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ON THE OPTIMALITY OF THE FCC LATTICE FOR SOFT SPHERE
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Abstract. Motivated by biological questions, we study configurations of equal spheres that
neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configu-
ration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted
3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice.

Key words. packing and covering, soft density, lattice configurations, Voronoi domains, Bril-
louin zones

AMS subject classifications. 05B40, 52C17, 11H31

DOI. 10.1137/16M1097201

1. Introduction. High-resolution microscopic observations of the DNA orga-
nization inside the nucleus of a human cell support the Spherical Mega-base-pairs
Chromatin Domain model [7, 19]. It proposes that inside the chromosome territories
of eukaryotic cells, DNA is compartmentalized into sequences of highly interacting
segments of about the same length [9]. Each segment consists of roughly a million
base pairs and is rolled up to resemble a round ball. The balls are tightly arranged
within the available space, tighter than a packing since the balls deform when pressed
against each other, and less tight than a covering so that protein machines can find
access to the DNA needed for gene expression.

Motivated by the mentioned biological findings, the authors of [18] consider con-
figurations of spheres in which the overlap is limited by a parameter, and the quality
of the configuration is measured by its density, which is the expected number of balls
that contain a randomly selected point. Writing ϕi for the probability that a ran-
domly selected point lies in at least i balls, the density is δ =

∑
i≥1 ϕi. Computational

experiments reported in the same paper show that for small values of the parameter,
the highest density is attained for the FCC lattice, and that for large values, the
highest density is attained for the BCC lattice. These experiments are limited to a
1-parameter family of lattices—the same considered in this paper—and it is remark-
able that there is a sharp transition, with none of the other lattices challenging the
dominance of FCC and BCC. A similar setting was considered in [2] but for differ-
ent reasons. To study the packing of balls, the authors give upper bounds on the
volume of the union in which every ball is thickened by a parameter. Equivalently,
the (thickened) balls are packed softly, allowing for a limited overlap controlled by
the parameter. The bounds are proved for packings in Rn and are not limited to
lattices. Soft packing is also the natural setting for modeling physical processes at
the nanoscale. For example, Radin [21] considers finitely many interacting particles
governed by a potential function defined for pairs that penalizes distances below a
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threshold while giving preference to particles in close contact but above the distance
threshold. In two dimensions, the optimal configuration was found to be a subset of
the hexagonal lattice. As an alternative to parametrizing the overlap, the authors of
[11] measure a configuration by the probability of a randomly selected point to belong
to exactly one ball. In R2, this measure attains its maximum for the hexagonal grid
[1, 11], and even nonlattice configurations cannot increase the measure [4].

The interested reader can find a wealth of further information and references
on packing and covering in [6, 17]. To avoid ambiguity, we mention that in the
mathematical literature, a packing refers to a configuration of balls (hard spheres)
with disjoint interiors, while a covering is one in which the balls cover the entire
space without gaps. The traditional measure of quality is the density as defined
above.

In this paper, we restrict our attention to equal balls centered at points of a
lattice. Departing from [2, 18] and also [11], we introduce the soft density, δ1 =
ϕ1 −

∑
i≥2 ϕi, which penalizes for gaps in the coverage but also for overlaps among

the balls. Following [12], we focus on the 1-parameter diagonal family of lattices
obtained by compressing or stretching the integer lattice along the diagonal direction.
We use the unimodality of the measure to prove the following optimality result in R3.

Theorem 1 (main result). Among the lattices in the diagonal family in R3, the
FCC lattice with balls of radius 1.090 . . . times the packing radius maximizes the soft
density at δ1 = 0.844 . . ..

The proof of Theorem 1 is a detailed study of all lattices in the diagonal family,
giving analytic expressions for the maximum soft density over distortion intervals that
cover the entire family. Crucial ingredients to the proof are the use of Brillouin zones,
a new result about their long-range behavior in lattices, and the unimodality of the
soft density.

Outline. Section 2 discusses lattice configurations, generalized Voronoi domains,
and Brillouin zones. Section 3 introduces the soft density measures and shows that
their restrictions to fixed lattices are unimodal. Section 4 presents the case analysis
that proves Theorem 1. Section 5 concludes the paper.

2. Lattice configurations. In Rn, we need n linearly independent vectors to
define a lattice, which consists of all integer combinations:

Λ(a1, a2, . . . , an) =

{
p =

n∑
i=1

kiai | ki ∈ Z

}
.(1)

Note that 0 is a point in Λ = Λ(a1, a2, . . . , an) and that the neighborhood of every
lattice point looks like the neighborhood of every other lattice point. We will therefore
focus on 0 and its neighborhood.

2.1. Voronoi domains and Brillouin zones. A standard tool in the study of
lattices is the Voronoi diagram, which assigns to each point p ∈ Λ the set of points
x ∈ Rn for which p is the closest lattice point or, if there is a tie, p is among the
closest lattice points. This set is a convex polyhedron and is commonly referred to
as the Voronoi domain of p. We are interested in short- and long-range interactions
between the points, which motivates us to generalize this concept.

Perpendicular bisectors. Following Fejes Toth [15, 16], we define the ith Voronoi
domain of 0 as the set of points x ∈ Rn for which 0 is among the i nearest lattice
points, denoting this domain by Vi(0). We write V(0) = V1(0) for the ordinary Voronoi
domain.
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Fig. 1. Drawing all bisectors defined by 0 and other points in the lattice, we get the ith Brillouin
zone of 0 as the closure of the points separated from 0 by i − 1 of the bisectors. We highlight the
second Brillouin zone on the left and the sixth Brillouin zone on the right. Related to this concept
is the ith Voronoi domain of 0, which is the union of the first i Brillouin zones or, equivalently, the
closure of the points separated from 0 by i− 1 or fewer lines.

There are at least two rather different ways to construct these domains; see Figure
1 for an illustration of the first. Recall that the perpendicular bisector of p 6= q is
the hyperplane of points at equal distance from both: ‖x− p‖ = ‖x− q‖. Drawing
all perpendicular bisectors defined by 0 and p ∈ Λ \ {0}, we get an arrangement of
countably many hyperplanes in Rn. The hyperplanes decompose Rn into chambers,
which are maximal closed sets so that no two points lie on opposite sides of any of the
hyperplanes. For example, V(0) is the unique chamber that contains 0. Every other
chamber is separated from 0 by at least one hyperplane, and Vi(0) is the union of all
chambers separated from 0 by at most i− 1 hyperplanes.

The generalized Voronoi domains are not necessarily convex, but they satisfy a
related weaker condition. A set A ⊆ Rn is star-convex if there exists a point a ∈ A
such that for every x ∈ A the entire line segment connecting a to x is contained in A.
The kernel of A is the set of such points a, which is a subset of A.

Lemma 2 (star-convexity). Let Λ be a lattice in Rn. For each i ≥ 1, Vi(0) is
bounded and star-convex, and 0 lies in the interior of its kernel.

Proof. Because Λ is a lattice, there is a real number R = R(i) such that every ball
of radius R contains i or more lattice points in its interior. It follows that no point
x ∈ Vi(0) can be at distance R or further from 0. In other words, Vi(0) is bounded. It
is star-convex because x ∈ Vi(0) implies that all points on the line segment connecting
x to 0 belong to Vi(0). Indeed, if x is separated by at most i−1 bisectors from 0, then
so is any point on this line segment. This also proves that 0 belongs to the kernel of
Vi(0). But this is still true if we substitute any point of the first Voronoi domain for
0, so the entire V(0) belongs to the kernel, which implies that 0 belongs to the interior
of the kernel, as claimed.

It is often convenient to consider the difference between two contiguous domains
rather than individual domains. Following the French physicist Léin Brillouin (see [5]),
we therefore define Zi(0) as the closure of Vi(0) \ Vi−1(0), calling it the ith Brillouin
zone centered at 0. Setting V0(0) = ∅, the first zone is Z1(0) = V(0).
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Zone invariants. Fixing i, we note that the ith Brillouin zones of different lattice
points have disjoint interiors, and the collection of all ith zones covers Rn. Incidentally,
this is the degree-i Voronoi diagram as defined in [14]. Since any two ith zones are
translates of each other, and because there are equally many ith zones as there are
jth zones—namely one for each lattice point—it must be that all Brillouin zones have
the same volume. This result was mentioned already by Bieberbach [3]. We formalize
this insight and generalize it to measures beyond the n-dimensional volume. Recall
that a function µ : Rn → R is integrable if

µ[B] =

∫
x∈B

µ(x) dx(2)

is well defined for every Borel set B ⊆ Rn. It is Λ-periodic if µ(x) = µ(x + p) for
every x ∈ Rn and every p ∈ Λ. For example, if µ is identical 1, then it is obviously
periodic and µ[B] is the n-dimensional volume of B. We prove that every Brillouin
zone has the same measure, no matter what center or index.

Theorem 3 (zone invariants). Let Λ be a lattice in Rn and µ : Rn → R be
a Λ-periodic integrable function. Then µ[Zi(p)] = µ[Zj(q)] for all i, j ≥ 1 and all
p, q ∈ Λ.

Proof. In a lattice, every point looks like every other point: Λ = Λ + p for every
p ∈ Λ. For a point p ∈ Λ, we have Zi(p) = Zi(0) + p, and because µ is Λ-periodic,
µ[Zi(p)] = µ[Zi(0)] for every i ≥ 1. By transitivity,

µ[Zi(p)] = µ[Zi(q)](3)

for all p, q ∈ Λ and all i ≥ 1. To extend this relation to Brillouin zones with different
indices, we consider the closed ball with radius R > 0 centered at the origin, denoted
by B(0, R). Counting the lattice points in the ball with m(R) = card (B(0, R) ∩ Λ),
we write Ωi(R) for the union of the ith zones centered at these m(R) points. Letting
wi be the maximum distance of a point x ∈ Zi(0) from 0, we note that the symmetric
difference between B(0, R) and Ωi(R) is contained inside the annulus of points at
distance at most wi on either side of the sphere that bounds B(0, R). With increasing
R, the volume of this annulus grows asymptotically slower than the volume of the
ball. Hence,

µ[Zi(0)] =
µ[Ωi(R)]

m(R)
= lim
R→∞

µ[B(0, R)]

m(R)
.(4)

The right-hand side converges to a finite value that is independent of i. It follows
that the measure of any ith zone is the same as the measure of any jth zone. The
claimed relation thus follows from (3) and (4).

Example 1. Fixing a nonnegative integer j, set µ(x) = 1 if x is covered by j or
more balls, and set µ(x) = 0 otherwise. Clearly, µ is a periodic integrable function,
so Theorem 3 implies that the volume of points covered by at least j balls is the same
within every Brillouin zone. For j = 0, this formalizes our informal argument that all
zones have the same n-dimensional volume.

Example 2. Let µ have Dirac deltas at the lattice points. More concretely, let
ε > 0 be sufficiently small, and set

µ(x) = max
p∈Λ

{
0, (n+1)(ε−‖x−p‖)

νnεn+1

}
,(5)
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in which νn is the n-dimensional volume of the unit ball. Clearly, µ is a periodic
integrable function and µ[V(0)] = 1. Theorem 3 implies that the measure of every
zone is 1. Interpreting this measure as counting lattice points, we get exactly one
lattice point per zone, provided we take appropriate fractions if the points are shared.

2.2. Iterative construction. The second way of constructing the generalized
Voronoi domains proceeds in rounds of invasions and relocations of conquered real-
estate. We remark that Sibson used the same “area-stealing” idea to construct inter-
polations based on Voronoi diagrams [22].

Invasion and relocation. We construct the second Brillouin zone centered at 0 by
letting the Voronoi neighbors invade V(0) and divide up the real-estate. Each obtained
region belongs to an ordered pair, (0, p), in which 0 and p are the first and second
lattice points from any point in the region. Translating the region to the Voronoi
domain of −p, we get Z2(0) as the union of these regions; see Figure 2.

Fig. 2. Left: We decompose the first Voronoi domain of 0 according to the second nearest
lattice point and assemble the second Brillouin zone by moving each piece to the reflection of the
corresponding point. Right: We refine the decomposition according to the third nearest lattice point
and assemble the third Brillouin zone by moving each piece to the reflection of the corresponding
point.

We can iterate. Specifically, we further decompose each region by letting the
surrounding regions invade and divide up the real-estate, as before. Each region in
this decomposition belongs to an ordered triplet, (0, p, q), in which 0, p, q are the first,
second, and third lattice points from any point in the region. Translating the region
to the Voronoi domain of −q, we get Z3(0) as the union of these regions, as before;
see again Figure 2.

Piecewise translations. We formalize the iterative construction by proving that
there is a piecewise translation from V(0) to Zi(0) for every i. To describe this map,
let x be a point in V(0). Ordering the lattice points in increasing distance from x, we
get ‖x− p1‖ ≤ ‖x− p2‖ ≤ · · · ≤ ‖x− pi‖ ≤ · · · . Most of these inequalities are strict,
and ties are broken arbitrarily. For i ≥ 1, we define fi : V(0) → Zi(0) by mapping x
to fi(x) = x− pi. We will show that fi is almost a bijection. To express this, we let
V ◦i ⊆ V(0) be the set of points x in V(0) for which the first and ith lattice points are
unique: ‖x− p1‖ < ‖x− p2‖ and ‖x− pi−1‖ < ‖x− pi‖ < ‖x− pi+1‖. Similarly, we
let Z◦i ⊆ Zi(0) be the set of points in the ith Brillouin zone for which the first and
ith lattice points are unique. Note that V ◦i is contained in the interior of V(0) and
contains almost all points of the Voronoi domain. Similarly, Z◦i is contained in the
interior of Zi(0) and contains almost all points of the ith Brillouin zone.
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Lemma 4 (bijection). For each i ≥ 1, the restriction of the function fi to V ◦i ⊆
V(0) and Z◦i ⊆ Zi(0) is a bijection.

Proof. First we show that the restriction of fi is well defined. Recall that 0 and
pi are the unique first and ith lattice points from x. Since fi(x) = x− pi, this implies
that 0 − pi = −pi and pi − pi = 0 are the unique first and ith lattice points from
fi(x). It follows that fi(x) belongs to the interior of V(−pi) as well as to the interior
of Zi(0), and thus to Z◦i .

To prove that the restriction is injective, let pi, p
′
i ∈ Λ be the ith lattice points

from x, x′ ∈ V ◦i . If pi = p′i, then fi(x) − fi(x
′) = x − x′, so that x 6= x′ implies

fi(x) 6= fi(x
′). Otherwise, if pi 6= p′i, we have fi(x) 6= fi(x

′) because the two points
lie in the interiors of two different first Voronoi domains.

To prove that fi is surjective, we start with a point y in Z◦i and let p ∈ Λ such
that y ∈ V(−p). Define x = y + p. Since −p and 0 are the unique first and ith lattice
points from y, this implies that −p+ p = 0 and 0 + p = p are the unique first and ith
lattice points from x. Hence, x belongs to V ◦i and fi(x) = y.

It is not difficult to see that the functions fi can be used to give a second proof
of Theorem 3. Indeed, the restriction of fi to V ◦i and Z◦i is a bijection that consists
of finitely many translations. Each translation maps a connected piece of V ◦i to a
connected piece of Z◦i . By the periodicity of µ, the measure of these two pieces is the
same. Since the pieces are pairwise disjoint and cover almost all of V(0) and of Zi(0),
this implies that µ[V(0)] = µ[Zi(0)]. We get the relation in Theorem 3 by transitivity.

2.3. Configurations of balls. We call a set of closed balls in Rn a configuration
of balls or, equivalently, a configuration of spheres if we want to emphasize how the
boundaries of the balls decompose space. We are interested in the case in which all
balls have the same radius and the centers are placed periodically in Rn. Letting
B(p, r) = B(0, r)+p be the closed ball with radius r > 0 centered at p ∈ Rn, we write

B(Λ, r) = {B(p, r) | p ∈ Λ}(6)

for the configuration of balls defined by the lattice and the radius. In this subsection,
we fix Λ as well as r and write B = B(Λ, r).

Multiple covering. For each i ≥ 0, let Bi ⊆ Rn be the set of points that are
covered by at least i of the balls in B. For finite r, there is a minimum index, m, such
that Bi = ∅ iff i ≥ m. Clearly, ∅ = Bm ⊆ · · · ⊆ B1 ⊆ B0 = Rn. To assess the relative
size of these sets, we let ϕi be the probability that a randomly selected point in Rn
is contained in at least i of the balls. More formally,

ϕi(Λ, r) = lim
R→∞

vol[Bi ∩B(0, R)]

vol[B(0, R)]
=

vol[Bi ∩ V(0)]

vol[V(0)]
,(7)

in which we get the right-hand side because Bi intersects every Voronoi domain in
the same way. The inclusions among the Bi imply that 0 = ϕm ≤ · · · ≤ ϕ1 ≤ ϕ0 = 1.
Observe also that ϕi − ϕi+1 is the probability that a randomly selected point lies in
exactly i balls of B.

Probability in terms of volume. We generalize (7) by considering the intersections
of B(0, r) with the generalized Voronoi domains: Di(r) = B(0, r) ∩ Vi(0), for i ≥ 0,
noting that D0(r) = V0(0) = ∅. Continuing the convention of dropping the fixed
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radius from the notation, we write Di = Di(r).

Lemma 5 (probability). For each i ≥ 1, the probability that a randomly selected
point in Rn belongs to at least i balls in B is

ϕi =
vol[Di]− vol[Di−1]

vol[V(0)]
.(8)

Proof. Let x be a point in V(0). We prove the claimed relation by showing that
the point y = fi(x) belongs to Di \Di−1 iff x is covered by at least i balls; see Figure
3. This implies (8). We now prove the two directions of the claimed equivalence.

Fig. 3. The probability that a randomly selected point is covered by at least two disks is the
normalized area of the intersection between the disk centered at 0 and the second Brillouin zone of 0.
Indeed, we can move the pieces of this intersection back into the first Voronoi domain so that they
decompose the portion covered by at least two disks, the one centered at 0 and the other centered at
a neighboring lattice point.

“=⇒”. By construction of the function, y = fi(x) belongs to Zi(0). If it further-
more belongs to B(0, r) and thus to Di \Di−1, then 0 is the ith lattice point from y
and its ball covers y. Hence, y is covered by at least i balls, which implies that x is
covered by at least i balls.

“⇐=”. If x is covered by at least i balls, then so is y = fi(x). We have y ∈ Zi(0)
by definition, and y ∈ B(0, r) because 0 is the ith lattice point from y. Hence,
y ∈ Di \Di−1.

3. Measures of density. Given a lattice configuration of balls, the classic no-
tion of density is the expected number of balls that contain a randomly selected point:

δ(Λ, r) =
∑
i≥1

ϕi =
vol[B(0, r)]

vol[V(0)]
,(9)

in which the ratio on the right-hand side is clear and also follows from Lemma 5. We
introduce variants of this classic notion that penalize for overlapping balls and prove
that for a fixed lattice they are unimodal functions of the radius.

3.1. Soft densities. In this subsection, we introduce a family of soft densities
and relate them to volumes of balls and generalized Voronoi domains.
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Two definitions. Let Λ ⊆ Rn be a lattice and r > 0 be a radius. For each j ≥ 1,
we define the jth soft density of B = B(Λ, r) as

δj(Λ, r) =

j∑
i=1

ϕi −
∞∑

i=j+1

ϕi.(10)

We have δ1 ≤ δ2 ≤ · · · ≤ δ, and δj = δ iff the configuration does not have any j + 1
overlapping balls.

From the point of view of the applications motivating the work described in
this paper, the most interesting soft density is the first: δ1(Λ, r) = ϕ1 − ϕ2 − ϕ3 −
. . . . It favors configurations of balls with only minor overlap. Nonetheless, there are
lattices for which the configuration that maximizes the first soft density has triplets
of overlapping balls. To avoid the complications caused by triple intersections, we
introduce the first simplified soft density:

δ1s(Λ, r) =

∞∑
i=1

(3− 2i)ϕi,(11)

noting that δ1s ≤ δ1 agree on the first two terms and differ only in the weight given
to overlaps of three or more balls. We will see shortly that δ1s is easier to compute
than δ1.

Density in terms of volume. Recall that (9) writes the classic notion of density
as the normalized volume of a ball. We generalize this relation to soft densities,
unsimplified and simplified.

Lemma 6 (soft density). Let j ≥ 1. The jth soft density and the first simplified
soft density of the configuration of balls defined by a lattice Λ and a radius r are

δj =
2vol[Dj ]− vol[B(0, r)]

vol[V(0)]
,(12)

δ1s =
vol[B(0, r)]

vol[V(0)]
−
∑

06=p∈Λ

vol[B(0, r) ∩B(p, r)]

vol[V(0)]
.(13)

Proof. We first prove the relation for the unsimplified soft densities. Writing the
two normalized volumes on the right-hand side of (12) in terms of probabilities, we
get

vol[Dj ]

vol[V(0)]
=

j∑
i=1

ϕi,(14)

vol[B(0, r)]

vol[V(0)]
=

∞∑
i=1

ϕi.(15)

Taking the first sum twice and subtracting the second sum, we match the definition
of the jth soft measure in (10).

Second, we prove the relation for the simplified soft density. Equation (15) writes
the first normalized volume in (13) in terms of probabilities. To do the same for the
second normalized volume, we note that the common intersection of B(0, r) and k−1
other balls is accounted for k − 1 times. Recall that B(0, r) ∩ Bk is the subset of the
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ball covered by at least k − 1 other balls. The second normalized volume in (13) can
therefore be rewritten as

VLunes =

∞∑
k=2

vol[B(0, r) ∩ Bk]

vol[V(0)]
=

∞∑
k=2

∞∑
i=1

vol[Zi(0) ∩B(0, r) ∩ Bk]

vol[V(0)]
,(16)

in which we get the second line by decomposing the ball into its intersections with
the Brillouin zones. To write the double-sum in terms of probabilities, we note that
the indicator function of Bk is Λ-periodic. Hence, Theorem 3 implies that

vol[Zi(0) ∩ Bk]

vol[V(0)]
= ϕk(17)

for all choices of i ≥ 1 and k ≥ 0. Recall now that for every point x ∈ Zi(0), the origin
is the ith lattice point from x. For 1 ≤ i ≤ k, 0 is among the first k lattice points.
Hence, if x is contained in k or more balls, then it is also contained in B(0, r). For
k ≤ i, x ∈ Zi(0) is contained in B(0, r) iff it is contained in i or more balls. Hence,

vol[Zi(0) ∩B(0, r) ∩ Bk]

vol[V(0)]
=

{
ϕk for 1 ≤ i ≤ k,
ϕi for k ≤ i,(18)

in which we get the first line from (17) and the second line from (8). Starting with
(13), we use (15) to rewrite the first sum and combine (16) with (18) to rewrite the
second sum to get

δ1s =

∞∑
i=1

ϕi −
∞∑
k=2

(
kϕk +

∞∑
i=k+1

ϕi

)
=

∞∑
i=1

(3− 2i)ϕi.(19)

Simple rearrangements lead to the right-hand side, which matches the definition of
the first simplified density in (11).

3.2. Derivatives. In this subsection, we fix the lattice but vary the radius. It is
therefore convenient to write B(r) = B(Λ, r), δj(r) = δj(Λ, r), etc. We are interested
in the radius at which a soft density attains its maximum.

Derivative of probability. Since all density measures in this paper are linear com-
binations of probabilities, we focus on the functions ϕi : R+ → R. Remembering that
ϕi(r) is the normalized volume of B(0, r) ∩ Zi(0), we introduce radii ri < Ri such
that this intersection is empty iff r < ri and equal to Zi(0) iff Ri ≤ r. Specifically,
ri is the supremum of the radii for which every ball contains fewer than i lattice
points, and Ri is the supremum of the radii for which there exists a center such that
the ball contains fewer than i lattice points. For example, r2 is the packing radius
of Λ, and R1 is the covering radius of Λ. Within the interval [ri, Ri], ϕi increases
monotonically from 0 to 1. When we increase the radius, the volume of B(0, r)∩Zi(0)
grows where the sphere ∂B(0, r) lies inside Zi(0). To streamline the notation, we write
Si(r) = ∂B(0, r) ∩ Vi(0), and we write area[Si(r)] for its (n− 1)-dimensional volume.
Recalling that the ith Brillouin zone is Zi(0) = Vi(0) \ Vi−1(0), we therefore get

∂ϕi
∂r

(r) =
area[Si(r)]− area[Si−1(r)]

vol[V(0)]
(20)

for the derivative of the probability that a randomly selected point lies in at least i
balls.
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Derivative of soft density. Recall the definition of the soft density in (10) and
that of the simplified soft density in (11). Accordingly, their derivatives are

∂δj
∂r

(r) =

j∑
i=1

∂ϕi
∂r

(r)−
∞∑

i=j+1

∂ϕi
∂r

(r),(21)

∂δ1s

∂r
(r) =

∞∑
i=1

(3− 2i)
∂ϕi
∂r

(r)(22)

for every integer j ≥ 1 and every r ∈ R+. These derivatives can also be written in
terms of areas.

Lemma 7 (soft density derivative). Let j ≥ 1. The derivatives of the jth soft
density and of the first simplified soft density of the configuration defined by a lattice
Λ ∈ Rn and a radius r > 0 are

∂δj
∂r

(r) =
2area[Sj(r)]− area[∂B(0, r)]

vol[V(0)]
,(23)

∂δ1s

∂r
(r) =

area[∂B(0, r)]

vol[V(0)]
−
∑

0 6=p∈Λ

2area[∂B(0, r) ∩B(p, r)]

vol[V(0)]
.(24)

Proof. Using (20), we write both sums on the right-hand side of (21) as telescoping
sums. Almost all terms cancel, and we get

j∑
i=1

∂ϕi
∂r

(r) =
area[Sj(r)]

vol[V(0)]
,(25)

∞∑
i=j+1

∂ϕi
∂r

(r) =
area[∂B(0, r)]− area[Sj(r)]

vol[V(0)]
.(26)

Subtracting (26) from (25), we get (23). Alternatively, we would start with (12) and
get (23) directly. We prefer the latter, geometric argument to prove (24). Indeed,
the first term on the right-hand side of (24) is the derivative of the first term on the
right-hand side of (13). Similarly, each term in the sum of (24) is the derivative of
the corresponding term in the sum of (13). Here we get a factor 2 because

∂[B(0, r) ∩B(p, r)] = [∂B(0, r) ∩B(p, r)] ∪ [B(0, r) ∩ ∂B(p, r)].(27)

The two spherical caps on the right-hand side have the same area, so the sum of the
areas is twice the area of the first cap.

3.3. Equilibrium. In this subsection, we prove that the soft density of the ball
configuration defined by a fixed lattice is a unimodal function of the radius. This
property holds for the unsimplified as well as the simplified soft densities.

Fraction versus area. For the proof of unimodality, it will be important that
the generalized Voronoi domains centered at 0 are star-convex and contain 0 in the
interiors of their kernels; see Lemma 2. To see why this is important, we grow a
sphere with center 0. As the radius increases, the fraction of this sphere inside Vj(0)
decreases monotonically from 1 to 0. By complementarity, the fraction of the sphere
outside Vj(0) increases monotonically from 0 to 1. Plotting the difference between
these two fractions as a function of the radius, we get two flat intervals, as seen in
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+1

0

−1

rj

%j Rj

Fig. 4. The graph of the difference between the fraction of the sphere inside Vj(0) and the
complementary fraction outside Vj(0).

Figure 4, with a monotonically decreasing segment in between. This segment crosses
the zero-line exactly once, at the equilibrium radius, which we denote by %j .

Recall that a real-valued function is unimodal if it increases until it attains its
maximum, after which it decreases. More formally, we call a differentiable function
f : R+ → R unimodal if there exists % ∈ R+ such that

∂f

∂r
(r)

 > 0 for r < %,
= 0 for r = %,
< 0 for r > %.

(28)

It follows that the integral of the difference of fractions, as sketched in Figure 4, is
unimodal with equilibrium radius %j . However, according to (23), the derivative of
the jth soft density is the difference between the normalized areas of the sphere inside
and outside Vj(0), and not the difference between the fractions.

Unimodality. The jth soft density is unimodal with equilibrium radius %j nonethe-
less, but this requires a proof.

Lemma 8 (unimodality). Let Λ be a lattice in Rn. For each j ≥ 1, the jth
soft density function of Λ is unimodal, and it attains its maximum at the equilibrium
radius of Λ, which satisfies rj < %j < Rj.

Proof. We begin by proving that the fraction of the sphere inside the first j rings
is monotonically decreasing. Write

F (r) =
area[Sj(r)]

area[∂B(0, r)]
(29)

for the fraction, and consider radii rj ≤ r < R ≤ Rj . Associate each point x ∈
∂B(0, r) with the point y = R

r x ∈ ∂B(0, R). Since Vj(0) is star-convex, with 0 in
its kernel, y ∈ Sj(R) implies that x ∈ Sj(r). Hence, F (R) ≤ F (r). To see that the
inequality is strict, we use the fact that 0 lies in the interior of the kernel of Vj(0).
We can therefore find a nonempty open arc in Sj(r) such that none of the associated
points in ∂B(0, R) belongs to Sj(R). This implies that F (R) < F (r). The difference
between the normalized areas inside and outside Vj(0) is

∆(r) =
2area[Sj(r)]− area[∂B(0, r)]

vol[V(0)]
=

area[∂B(0, r)]

vol[V(0)]
· (2F (r)− 1).(30)

This difference has the same sign as 2F (r)− 1. Hence,

∆(r)

 > 0 for r < %j ,
= 0 for r = %j ,
< 0 for r > %j .

(31)
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It follows that δj is unimodal and that it attains its maximum at r = %j . We have
rj < %j < Rj because 2F (rj)− 1 = 1 and 2F (Rj)− 1 = −1.

Remark 1. It is not difficult to adapt the proof of Lemma 8 to show that the
following parametrized version of the soft density is also unimodal:

δj,C =

j∑
i=1

ϕi − 1
C−1

∞∑
i=j+1

ϕi,(32)

in which C > 1 is a constant. Its equilibrium radius is defined by having a fraction of
1/C of the sphere inside Vj(0).

Remark 2. The proof of Lemma 8 can also be adapted to show that the first
simplified soft density is unimodal. To see that δ1s is unimodal, we renormalize by
multiplying with vol[V(0)]/area[∂B(0, r)]. The first term on the right-hand side of
(24) becomes identical 1, and the sum becomes strictly increasing. Hence, there is a
unique radius at which the difference vanishes. This is the radius at which δ1s attains
its maximum.

Counterexamples to unimodality. We have chosen our measures of density care-
fully so that they are unimodal. Many other choices are not unimodal, and some
surprisingly so. Consider, for example, πi : R+ → R, defined by mapping r to the prob-
ability that a randomly selected point is contained in exactly i balls: πi = ϕi − ϕi+1.
For lattices in R2, π1 is unimodal, and this was exploited in [11] to show that the
hexagonal lattice provides the maximizing lattice configuration. But already in R3,
π1 is not necessarily unimodal, as we now show. Let

a1 =

 1
0
0

 , a2 =

 0
4
0

 , a3 =

 0
0
4

 .(33)

The packing radius of the thus defined lattice Λ ⊆ R3 is 0.5. Increasing the radius
from 0.0 to 1.0, the probability grows monotonically from π1(0.0) = 0 to π1(1.0) = π

2 .
Let D∗(r) be the set of points in B(0, r) that are not contained in any other balls.
The boundary of D∗(r) consists of points on ∂B(0, r) and of points on other spheres
in the configuration. We then write ∂D∗(r) = S0(r) ∪ S(r), with S0(r) ⊆ ∂B(0, r)
and S(r) ⊆ B(0, r)\∂B(0, r); see Figure 5. For r = 1.0, Archimedes’ theorem implies
that the two have the same area. Writing f(r) = vol[D∗(r)], the derivative vanishes:

∂f

∂r
(1.0) = area[S0(1.0)]− area[S(1.0)] = 0.(34)

Indeed, if we increase r moderately beyond 1.0, we keep getting constant volume
and vanishing derivative. More precisely, we get f(r) = π

2 for 1.0 ≤ r ≤ 2.0, with
smaller values for all other radii. In summary, π1(r) = f(r)/vol[V(0)] has an interval
of maxima, which contradicts unimodality.

Extending this example to four and higher dimensions, it is possible to get func-
tions π1 : R+ → R with multiple local maxima separated from each other by valleys
of lower probability.

4. Optimality in R3. This section presents the case analysis we use to prove
Theorem 1 stated in the introduction. As a warm-up exercise, we compute the first
soft density of the equilibrium configurations of the FCC lattice in R3.
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Fig. 5. Front view of a row of unit spheres and, superimposed, of the same row of slightly
enlarged spheres. The shaded sets D∗(r) are contained in the first Voronoi domain of 0.

FCC lattice. We generate the face centered cubic lattice with the vectors

a1 =

 4/3
1/3
1/3

 , a2 =

 1/3
4/3
1/3

 , a3 =

 1/3
1/3
4/3

 .(35)

The packing radius is half the minimum distance between the points, which is r =
√

2
2 .

The volume of the Voronoi domain is also the volume of the parallelepiped spanned
by the generating vectors:

vol[V(0)] = det

 4/3 1/3 1/3
1/3 4/3 1/3
1/3 1/3 4/3

 = 2.(36)

The equilibrium radius is % = 12
11r = 6

√
2

11 . Indeed, at this radius a sphere intersects
the neighboring balls in 12 equal and nonintersecting caps, each 1

24 of the area of the
sphere. The caps are in the direction of the vectors ±ai and ai−aj , for i, j ∈ {1, 2, 3},
and have area

ACap = 2π%(% − r) = 24πr2

112 = 0.311 . . . .(37)

The volume of a ball is

VBall = vol[B(0, %)] = 4π
3 %

3 = 16·122πr3

113 = 1.922 . . . .(38)

The volume of the cone over a cap is 1
24 of this. The boundary of the cap is a circle

which spans a disk, and the volume of the cone over this disk is

VCone = (%2 − r2) rπ3 = 23πr3

3·112 = 0.070 . . . .(39)

Referring to the difference between a cone over the cap and the cone over the disk as
a segment of the ball, we note that its volume is VSgmt = 1

24VBall −VCone. To finally
compute the first soft density, we get ϕ1 as the normalized volume of the ball minus
12 segments, ϕ2 as the normalized volume of 12 segments, and the first soft density
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as the difference:

ϕ1 = 1
2 ( 1

2VBall + 12VCone) = 1082πr3

113 = 541
√

2π
2·113 = 0.902 . . . ,(40)

ϕ2 = 1
2 ( 1

2VBall − 12VCone) = 70πr3

113 = 35
√

2π
2·113 = 0.058 . . . ,(41)

δ1 = ϕ1 − ϕ2 = 92πr3

112 = 23
√

2π
112 = 0.844 . . . .(42)

Since there are no triple intersections, this is also the first simplified soft density:
δ1 = δ1s. By comparison, the first soft density of the BCC lattice is 0.832 . . . .

1-parameter family of lattices. We consider the diagonal family of lattices intro-
duced in [12]. Each lattice in this family is obtained by compressing or stretching
the integer lattice, Z3, along the diagonal direction. Writing u1, u2, u3 for the unit
coordinate vectors, which span Z3, and 1 = u1 + u2 + u3, we define

ui(ε) = ui + ε−1
3 · 1,(43)

for 1 ≤ i ≤ 3, and we let Λε be the lattice generated by these vectors. Note that
〈ui(ε),1〉 = 1 + (ε − 1), which shows that for ε = 0, all three vectors are orthogonal
to 1 and therefore not linearly independent. We get a lattice for every ε > 0, and
particularly interesting examples are the BCC lattice at ε = 1

2 , the integer lattice at
ε = 1, and the FCC lattice at ε = 2.

For ε = 1, the Voronoi domain is the unit cube, V(0) = [− 1
2 ,

1
2 ]3, which has volume

1. More generally, the Voronoi domain of Λε has volume ε, namely the same volume
as the parallelotope defined by u1(ε), u2(ε), u3(ε). As observed already in [13], the
Voronoi domains for parameters 0 < ε < 1 are all combinatorially equivalent, being
bounded by eight hexagons and six rectangles. Similarly, the Voronoi domains for
1 < ε <∞ are combinatorially equivalent, being bounded by 12 rhombi; see Figure 6.
This combinatorial predictability of the Voronoi domain enables the detailed analyses
in [12, 18] as well as in this paper. Given a value of the parameter ε and a radius r,
we need to determine which faces, edges, and vertices of V(0) intersect B(0, r). Fixing
ε, we call r a critical radius if there is a face, edge, or vertex of V(0) that touches
B(0, r) but is disjoint of its interior. Because of the symmetry of the configuration,
there are very few critical radii. For 0 < ε < 1, these have already been determined

Fig. 6. The Voronoi domains of Λε for ε slightly smaller than 1 on the left and for ε slightly
larger than 1 on the right.
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in [18]. With reference to Figure 6, they are

f1(ε) =
√

(ε2 + 2)/12,(44)

f2(ε) =
√

(2ε2 + 1)/6,(45)

f3(ε) =
√

3ε/2,(46)

e1(ε) = (ε2 + 2)/(3
√

2),(47)

e2(ε) =
√

(ε2 + 2)(2ε2 + 1)/(2
√

3),(48)

v1(ε) =
√

8ε4 + 11ε2 + 8/6,(49)

corresponding to the six square-like hexagons, six rectangles, two small hexagons, 18
long edges, 18 short edges, and 24 vertices of the polytope on the left in Figure 6.
Similarly, for 1 < ε <∞, we have six critical radii:

f1(ε) =
√

(ε2 + 2)/12,(50)

f4(ε) =
√

2/2,(51)

e3(ε) =
√

6/3,(52)

e4(ε) = (ε2 + 2)/
√

12ε2 + 6,(53)

v2(ε) = (ε2 + 2)/(2
√

3ε),(54)

v3(ε) =
√
ε2 + 8/(2

√
3),(55)

corresponding to the six square-like rhombi, six narrow rhombi, six short edges, 18
long edges, eight degree-3 vertices, and six degree-4 vertices of the polytope on the
right in Figure 6. See Appendix A.1 for details.

Soft density at equilibrium. Given a lattice Λε in the diagonal family, we write
δ1(ε) = maxr>0 δ1(Λε, r) for the maximum soft density and δ1s(ε) = maxr>0 δ1s(Λε, r)
for the maximum simplified soft density. As argued in the preceding sections, the max-
ima are obtained for the respective equilibrium radii. To compute the maximum soft
density of every lattice Λε, we divide R+ into 12 intervals such that within every in-
terval the expressions and the order of the critical and equilibrium radii are constant.
Table 1 summarizes the pertinent information for all 12 intervals. Note that in Cases
I–IX, the equilibrium radius precedes the critical radii that belong to edges and ver-
tices of the Voronoi domains. Equivalently, the equilibrium configuration contains
pairwise but no triplewise overlaps among the balls. In these cases, the soft density
equals the simplified soft density: δ1(ε) = δ1s(ε). Indeed, we do all computations for
the simplified soft density, which by construction considers only pairwise intersections,
and we will find that the FCC lattice maximizes this measure. The equilibrium config-
uration has triple intersections only for lattices with values of ε larger than that of the
FCC lattice, and to prove that the FCC lattice also maximizes the unsimplified soft
density, we will finally bound the soft density of these equilibrium configurations from
above. To do the computations for the simplified density, we determine the number
and type of the spherical caps, and we determine the equilibrium radius, % = %1, at
which these caps amount to half the surface area. Note that the number and type of
caps is the same in Cases II and III, in Cases IV–VII, and—because we ignore triple
overlaps for the time being—in Cases VIII–XI. The 12 cases thus consolidate to five,
which we discuss in sequence.

Case I. Here we have two caps, both with critical radius f3(ε). At the equilibrium
radius, each of the caps covers one quarter of the sphere. Accordingly, the equilibrium
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Table 1
The order of the equilibrium radius among the critical radii. Within each of the 12 intervals

dividing the positive number line, the order is independent of the parameter ε. Precise expressions
for the interval endpoints can be found in Appendix A.

Case Critical and equilibrium radii Interval
I f3 ≤ % ≤ f1 ≤ f2 ≤ e2 ≤ e1 ≤ v1 (0.000 . . . , 0.239 . . .]

II f3 ≤ f1 ≤ % ≤ f2 ≤ e2 ≤ e1 ≤ v1 [0.239 . . . , 0.500 . . .]

III f1 ≤ f3 ≤ % ≤ f2 ≤ e1 ≤ e2 ≤ v1 [0.500 . . . , 0.617 . . .]

IV f1 ≤ % ≤ f3 ≤ f2 ≤ e1 ≤ e2 ≤ v1 [0.617 . . . , 0.632 . . .]

V f1 ≤ % ≤ f2 ≤ f3 ≤ e1 ≤ e2 ≤ v1 [0.632 . . . , 0.664 . . .]

VI f1 ≤ % ≤ f2 ≤ e1 ≤ f3 ≤ e2 ≤ v1 [0.664 . . . , 1.000 . . .]

VII f1 ≤ % ≤ f4 ≤ e4 ≤ e3 ≤ v2 ≤ v3 [1.000 . . . , 1.471 . . .]

VIII f1 ≤ f4 ≤ % ≤ e4 ≤ e3 ≤ v2 ≤ v3 [1.471 . . . , 2.000 . . .]

IX f4 ≤ f1 ≤ % ≤ e3 ≤ e4 ≤ v2 ≤ v3 [2.000 . . . , 2.342 . . .]

X f4 ≤ f1 ≤ e3 ≤ % ≤ e4 ≤ v2 ≤ v3 [2.342 . . . , 2.449 . . .]

XI f4 ≤ e3 ≤ f1 ≤ % ≤ e4 ≤ v2 ≤ v3 [2.449 . . . , 2.576 . . .]

XII f4 ≤ e3 ≤ % ≤ f1 ≤ e4 ≤ v2 ≤ v3 [2.576 . . . ,∞)

radius and the soft density are

%(ε) =
√

3ε,(56)

δ1(ε) = δ1s(ε) = 3
√

3πε2/2.(57)

The derivative of δ1 is positive in the entire interval, as can be seen in Figure 7.

Fig. 7. The graph of the maximum simplified soft density, δ1s, as a function of ε, which
parametrizes the lattices in the diagonal family. From 0 to 2.342 . . ., this is identical to the graph of
the maximum soft density, δ1.

Cases II and III. Here we have eight caps, two with critical radius f3(ε) and six
with critical radius f1(ε). At the equilibrium, these caps cover half the sphere. The
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equilibrium radius and the corresponding soft density are

%(ε) = ε
√

3+
√

3ε2+6
7 ,(58)

δ1(ε) = δ1s(ε) = π[27
√

3ε(11ε2−8)+(26−95ε2)
√

3ε2+6]
882ε .(59)

The derivative vanishes at ε = 1
2 , and the second derivative is negative throughout

the entire open interval. It follows that δ1 is concave over the interval, with maximum
at ε = 1

2 , which corresponds to the BCC lattice; see Figure 7.
Cases IV–VII. Here we have six caps, all with critical radius f1(ε). The corre-

sponding equilibrium radius and the corresponding soft density are

%(ε) =
√

3ε2+6
5 ,(60)

δ1(ε) = δ1s(ε) =
11π
√

(3ε2+6)3

1350ε .(61)

The derivative vanishes at ε = 1, and the second derivative is positive throughout the
entire open interval. It follows that δ1 is convex over the interval, with minimum at
ε = 1, which corresponds to the integer lattice; see Figure 7.

Cases VIII–XI. Here we have 12 caps, six each with critical radii f1(ε) and f4(ε).
Ignoring intersections among these caps, we compute the equilibrium radius such that
the total area of the 12 caps equals half the sphere. The equilibrium radius and the
corresponding simplified soft density are

%(ε) =
√

3ε2+6+3
√

2
11 ,(62)

δ1s(ε) = π[324
√

2ε2−882
√

2+(478−85ε2)
√

3ε2+6]
2178ε .(63)

The derivative vanishes at ε = 2, and the second derivative is negative throughout
the entire open interval. It follows that δ1 is concave, with maximum at ε = 2, which
corresponds to the FCC lattice; see Figure 7.

Case XII. Here we have six caps, all with critical radius f4(ε). Ignoring intersec-
tions among these caps, the equilibrium radius and the corresponding simplified soft
density are

%(ε) = 3
√

2
5 ,(64)

δ1s(ε) = 11
√

2π
25ε .(65)

The derivative of δ1s is negative throughout the interval.
The above case analysis is summarized in Figure 7, which shows the maximum

simplified soft density as a function of ε. We see that there are two local maxima
separated by a local minimum, with

δ1s(0.5) = 0.832 . . . ,(66)

δ1s(1.0) = 0.691 . . . ,(67)

δ1s(2.0) = 0.844 . . . ,(68)

corresponding to the BCC, the integer, and the FCC lattices, all members of the diag-
onal family. For ε < 2.342 . . . , the maximum is achieved without triple intersections,
which implies that δ1(ε) = δ1s(ε). In particular, (66), (67), (68) remain valid after
substituting δ1 for δ1s. This is consistent with Theorem 1, which claims that the FCC
lattice maximizes the soft density, but it is not yet quite a proof. Indeed, we still need
information on the behavior of δ1 for ε > 2.342 . . . . We will now fill this gap and thus
complete the proof of Theorem 1. The main new idea is another measure of density,
which we will show majorizes the maximum soft density.
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Extrapolated soft density. Consider the FCC lattice, at ε = 2, as described at the
beginning of this section. At the equilibrium, the ball centered at the origin intersects
12 other balls whose centers lie in three planes. Specifically, three of the 12 centers
satisfy 〈p,1〉 = −2, six centers satisfy 〈p,1〉 = 0, and three centers satisfy 〈p,1〉 = 2.
As ε increases, these three planes move apart until the ball at 0 intersects only the six
balls in the middle plane at equilibrium. For the simplified soft density, this happens
for ε > 2.576 . . . , and for the unsimplified soft density it happens a little later, for
ε > 2.62 . . . . Within a plane orthogonal to the diagonal, the lattice points do not move,
which implies that for all ε larger than some threshold, all equilibrium configurations
are the same: a ball surrounded by six others forming a regular hexagon around 0.
This corresponds to Case XII. It follows that for each radius r, there are a threshold
ε0(r) and a constant C(r), such that the soft density has the form

δ1(Λε, r) = C(r)
ε(69)

for all ε > ε0(r). Similarly, the equilibrium radius remains constant beyond this
threshold, and the maximum soft density satisfies δ1(ε) = C/ε, in which C = C(%(ε))
for large enough ε. Since we define the constant for the unsimplified soft density, it
is slightly larger than it would be for the simplified soft density given in (65), namely
1.96 > 1.95 ≈ 11

√
2π/25; see Appendix A.4 for details. We define the extrapolated

soft density as

δ1x(Λε, r) = C(r)
ε ,(70)

but now for all ε > 0. Similarly, δ1x(ε) = C/ε is the maximum extrapolated
soft density. While we define δ1x for all positive ε, we are really only interested
in ε ≥ 2.342 . . .—the range in which the equilibrium configuration contains triple
intersections among the balls. At that parameter value, we have δ1x(2.342 . . .) =
1.96 . . . /2.342 . . . = 0.837 . . ., which is smaller than δ1(2) = 0.844 . . . ; see Appendix
A.4 for the details necessary to see that this inequality is preserved if we use the
precise numbers.

Majorization. It remains to prove that the maximum extrapolated soft density
majorizes the maximum soft density, which in turn majorizes the maximum simplified
soft density.

Lemma 9 (majorization). We have

δ1s(ε) ≤ δ1(ε) ≤ δ1x(ε)(71)

for all ε > 0.

Proof. We first prove the left inequality. Recall from (10) and (11) that for a
given lattice and a given radius, we have

δ1(Λ, r) = ϕ1 − ϕ2 − ϕ3 − ϕ4 − · · · ,(72)

δ1s(Λ, r) = ϕ1 − ϕ2 − 3ϕ3 − 5ϕ4 − · · · .(73)

This implies that δ1s(Λ, r) ≤ δ1(Λ, r) for all lattices and all radii. To extend this
inequality to the corresponding maxima, we write %1s for the equilibrium radius of Λε
under the simplified soft density. Then

δ1s(ε) = δ1s(Λε, %1s) ≤ δ1(Λε, %1s) ≤ δ1(ε),(74)
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Fig. 8. A part of the simplified soft density function, with maximum at ε = 2. On the right
and slightly above the graph of δ1s, we see the graph of the soft density function, δ1, with the dotted
extrapolated portion ending at the point (2.342 . . . , 0.837 . . .).

in which the last inequality follows by definition of δ1(ε) as the maximum soft density
of Λε.

Seond, we prove the right inequality. For a given lattice, Λε, and a given radius,
r, we have δ1(Λε, r) ≤ δ1x(Λε, r), simply because the latter accounts for a subset of
the balls that enter the computation of the soft density. Now let %1 = %1(ε) be the
equilibrium radius of Λε under the soft density. Then

δ1(ε) = δ1(Λε, %1) ≤ δ1x(Λε, %1) ≤ δ1x(ε),(75)

in which the last inequality follows by the definition of δ1x(ε) as the maximum ex-
trapolated soft density of Λε.

The two inequalities are illustrated in Figure 8. Together with δ1x(2.342 . . .) <
δ1(2), they imply that the FCC lattice at ε = 2 is the unique maximum of δ1 over the
entire diagonal family of lattices. This completes the proof of Theorem 1.

5. Discussion. The main contributions of this paper are the definition of soft
density of a lattice sphere configuration and the proof that among the 3-dimensional
lattices in the diagonal family introduced in [12], the first soft density is maximized
at the FCC lattice. A key step in the proof of optimality is the unimodality of the
soft density for any given lattice. Indeed, unimodality holds for all j ≥ 1 and all
dimensions n ≥ 1.

Optimal lattices. A difficult question is the determination of the lattices that max-
imize the jth soft density. For j = 1 and n = 2 dimensions, the optimal configuration
has been determined in [1], but for j ≥ 2, we do not have a proof that the hexagonal
lattice provides the optimum. In n = 3 dimensions, there are no results beyond what
we proved in this paper, namely that the FCC lattice gives the optimum among the
lattices in the diagonal family introduced in [12]:
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• Does the FCC lattice give the maximum first soft density among all lattices
in R3?

• What about values of j larger than 1 and dimensions n larger than 3?
• Does the FCC lattice maximize the probability that a random point belongs

to exactly one ball of the configuration?
Short of proving that the FCC lattice maximizes δ1 among all lattices in R3, it might
be possible to use Csikós’ formula for the volume derivative [8] to at least show that
the FCC lattice furnishes a local maximum.

Nonlattice configurations. The notion of soft density can be extended to nonlattice
configurations of balls: within a region Ω ⊆ Rn, we compute the probability, ϕi, that a
randomly selected point belongs to at least i balls, we set δj = ϕ1+· · ·+ϕj−ϕj+1−· · · ,
we increase Ω, and we finally take the limit. Fixing the centers and growing the balls,
we again get a function of the radius, but it is not necessarily unimodal. Indeed,
we can define the generalized Voronoi domains of a point p in the configuration as
before. Extending Lemma 6 and using the star-convexity of the Vj(p), we can show
that the difference between the volume of B(p, r) inside and outside Vj(p) is a unimodal
function of r. However, the sum of these unimodal functions over different points in
the configuration is not necessarily unimodal. This lack of global unimodality is likely
to make progress on soft packing for nonlattice configurations difficult to come by.

Appendix A. Case analysis. In this appendix, we present the computations
needed to determine the maximum soft density as a function of ε, which parametrizes
the lattices in the diagonal family. We begin with describing the critical radii of the
faces of the Voronoi polytope and continue with finding the positions of the equilibrium
radii among the critical radii.

A.1. Critical radii. The critical radii listed in section 4 correspond to the radii
at which a growing ball centered at the origin touches different faces of the Voronoi
domain; see Table 2. For ε ≤ 1, f1 corresponds to the six square-like hexagons normal
to the ±ui(ε), f2 to the six rectangles normal to the ±[ui(ε) + uj(ε)], f3 to the two
small hexagons normal to ±[u1(ε) + u2(ε) + u3(ε)], e1 to the 18 long edges parallel
to the vectors ui(ε) × uj(ε), e2 to the 18 short edges parallel to the vectors ui(ε) ×
[u1(ε)+u2(ε)+u3(ε)], and the covering radius, v1, corresponding to the 24 vertices of
the polytope on the left in Figure 6. For ε ≥ 1, f1 corresponds to the six square-like
rhombi normal to the ±ui(ε), f4 to the six narrow rhombi normal to the ui(ε)−uj(ε),
e3 to the six short edges parallel to the vectors [ui(ε) − uj(ε)] × [ui(ε) − uk(ε)] or,
equivalently, parallel to the vector u1(ε)+u2(ε)+u3(ε), e4 to the 18 long edges parallel
to the vectors ui(ε)×uj(ε), v2 to the eight degree-3 vertices, and the covering radius,
v3, corresponding to the six degree-4 vertices of the polytope on the right in Figure 6
for i, j ∈ {1, 2, 3} and `,m ∈ {2, 3}.

After ordering the critical radii, we are left with seven sequences, which we show
in Table 3.

A.2. Position of equilibrium radius. Given a constant ordering of the critical
radii over an interval of values ε, we find the equilibrium radius by searching in this
sequence. At any one step, we consider a particular critical radius, and we compute
the area of the sphere covered by the corresponding caps. If this is more than half of
the sphere, then the search continues on the left, and if it is less than half, then the
search continues on the right. It is also possible that it switches from more to less
than half within the interval, in which case we divide the interval and search in the
subintervals independently.
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Table 2
The right column gives the centers of the spheres that define the corresponding critical radius,

namely the minimum radius at which these spheres have a nonempty common intersection. Notice
that although at radius v3 only eight vertices are met, they correspond to the circumcenter of 16
tetrahedra around the origin.

Radius Value Vectors

f1(ε)
√

(ε2 + 2)/12 [0,±ui(ε)]
f2(ε)

√
(2ε2 + 1)/6 ±[0, ui(ε) + uj(ε)]

f3(ε)
√

3ε/2 ±[0,1(ε)]

e1(ε) (ε2 + 2)/(3
√

2) [0, ui(ε),−uj(ε)]
±[0, ui(ε), ui(ε) + uj(ε)]

e2(ε)
√

(ε2 + 2)(2ε2 + 1)/(2
√

3) ±[0,1(ε), ui(ε)]
±[0,1(ε), ui(ε) + uj(ε)]
±[0,−ui(ε), uj(ε) + uk(ε)]

v1(ε)
√

8ε4 + 11ε2 + 8/6 ±[0,1(ε), ui(ε), ui(ε) + uj(ε)]
±[0,−ui(ε), uj(ε) + uk, uj(ε)]

f4(ε)
√

2/2 ui(ε)− uj(ε)

e3(ε)
√

6/3 ±[0, ui(ε)− uj(ε), ui(ε)− uk(ε)]

e4(ε) (ε2 + 2)/
√

12ε2 + 6 ±[0, ui(ε), uj(ε)]
±[0, ui(ε), ui(ε)− uj(ε)]

v2(ε) (ε2 + 2)/(2
√

3ε) ±[0, u1(ε), u2(ε), u3(ε)]
±[0, ui(ε), ui(ε)− uj(ε), ui(ε)− uk(ε)]

v3(ε)
√
ε2 + 8/(2

√
3) ±[0, u`(ε), u1(ε)− um(ε), u1]

±[0, u`(ε), u1(ε)− um(ε), u`(ε)− um(ε)]
±[0, u`(ε) + um(ε)− u1, u`(ε), um(ε)]
±[0, u`(ε) + um(ε)− u1, u`(ε), u`(ε)− u1(ε)]
±[0, u`(ε) + um(ε)− u1, u`(ε)− u1(ε), um(ε)− u1(ε)]

Table 3
Sequences of critical radii.

Ordering Interval
f3(ε) ≤ f1(ε) ≤ f2(ε) ≤ e2(ε) ≤ e1(ε) ≤ v1(ε) 0.000 . . . ≤ ε ≤ 0.500 . . .
f1(ε) ≤ f3(ε) ≤ f2(ε) ≤ e1(ε) ≤ e2(ε) ≤ v1(ε) 0.500 . . . ≤ ε ≤ 0.632 . . .
f1(ε) ≤ f2(ε) ≤ f3(ε) ≤ e1(ε) ≤ e2(ε) ≤ v1(ε) 0.632 . . . ≤ ε ≤ 0.664 . . .
f1(ε) ≤ f2(ε) ≤ e1(ε) ≤ f3(ε) ≤ e2(ε) ≤ v1(ε) 0.664 . . . ≤ ε ≤ 1.000 . . .
f1(ε) ≤ f4(ε) ≤ e4(ε) ≤ e3(ε) ≤ v2(ε) ≤ v3(ε) 1.000 . . . ≤ ε ≤ 2.000 . . .
f4(ε) ≤ f1(ε) ≤ e3(ε) ≤ e4(ε) ≤ v2(ε) ≤ v3(ε) 2.000 . . . ≤ ε ≤ 2.449 . . .
f4(ε) ≤ e3(ε) ≤ f1(ε) ≤ e4(ε) ≤ v2(ε) ≤ v3(ε) 2.449 . . . ≤ ε

First sequence. Referring to the first two rows in Table 1, we note that for 0 <
ε ≤ 0.5, the sorted sequence of critical radii is f3(ε) ≤ f1(ε) ≤ f2(ε) ≤ e2(ε) ≤ e1(ε) ≤
v1(ε). Recall that the first critical radius is the packing radius and thus precedes the
equilibrium radius in all cases. We begin the search by testing the second critical
radius. At radius f1(ε), the ball intersects two facets of the Voronoi domain, both at
distance f3(ε) from the origin. We therefore get two caps, and using (44) and (46),
we get their height and area as

h(ε) = f1(ε)− f3(ε) =
√

3ε2+6
6 − ε

√
3

2 ,(76)

A(ε) = 2πf1(ε)h(ε) = π(3ε2+6)−9πε
√
ε2+2

18 .(77)

The corresponding area defect is a normalized version of (24), namely the normalized
area of the sphere minus twice the normalized area of the caps:

∆(ε) =
4πf2

1 (ε)−4A(ε)
ε = −πε3 −

2π
3ε + 2π

√
ε2 + 2.(78)
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Fig. 9. The graphs of the area defect taken at strategic critical radii. Top row from left
to right: at the second critical radius in the interval (0.00, 0.50], at the third critical radius in
[0.239 . . . , 0.632 . . .], at the second critical radius in [0.50, 0.632 . . .]. Middle row from left to right:
at the second critical radius in [0.632 . . . , 1.00], at the second and third critical radii in [1.00, 2.00].
Bottom row from left to right: at the second and third critical radii in [2.00,∞), at the fourth
critical radius in [2.342 . . . , 2.576 . . .].

With the help of the Maple software [20], we find that the area defect is negative for
0 < ε <

√
70/35 = 0.239 . . . and positive in the complementary open interval; see

Figure 9, left graph in top row. We therefore divide the considered interval into two,
namely into (0, 0.239 . . .] corresponding to Case I and [0.239 . . . , 0.5] corresponding to
Case II; see Table 1. In Case I, the equilibrium radius lies between the first two critical
radii, and the search is complete. In Case II, the equilibrium radius lies to the right
of the second critical radius, and we continue the search by evaluating the area defect
at the third critical radius, f2(ε). At this size, the ball intersects six additional facets
of the Voronoi domain, all at distance f1(ε) from the origin. We thus deal with two
types of caps and index their heights and areas by the subscript of the corresponding
critical radius:

h3(ε) = f2(ε)− f3(ε) =
√

12ε2+6
6 − ε

√
3

2 ,(79)

h1(ε) = f2(ε)− f1(ε) =
√

12ε2+6
6 −

√
3ε2+6

6 ,(80)
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A3(ε) = 2πf2(ε)h3(ε) = π
√

12ε2+6
3

√
12ε2+6−3

√
3ε

6 ,(81)

A1(ε) = 2πf2(ε)h1(ε) = π
√

12ε2+6
3

√
12ε2+6−

√
3ε2+6

6 .(82)

The corresponding area defect is

∆(ε) =
4πf2

2 (ε)−4A3(ε)−12A1(ε)
ε

= − 14π(2ε2+1)
3ε + 2π

√
4ε2+2(ε+

√
ε2+2)

ε ,(83)

which is negative for every ε in the considered interval; see Figure 9, middle graph
in top row. It follows that in Case II, the equilibrium radius lies between the second
and third critical radii.

Second sequence. For 0.5 ≤ ε ≤
√

2/5 = 0.632 . . . , the sorted sequence of critical
radii is f1(ε) ≤ f3(ε) ≤ f2(ε) ≤ e1(ε) ≤ e2(ε) ≤ v1(ε). As before, we begin the search
at the second critical radius. The corresponding ball intersects six Voronoi facets, all
at distance f1(ε) from the origin. Using (44) and (46), we get the height, cap area,
and area defect as

h(ε) = f3(ε)− f1(ε) = ε
√

3
2 −

√
3ε2+6

6 ,(84)

A(ε) = 2πf3(ε)h(ε) = πε(3ε−
√
ε2+2)

2 ,(85)

∆(ε) =
4πf2

3 (ε)−12A(ε)
ε = −15πε+ 2π

√
9ε2 + 18.(86)

The last is positive for ε < 2
√

42/21 = 0.617 . . . and negative for values of ε larger than
this bound; see Figure 9, right graph in top row. We thus divide the considered interval
into [0.5, 0.617 . . .] corresponding to Case III and [0.617 . . . , 0.632 . . .] corresponding
to Case IV. In Case IV, the equilibrium radius lies between the first two critical radii,
and the search is complete. In Case III, we continue by evaluating the area defect at
f2(ε), at which size the ball intersects two additional Voronoi facets at distance f3(ε)
from the origin. The corresponding formulas for the height, cap area, and area defect
are the same as (79)–(83). Again, the area defect is negative, which implies that the
equilibrium radius is between f3(ε) and f2(ε); compare with Table 1.

Third sequence. For 0.632 . . . ≤ ε ≤
√

19− 3
√

33/2 = 0.664 . . . , the sorted se-
quence of critical radii is f1(ε) ≤ f2(ε) ≤ f3(ε) ≤ e1(ε) ≤ e2(ε) ≤ v1(ε). Beginning
the search at f2(ε), the ball intersects six Voronoi facets, all at distance f1(ε) from
the origin. Using (44) and (45), we get

h(ε) = f2(ε)− f1(ε) =
√

12ε2+6−
√

3ε2+6
6 ,(87)

A(ε) = 2πf2(ε)h(ε) =
π(4ε2+2−

√
2(2ε2+1)(ε2+2))

6 ,(88)

∆(ε) =
4πf2

2 (ε)−12A(ε)
ε = 2π(−10ε2−5+

√
12ε2+6

√
3ε2+6)

3ε(89)

for the height, cap area, and area defect. The last is negative for ε >
√

22/8 ≈ 0.59
and therefore within the entire considered interval. In other words, in Case V the
equilibrium radius lies between the first and the second critical radii; compare with
Table 1.

Fourth sequence. For 0.664 . . . ≤ ε ≤ 1, the sorted sequence of critical radii is
f1(ε) ≤ f2(ε) ≤ e1(ε) ≤ f3(ε) ≤ e2(ε) ≤ v1(ε). Beginning the search at f2(ε), we
get the same formulas for the height, cap area, and area defect as in (87)–(89). The
area defect is negative in the entire interval; see Figure 9, left graph in middle row. If
follows that in Case VI the equilibrium radius lies between the first two critical radii;
compare with Table 1.
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Fifth sequence. For 1 ≤ ε ≤ 2, the sorted sequence of critical radii is f1(ε) ≤
f4(ε) ≤ e4(ε) ≤ e3(ε) ≤ v2(ε) ≤ v3(ε). Beginning the search at f4(ε), the ball
intersects six Voronoi facets, all at distance f1(ε) from the origin. Using (50) and
(51), we get

h(ε) = f4(ε)− f1(ε) =
√

2
2 −

√
3ε2+6

6 ,(90)

A(ε) = 2πf4(ε)h(ε) =
√

2π
6

(
3
√

2−
√

3ε2 + 6
)
,(91)

∆(ε) =
4πf2

4 (ε)−12A(ε)
ε =

2π(
√

6ε2+12−5)
ε(92)

for the height, cap area, and area defect. The last is negative for ε <
√

13/6 =
1.471 . . . and positive for values of ε larger than this bound; see Figure 9, middle graph
in middle row. We thus divide the considered interval into [1, 1.471 . . .] corresponding
to Case VII and [1.471 . . . , 2] corresponding to Case VIII. In Case VII, the equilibrium
radius lies between the first two critical radii, and the search is complete; compare
with Table 1. In Case VIII, we continue the search with e4(ε), at which size the ball
intersects all 12 Voronoi facets, six each at distances f1(ε) and f4(ε) from the origin.
The heights and areas of the two types of caps and the area defect are

h1(ε) = e4(ε)− f1(ε) = ε2+2√
6(2ε2+1)

−
√

3ε2+6
6 ,(93)

h4(ε) = e4(ε)− f4(ε) = ε2+2√
6(2ε2+1)

−
√

2
2 ,(94)

A1(ε) = 2πe4(ε)h1(ε) = π(ε2+2)2

3(2ε2+1) −
π(ε2+2)

√
ε2+2√

18(2ε2+1)
,(95)

A4(ε) = 2πe4(ε)h4(ε) = π(ε2+2)2

3(2ε2+1) −
π(ε2+2)√
3(2ε2+1)

,(96)

∆(ε) =
4πe24(ε)−12A1(ε)−12A4(ε)

ε

= 2
√

2π(ε2+2)(
√
ε2+2+

√
6)

ε
√

2ε2+1
− 22π(ε2+2)2

3ε(2ε2+1) .(97)

It is negative over the entire interval; see Figure 9, right graph in middle row. It
follows that in Case VIII, the equilibrium radius lies between the second and the
third critical radii; compare with Table 1.

Sixth sequence. For 2 ≤ ε ≤
√

6 = 2.449 . . . , the sorted sequence of critical radii
is f4(ε) ≤ f1(ε) ≤ e3(ε) ≤ e4(ε) ≤ v2(ε) ≤ v3(ε). Beginning the search at f1(ε), the
ball intersects six Voronoi facets, all at distance f4(ε) from the origin. Using (50) and
(51), we get

h(ε) = f1(ε)− f4(ε) =
√

3ε2+6−3
√

2
6 ,(98)

A(ε) = 2πf1(ε)h(ε) =
π(ε2+2−

√
6(ε2+2)

6 ,(99)

∆(ε) =
4πf2

1 (ε)−12A(ε)
ε

=
6π
√

6(ε2+2)−5πε2−10π

3ε(100)

for the height, cap area, and area defect. The last is positive for all values of ε in
the considered interval; see Figure 9, left graph in bottom row. We thus continue
the search with e3(ε), at which size the ball intersects 12 Voronoi facets, six each at
distances f4(ε) and f1(ε) from the origin. The corresponding heights, cap areas, and
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area defect are

h1(ε) = e3(ε)− f1(ε) = 2
√

6−
√

3ε2+6
6 ,(101)

h4(ε) = e3(ε)− f4(ε) = 2
√

6−3
√

2
6 ,(102)

A1(ε) = 2πe3(ε)h1(ε) = π(4−
√

2ε2+4)
3 ,(103)

A4(ε) = 2πe3(ε)h4(ε) = (4−2
√

3)π
3 ,(104)

∆(ε) =
4πe23(ε)−12A1(ε)−12A4(ε)

ε

= 12
√

2π
√
ε2+2+24

√
3π−88π

3ε .(105)

The last is negative for ε <
√

278− 132
√

3/3 = 2.342 . . . and positive for values of ε
larger than this bound; see Figure 9, middle graph in bottom row. We thus divide the
considered interval into [2, 2.342 . . .] corresponding to Case IX and [2.342 . . . , 2.449 . . .]
corresponding to Case X. In Case IX, the equilibrium radius lies between the second
and third critical radii, and the search is complete; see Table 1. In Case X, we continue
the search with e4(ε), at which size the ball still intersects the same 12 Voronoi facets,
but some of the corresponding caps overlap. As mentioned earlier, we ignore these
overlaps by considering the simplified soft density. We get the same equations for the
heights, cap areas, and area defect as above, (101)–(105), except that we substitute
e4(ε) for e3(ε). We list the corresponding equations for completeness:

h1(ε) = e4(ε)− f1(ε) = ε2+2√
6(2ε2+1)

−
√

3ε2+6
6 ,(106)

h4(ε) = e4(ε)− f4(ε) = ε2+2√
6(2ε2+1)

−
√

2
2 ,(107)

A1(ε) = 2πe4(ε)h1(ε) = π(ε2+2)2

3(2ε2+1)−
π(ε2+2)

√
3ε2+6

3
√

6(2ε2+1)
,(108)

A4(ε) = 2πe4(ε)h4(ε) = π(ε2+2)2

3(2ε2+1) −
π(ε2+2)√
3(2ε2+1)

,(109)

∆(ε) =
4πe24(ε)−12A1(ε)−12A4(ε)

ε

=
π(6
√

2(ε2+2)(2ε2+1)+12
√

6ε2+3−22ε2−44)(ε2+2)

3ε(2ε2+1) .(110)

The area defect is negative for all ε > 0, which covers the interval of interest; see
Figure 9, right graph in bottom row. It follows that in Case X, the equilibrium radius
lies between e3(ε) and e4(ε); compare with Table 1.

Last sequence. For 2.449 . . . ≤ ε < ∞, the sorted sequence of critical radii is
f4(ε) ≤ e3(ε) ≤ f1(ε) ≤ e4(ε) ≤ v2(ε) ≤ v3(ε). Beginning the search at e3(ε), the
ball intersects six Voronoi facets, all at distance f4(ε) from the origin. Using (51) and
(52), we get

h(ε) = e3(ε)− f4(ε) = 2
√

6−3
√

2
6 ,(111)

A(ε) = 2πe3(ε)h(ε) = (4−2
√

3)π
3 ,(112)

∆(ε) =
4πe23(ε)−12A(ε)

ε = 8π(3
√

3−5)
3ε(113)

for the height, cap area, and area defect. The last is positive over the entire interval.
We thus continue the search at f1(ε). Ignoring overlaps by considering the simplified
soft density, we get the same formulas as in (98)–(100). The area defect is positive
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for ε <
√

166/5 = 2.576 . . . and negative for ε exceeding this bound; see Figure 9,
left graph in bottom row. We thus divide the interval into [2.449 . . . , 2.576 . . .] corre-
sponding to Case XI and [2.576 . . . ,∞) corresponding to Case XII. In Case XII, the
equilibrium radius lies between e3(ε) and f1(ε), and the search is complete; compare
with Table 1. In Case XI, we continue the search at e4(ε). Ignoring overlaps among
the caps, we get the same formulas as in (106)–(110). The area defect is negative for
all values of ε in the interval of interest; see Figure 9, right graph in bottom row. It
follows that the equilibrium radius in Case XI is between f1(ε) and e4(ε); compare
with Table 1.

A.3. Maximum soft density. After identifying the position of the equilibrium
radius among the critical radii in Appendix A.2, we now compute the equilibrium
radius as well as the corresponding soft density. By construction, this is the maximum
soft density for any given parameter ε and thus gives the graph displayed in Figure
7. We consider Cases I–XII in turn but consolidate the 12 cases to five.

Case I. Referring to Table 1, we recall that for all ε ∈ (0, 0.239 . . .], the equilib-
rium radius lies between the first two critical radii: f3(ε) ≤ %(ε) ≤ f1(ε). We get an
equation for the equilibrium radius by setting the area defect to zero. Note that the
height, cap area, and area defect are

h3(ε) = %(ε)− f3(ε) = %(ε)−
√

3ε
2 ,(114)

A3(ε) = 2π%(ε)h3(ε) = 2π%(ε)
(
%(ε)−

√
3ε
2

)
,(115)

∆(ε) = 4π%2(ε)−4A4(ε)
ε = 4π%(ε)[

√
3ε−%(ε)]
ε .(116)

Setting ∆(ε) = 0, we get %(ε) =
√

3ε; compare with (56). To get the soft density, we
still need the volume of the cap, by which we mean the volume of the convex hull of
the cap. Equivalently, it is the volume of the cone over the cap minus the volume of
the cone of the disk spanned by the circle bounding the cap. The area of the disk is
2πh3(ε)%(ε)− πh2

3(ε). The volume of the cap and the soft density are therefore

V3(ε) =
π[3h2

3(ε)%(ε)−h3
3(ε)]

3(117)

= π[ε
√

3−2%(ε)]2[ε
√

3+4%(ε)]
24 ,(118)

δ1(ε) = 4π%3(ε)−12V3(ε)
3ε = 3

√
3πε2

2 ;(119)

compare with (57).
Cases II–III. Referring to Table 1, we note that for every ε ∈ [0.239 . . . , 0.617 . . .]

the ball with the equilibrium radius intersects the same eight Voronoi facets. Indeed,
we have f3(ε), f1(ε) ≤ %(ε) ≤ f2(ε) throughout the interval. To get an equation for
the equilibrium radius, we reuse the equation for A3 and compute the height and area
of the other type of cap and the area defect:

h1(ε) = %(ε)− f1(ε) = %(ε)−
√
ε2+2
2
√

3
,(120)

A1(ε) = 2π%(ε)h1(ε) = 2π%(ε)
(
%(ε)−

√
ε2+2
2
√

3

)
,(121)

∆(ε) = 4π%2(ε)−4A3(ε)−12A1(ε)
ε(122)

= 4π%(ε)[
√

3ε−
√

3ε2+6−7%(ε)]
ε .(123)
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Setting ∆(ε) = 0, we get %(ε) =
(√

3ε+
√

3ε2 + 6
)
/7; compare with (58). As before,

we continue by computing the volume of the cap and the soft density:

V1(ε) =
π[3h2

1(ε)%(ε)−h3
1(ε)]

3

= π[−6%(ε)+
√

3ε2+6]2[12%(ε)+
√

3ε2+6]
648 ,(124)

δ1(ε) = 4π%3(ε)−12V3(ε)−36V1(ε)
3ε

= −π[27
√

3ε(11ε2−8)+(26−95ε2)
√

3ε2+6]
882ε ;(125)

compare with (59). The only root of the derivative is δ1
′(0.5) = 0, with the second

derivative δ1
′′(0.5) < 0. We see in Figure 10 that the second derivative is negative

throughout the interval of interest, which implies that the maximum soft density is
concave over [0.239 . . . , 0.617 . . .]; see Figure 7.

Cases IV–VII. Referring to Table 1, we note that for every ε ∈ [0.617 . . . , 1.471 . . .]
the ball with the equilibrium radius intersects the same six Voronoi facets: f1(ε) ≤
%(ε) ≤ f2(ε), f3(ε), f4(ε) throughout the interval. Reusing (121), the area defect is

∆(ε) = 4π%2(ε)−12A1(ε)
ε = 4π%(ε)

√
3ε2+6−20π%2(ε)

ε .(126)

Setting ∆(ε) = 0, we get %(ε) =
√

3ε2 + 6/5; compare with (60). Reusing (124), the
soft density is

δ1(ε) = 4π%3(ε)−36V1(ε)
3ε =

11π
√

(3ε2+6)3

1350ε ;(127)

compare with (61). The only root of the derivative is δ1
′(1) = 0, with the second

derivative δ1
′′(1) > 0. We see in Figure 11 that the second derivative is positive

throughout the interval of interest, which implies that the maximum soft density is
convex over [0.617 . . . , 1.471 . . .]; see Figure 7.

Fig. 10. The second derivative of the maximum soft density function within the interval
[0.239 . . . , 0.617 . . .].
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Fig. 11. The second derivative of the maximum soft density function within the interval
[0.617 . . . , 1.471 . . .].

Cases VIII–XI. Referring to Table 1, we note that for ε ∈ [1.471 . . . , 2.576 . . .] the
ball with the equilibrium radius intersects all 12 Voronoi facets: f1(ε), f4(ε) ≤ %(ε).
In Cases X–XI, there are overlaps among the corresponding caps, but we ignore them
for the time being by considering the simplified soft density. We reuse (121) and
compute the height and area of the remaining cap type and the area defect:

h4(ε) = %(ε)− f4(ε) = %(ε)−
√

2
2 ,(128)

A4(ε) = 2π%(ε)h4(ε) = 2π%(ε)
(
%(ε)−

√
2

2

)
,(129)

∆(ε) = 4π%2(ε)−12A1(ε)−12A4(ε)
ε

= 12
√

2π%(ε)+4π%(ε)
√

3ε2+6−44π%2(ε)
ε .(130)

Setting ∆(ε) = 0, we get %(ε) =
(√

3ε2 + 6 + 3
√

2
)
/11; compare with (62). We

continue by computing the cap volume and the simplified soft density:

V4(ε) =
π(3%(ε)h2

4(ε)−h3
4(ε))

3

= π(
√

2−2%(ε))2(4%(ε)+
√

2)
24 ,(131)

δ1s(ε) = 4π%3(ε)−36V1(ε)−36V4(ε)
3ε

= π[324
√

2ε2−882
√

2+(478−85ε2)
√

3ε2+6]
2178ε ;(132)

compare with (63). The only root of the derivative is δ1s
′(2) = 0, with the sec-

ond derivative δ1s
′′(2) < 0. We see in Figure 12 that the second derivative is neg-

ative throughout the interval of interest, which implies that the maximum simpli-
fied soft density is concave over [1.471 . . . , 2.576 . . .]; see Figure 7. Interestingly,
the second derivative does not go to 0 when ε approaches the endpoints, and we
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observe the same phenomenon in Figures 10 and 11. It follows that the second
derivative of the maximum simplified soft density has discontinuities, namely at
ε = 0.239 . . . , 0.617 . . . , 1.471 . . . , 2.576 . . . .

Fig. 12. The second derivative of the maximum soft density function within the interval
[1.471 . . . , 2.576 . . .].

Case XII. Referring to Table 1, we note that for ε ∈ [2.576 . . . ,∞) the ball
with the equilibrium radius intersects only six Voronoi facets: f4(ε) ≤ %(ε) ≤ f1(ε).
Ignoring the overlaps among the corresponding caps, we consider the simplified soft
density. Reusing (129), we get the area defect:

∆(ε) = 4π%2(ε)−12A4(ε)
ε = 12

√
2π%(ε)−20π%2(ε)

ε .(133)

Setting ∆(ε) = 0, we get %(ε) = 3
√

2/5; compare with (64). Reusing (131), we get
the simplified soft density:

δ1s(ε) = 4π%3(ε)−36V4(ε)
3ε = 11

√
2π

25ε ;(134)

compare with (65).

A.4. Unsimplified soft density. Here we consider equilibrium configurations
with triple intersections. In particular, we recompute the position of the equilibrium
radius among the critical radii for the unsimplified soft density, the threshold for ε
beyond which the equilibrium radius remains constant, and the constant C such that
the unsimplified soft density has the form (69).

Position of the equilibrium radius. For ε > 2.342 . . . , the position of the equi-
librium radius for the soft density may be different from that for the simplified soft
density. The reason is that the formula for the area defect now includes a term involv-
ing triple intersections. Considering Case X, we begin the search at e4(ε), at which
size the ball at the origin intersects six Voronoi facets at distance f4(ε), six Voronoi
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Fig. 13. Two graphs of the area defect for the soft density measure, at e4(ε) for ε ∈ [2.342 . . . , 3]
on the left and at f1(ε) for ε ∈ [2.449 . . . , 3] on the right.

facets at distance f1(ε), and six Voronoi edges at distance e3(ε). Using the spherical
area formula in [10] as well as (108) and (109), we get

Ae(ε) = b1(ε)+b2(ε)
6ε2+3 ,(135)

∆(ε) =
4πe24(ε)−12A1(ε)−12A4(ε)+12Ae(ε)

ε

= 2[6b1(ε)+6b2(ε)+π(ε2+2)b3(ε)]
ε(6ε2+3)(136)

for the surface area of a single triple intersection and the area defect, in which

b1(ε) = (ε2 + 2)2
(
π − arccos ε

4−8ε2−2
2(ε2−1)2

)
,

b2(ε) = −2(ε2 + 2)
√

6ε2 + 3 arccos
√

2ε2+1
ε2−1 ,

b3(ε) = 6
√

6ε2 + 3 +
√

(12ε2 + 6)(3ε2 + 6)− 11(ε2 + 2).(137)

The area defect is negative for all ε > 2.342 . . . ; see the left graph in Figure 13. It
follows that the equilibrium radius remains at the same position among the critical
radii as for the simplified soft density. In Cases XI–XII, the expression for the area
defect at e4(ε) is the same as above, which implies that the equilibrium radius is
smaller than e4(ε). It remains to evaluate the area defect at f1(ε). Using (99), we get

Af (ε) = c1(ε) + c2(ε),(138)

∆(ε) =
4πf2

1 (ε)−12A4(ε)+12Af (ε)
ε

= c3(ε) + c4(ε)(139)

for the surface area of the triple intersection and the area defect at radius f1(ε), in
which

c1(ε) = − ε
2+2
6 arccos ε

2−10
2ε2−8 ,

c2(ε) = 2π+πε2

6 −
√

6ε2+12
3 arccos 2√

2ε2−8
,
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c3(ε) = 2π+πε2

3ε − (2ε2+4)
ε arccos ε

2−10
2ε2−8 ,

c4(ε) = 2
√

6ε2+12
ε

[
π − 2 arccos 2√

2ε2−8

]
.

As shown in Figure 13 on the right, ε = 2.622758110 . . . ≈ 2.62 separates positive
from negative area defect. In other words, Cases XI–XII remain the same, except
that the transition shifts from 2.576 . . . to 2.622 . . . .

Maximum soft density. Cases X–XI corresponding to ε ∈ [2.342 . . . , 2.62 . . .] have
the same expression for the area defect. Reusing (121) and (129), we get

Ae(ε) = −2%(ε)[d1(ε) + d2(ε)− π%(ε)],(140)

∆(ε) = 4π%2(ε)−12A1(ε)−12A4(ε)+12Ae(ε)
ε

= 4%(ε)[−6d1(ε)+d3(ε)+d4(ε)−6d2(ε)]
ε(141)

for the area of the triple intersection and the area defect, in which

d1(ε) =
√

2 arccos 1√
6%2(ε)−3

,

d2(ε) = %(ε) arccos %2(ε)−1
2%2(ε)−1 ,

d3(ε) = π
√

3ε2 + 6,

d4(ε) = 3
√

2π − 5π%(ε).

Setting ∆(ε) = 0, we do not succeed in finding a closed-form expression for %(ε), but
we are able to sample its value at discrete parameters ε. Reusing (124) and (131), we
get

Ve(ε) = [1−6%2(ε)]d1(ε)+2d5(ε)−4%2(ε)d2(ε)
6 ,(142)

δ1(ε) = 4π%3(ε)−36V1(ε)−36V4(ε)+36Ve(ε)
3ε

= −d3(ε)d7(ε)+d1(ε)d8(ε)+144%2(ε)d2(ε)+6d6(ε)
18ε(143)

for the volume of a single triple intersection and the soft density, in which

d5(ε) =
6π%3(ε)+

√
3%2(ε)−2

3 ,

d6(ε) = 20π%3(ε) + 3
√

2π[1− 6%2(ε)]− 4
√

3%2(ε)− 2,

d7(ε) = ε2 − 36%2(ε) + 2,

d8(ε) = 216%2(ε)− 36.

We use the ability to sample the equilibrium radius from (141) and plug these values
into (143) to sketch the graph of δ1(ε) in the interval [2.342 . . . , 2.62 . . .], which falls,
of course, between the graphs of the simplified and the extrapolated soft densities;
see Figure 8.

Extrapolated soft density. In Case XII, the equilibrium radius is constant over the
entire interval from 2.62 . . . to infinity. Reusing (129) and (140), we get

∆(ε) = 4π%2(ε)−12A4(ε)+12Ae(ε)
ε

= 4%(ε)[π%(ε)+3
√

2π−6d1(ε)−6d2(ε)]
ε(144)
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for the area defect. Setting ∆(ε) = 0 and reusing (131) and (142), we get

%(ε) = 0.8601773122 . . . ,(145)

δ1(ε) = 4π%3(ε)−36V4(ε)+36Ve(ε)
3ε

= [6−36%2(ε)]d1(ε)−24%2(ε)d2(ε)+d9(ε)
3ε ,(146)

in which

d9(ε) = 4
√

3%2(ε)− 2 + 4π%3(ε) + 3
√

2π[6%2(ε)− 1].

Plugging the constant equilibrium radius (145) into (146), we get δ1(ε) = C/ε, with
C = 1.962290082 . . . ≈ 1.96; see Figure 8. This gives δ1x(2.342 . . .) = 0.8378301951 . . . ,
which is less than the soft density of the FCC lattice at equilibrium, as desired.
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[17] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Grundlehren Math.
Wiss. 65, Springer, Berlin, 1953.

[18] M. Iglesias-Ham, M. Kerber, and C. Uhler, Sphere packing with limited overlap, in Online
Proceedings of the Canadian Conferece on Computational Geometry, 2014.

[19] G. Kreth, P. Edelmann, and C. Cremer, Towards a dynamical approach for the simulation
of large scale, cancer correlated chromatin structures, Ital. J. Anat. Embryol., 106 (2001),
pp. 21–30.

[20] MAPLE 17, Maplesoft, a division of Waterloo Maple Inc., Waterloo, ON, Canada.
[21] C. Radin, The ground state for soft disks, J. Statist. Physics, 26 (1981), pp. 365–373.
[22] R. Sibson, A vector identity for the Dirichlet tessellation, Math. Proc. Cambridge Philos. Soc.,

87 (1980), pp. 151–155.


	Introduction
	Lattice configurations
	Voronoi domains and Brillouin zones
	Iterative construction
	Configurations of balls

	Measures of density
	Soft densities
	Derivatives
	Equilibrium

	Optimality in R3
	Discussion
	Appendix A. Case analysis
	Critical radii
	Position of equilibrium radius
	Maximum soft density
	Unsimplified soft density

	References

