete dynamical
system discretizes time but not space. In contrast, discretiza-
tions of space are needed for rigorous numerics of dynamical
systems; see e.g. [13, Section 10.6]. There, the space is di-
vided into boxes and estimates of the images of the boxes
are used as input for the algorithm that computes topological
invariants. This is different from the more radical discretiza-
tion suggested by the work in this paper where we sample
the dynamical system only in a finite collection of points.
Such an approach may be useful when the dynamical sys-
tem is available only via experiments. It may also be used
to replace rigor in high-dimensional problems where reason-
able rigorous estimates are not possible. We believe that it is
interesting to continue the program started here and embed
persistence more comprehensively in discrete approaches to
dynamical systems.
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Figure 11: The superposition of the 1-dimensional persistence diagrams for f(z) := z2 and t = 2 on the left and for f(z) := z̄ and t = −1
on the right. The crosses are labeled by the level of the Gaussian noise used to generate the datasets. The dots are labeled similarly, but they
alert us of the fact that these persistence intervals occur for all values of t.
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