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Abstract

Inclusion-exclusion is an effective method for computing the volume of a union of measurable sets. We
extend it to multiple coverings, proving short inclusion-exclusion formulas for the subset of Rn covered by
at least k balls in a finite set. We implement two of the formulas in dimension n = 3 and report on results
obtained with our software.
Keywords: Multiple cover with balls, inclusion-exclusion, Voronoi diagrams, hyperplane arrangements,
exact computation.

1. Introduction

The work reported in this paper is motivated by configurations of balls that model the organization of
DNA inside the nuclei of human cells: the Spherical 1 Mega-base-pairs Chromatin Domain, or SCD model,
which is supported by high resolution microscopic observations [1, 2]. It was recently confirmed that inside
the chromosome territories in eukaryotic cells, DNA is compartmentalized in sequences of highly interacting5

segments of roughly the same length [3]. Each segment consists of about one million base pairs which are
rolled up in a shape that resembles a round ball, and the shapes are tightly arranged within a restricted
space.

Modeling such a configuration as a packing – in which the balls are rigid and allowed to touch but
not overlap – is too restrictive because the rolled up base pairs push against each other and deform to10

cover more empty space than is otherwise possible. Similarly, modeling the configuration as a covering
– in which the balls overlap and cover space without gaps – is not realistic because some empty space is
necessary to facilitate the expression and replication of the DNA. We refer to [4] for a representative text
in the rich mathematical literature on packings and coverings with balls. For the reason mentioned before,
we are motivated to consider configurations that lie between these two extremes: the balls are allowed to15

overlap and they do not necessarily cover the entire space; see also [5]. Given such a configuration, we are
interested in quantifications. For packings and coverings, it is customary to compute the density, which is
the expected number of balls that contain a random point. This measure can also be used for more general
configurations, but there are other choices. To mention one, we may be interested in the set of points each
covered by exactly one ball; its volume is the difference between the volume of the union and of the 2-fold20

cover of the balls. It requires the ability to measure the set of points covered by at least two balls, which is
a special case of the question addressed in this paper.

Prior work and results. An effective method for computing the volume of a union of balls, or possibly
more general sets, is the principle of inclusion-exclusion. It has a long history in mathematics and is
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attributed to Abraham de Moivre (1667–1754) but appeared first in writings of Daniel da Silva (1854) and
of James Joseph Sylvester (1883). Given a finite collection of measurable sets, X , in Rn, it asserts that the
volume of the union is the alternating sum of the volumes of the common intersections of the sets in all
subcollections Q ⊆ X . The formula can be generalized to k-fold covers, which we define as the set Xk of
points in Rn that belong to at least k of the sets:

Vol(Xk) =
∑
i≥k

(−1)i−k
(
i− 1
k − 1

) ∑
Q∈(X

i )
Vol(

⋂
Q); (1)

in which
(X
i

)
denotes the collection of subsets of size i, see for example Chapter IV of Feller’s textbook on

probability [6, page 110]. Since we need (1) in the proofs of the short inclusion-exclusion formulas, we give
our own proof using the Pascal triangle and its alternating form. If the measurable sets are balls, we write
B for the collection, and Bk for the k-fold cover. Using the power distance of a point to a ball, the order-k
Voronoi diagram identifies all collections Q ⊆ B of size k for which there are points so that the balls in Q are
the k closest; see e.g. [7]. Restricting (1) to terms that correspond to cells of the order-k Voronoi diagram,
we get a short inclusion-exclusion formula:

Vol(Bk) =
∑
σ∈Vk

(−1)codim γ(σ)Vol(
⋂
Qγ(σ)), (2)

see the Order-k Pie Theorem in Section 4 for details. Every γ is a cell of the order-k Voronoi diagram,
with at least k and at most k + n balls in the corresponding collection Qγ ⊆ B. Relation (2) generalizes
the inclusion-exclusion formula of Naiman and Wynn [8] from the union to more general k-fold covers. We
also prove a slightly stronger version of (2) in which the sum ranges over the subcollection of cells that have
a non-empty common intersection with the balls that define them. It generalizes the inclusion-exclusion
formula based on alpha shapes given in [9]. To reduce the size of the terms, we use levels in hyperplane
arrangements in Rn+1 and inclusion-exclusion formulas for general polyhedra; see [10, 11], and obtain another
short inclusion-exclusion formula for the n-dimensional volume of the k-fold cover:

Vol(Bk) =
∑
Q∈Lk

LQ ·Vol(
⋂
Q); (3)

see the Level-k Pie Theorem in Section 5 for details. The collections Q ⊆ B correspond to affine subspaces
of the arrangement, with size between 1 and n + 1. For k = 1, the formulas (2) and (3) are the same.
Importantly, we have a slightly stronger version of (3) in which all collections of balls are independent.25

Among other advantages, this additional property eliminates an otherwise necessary case analysis and thus
simplifies computer implementations. As mentioned above, the short inclusion-exclusion formulas in (2) and
(3) have applications in the study of the spatial organization of chromosomes. We have implemented the
formulas in dimension n = 3, using software supporting exact arithmetic [12, 13] and volume formulas for
the common intersection of 3-dimensional balls [14].30

Outline. Section 2 extends the principle of inclusion-exclusion from unions to k-fold covers. Section 3
provides background on Voronoi diagrams and hyperplane arrangements. Sections 4 and 5 prove short
inclusion-exclusion formulas for k-fold covers with balls in Rn. Section 6 presents results of computational
experiments. Section 7 concludes the paper.

2. The Combinatorial Formula35

In this section, we explain how the inclusion-exclusion formula for the volume of a union of measurable
sets can be extended to k-fold covers. In the context of probability theory, the same extension can be found
in [6, page 110]. We begin with a combinatorial result on Pascal triangles.

Recall that the Pascal triangle is a 2-dimensional organization of the binomial coefficients, and the
alternating Pascal triangle is the same except that the coefficients are listed with alternating sign; see
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Figure 1: The first few non-zero rows of the Pascal triangle on the left, and of the alternating Pascal triangle on the right.

Figure 1. We think of them as (infinitely large) matrices that can be multiplied. To talk about the product,
we introduce notation for the u-th row of the Pascal triangle and the v-th column of the alternating Pascal
triangle, Ru, Cv : Z→ Z defined by

Ru(v) =
(
u

v

)
, (4)

Cv(u) = (−1)u−v
(
u

v

)
, (5)

where
(
u
v

)
= 0 whenever v < 0 or u < v. In the Pascal triangle, each entry in the u-th row is obtained

by adding two entries in the (u − 1)-st row: Ru(v) = Ru−1(v − 1) + Ru−1(v), unless u = v = 0 in which
case R0(0) = 1. Similarly, in the alternating Pascal triangle, each entry of the v-th column is obtained by
adding two entries in the (v + 1)-st column: Cv(u) = Cv+1(u) + Cv+1(u + 1), unless u = v = −1 in which
case C−1(−1) = 0. Both rules can be reversed, generating a row from the next row and a column from the
previous column:

Ru−1(v) =
∑
j≥0

(−1)jRu(v − j), (6)

Cv+1(u) =
∑
j≥0

(−1)jCv(u− j − 1). (7)

It is easy to prove both relations by induction, but note that (6) requires u , 0 or v < 0 and (7) requires
v , −1 or u < 0. Observe that the rows of the Pascal triangle are symmetric: Ru(v) = Ru(u− v) for all u40

and v. Accordingly, we can reverse the direction of the summation in (6), while the same cannot be done in
(7).
Shifted multiplication. As usual in matrix multiplication, we define the product as the matrix whose
entry in row u and column v is the scalar product of the u-th row on the left and the v-th column on the
right. More generally, we introduce a shift parameter, d ∈ Z, and define

Md(u, v) =
∞∑

j=−∞
Ru+d(j) · Cv(j − d). (8)

For d = 0, this is the usual matrix product, and more generally, it is the product in which the rows of the first
matrix are shifted up by d positions and the rows of the second matrix are shifted down by d positions. To
get a feeling for the shifted matrix product, we fix a row u0 in the left matrix and compute scalar products
with shifted versions of all columns in the right matrix:

Nu0(u, v) =
∞∑

j=−∞
Ru0(j) · Cv(j − u0 + u); (9)
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see Figure 2 which shows the result for u0 = 4. Note that row Ru0 has u0 + 1 non-zero elements which
implies that the first non-zero row of Nu0 is obtained with shift parameter u0. More generally, row u is
obtained with d = u0 − u, implying that Nu0 shares row u0 − d with Md. We are particularly interested in45

row u0 − 1, which Nu0 shares with M1. It is obtained by multiplying row u0 with all columns shifted down
by 1 position.
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Figure 2: The first few non-zero rows of the matrix N4.

Lemma 1 (Shift Lemma). With a shift by d = 1 position, we have

M1(u, v) =
{

1 if 0 ≤ v ≤ u,
0 otherwise, (10)

for all u and v.

Proof. We note that row u of M1 is equal to row u of Nu+1. It thus suffices to show that

Nu0(u, v) =
{

1 if 0 ≤ v ≤ u,
0 otherwise, (11)

for u0 = u + 1. To see this, we construct the columns of Nu0 from left to right. Column 0 is obtained by
multiplying Ru0 with shifted copies of C0. Writing d = u0 − u, we get

Nu0(u, 0) =
∞∑

j=−∞
Ru0(j) · C0(j − d) (12)

=
∑
j≥d

(−1)j−dRu0(j) (13)

=
∑
j≥0

(−1)jRu0(d+ j) (14)

=
∑
j≥0

(−1)jRu0(u− j). (15)

We get (13) because the non-zero entries of C0 alternate between 1 and −1, we get (14) with an index
transformation, and we get (15) using Ru0(v) = Ru0(u0 − v). Note that (15) is the same as the right hand
side of (6) after substituting u0 for u and u for v. We conclude that column 0 of Nu0 is the transpose of
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Ru0−1. Next we show that column v + 1 of Nu0 can be obtained from column v:

Nu0(u, v + 1) =
∞∑

j=−∞
Ru0(j) · Cv+1(j − d) (16)

=
∑

j≥d+v+1
Ru0(j) ·

∑
i≥0

(−1)iCv(i′) (17)

=
∑
i≥0

(−1)i
∑

j≥d+v+1
Ru0(j) · Cv(i′) (18)

=
∑
i≥0

(−1)iNu0(u− i− 1, v), (19)

where i′ = j − d− i− 1. We get (17) using (7), we get (18) by exchanging sums, and we get (19) using (9)
and noting that j − u0 + (u − i − 1) = i′. Observe that (19) is but a rewriting of (7) for the columns of50

Nu0 . Applying (19) to column 0, which is Ru0−1 transposed, thus gives Ru0−2 transposed and shifted down
by one position. Repeating the argument, we get transposed copies of Ru0−1 down to R0, progressively
shifting down so that their respective last non-zero entries populate row u0 − 1 of Nu0 . We thus have
Nu0(u0 − 1, v) = 1 for 0 ≤ v ≤ u0 − 1, while the other entries in this row are trivially 0. This implies (11)
and therefore the claimed relation.55

Long inclusion-exclusion. We use the insight gained into the Pascal triangles to generalize the principle
of inclusion-exclusion from unions to k-fold covers. To make this precise, let X be a finite collection of sets in
Rn. Let k be an integer, and write Xk for the set of points contained in k or more of the sets in X . We write
X = X1. Standard inclusion-exclusion implies that the indicator function of the union is the alternating sum
of the indicator functions of the common intersections:

1X(x) =
∞∑
i=1

(−1)i−1
∑

Q∈(X
i )

1⋂Q(x). (20)

To generalize (20) to k-fold covers, we introduce integer coefficients that depend on the size of the subcol-
lections.

Theorem 1 (k-fold Pie Theorem). Let X be a finite collection of measurable sets in Rn, and k a positive
integer. Then

Vol(Xk) =
∞∑
i=k

(−1)i−k
(
i− 1
k − 1

) ∑
Q∈(X

i )
Vol(

⋂
Q). (21)

Proof. We prove that the indicator function of the k-fold cover satisfies

1Xk(x) =
∞∑
i=k

(−1)i−k
(
i− 1
k − 1

) ∑
Q∈(X

i )
1⋂Q(x). (22)

The claimed volume formula follows by integration. Let x be a point in Rn, and let ` be the number of
sets in X that contain x. Then x belongs to

(
`
i

)
common intersections of i sets, for every i ≥ 1. Each such

common intersection is counted (−1)i−k
(
i−1
k−1
)

= Ck−1(i− 1) times in (22). Hence, x is counted(
`

i

)
(−1)i−k

(
i− 1
k − 1

)
= R`(i) · Ck−1(i− 1) (23)
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times as a member of the common intersection of i sets. To have a correct indicator function, we need x to
be counted once if 1 ≤ k ≤ ` and zero times otherwise. Indeed,

∞∑
i=−∞

R`(i) · Ck−1(i− 1) = M1(`− 1, k − 1), (24)

which by the Shift Lemma is 1 if 1 ≤ k ≤ ` and 0 otherwise, as required.

3. Geometric Background

This section provides background on Voronoi diagrams and hyperplane arrangements; see de Berg, van60

Kreveld, Overmars and Schwarzkopf [15] for computational aspects of these concepts.
Covers. Let B(x, r) be the closed ball with center x ∈ Rn and radius r ≥ 0. Writing Bi = B(xi, ri), we
let B = {B1, B2, . . . , Bm} be a finite set of balls in Rn. For each point x ∈ Rn, let #B(x) be the number of
balls in B that contain x. For every integer k, the k-fold cover of B is

Bk = {x ∈ Rn | #B(x) ≥ k}, (25)

the set of points contained in at least k of the balls; see Figure 3. We write B = B1 for the union of the
balls. Note that Bk = Rn for all k ≤ 0, Bk+1 ⊆ Bk for all integers k, and Bk = ∅ for all k > m.

Figure 3: The ten disks have non-empty 1-fold, 2-fold, 3-fold, and 4-fold covers, while the 5-fold cover is empty.

Voronoi diagrams. The weighted distance from the ball Bi is defined by the function πi : Rn → R that
maps a point x ∈ Rn to πi(x) = ‖x− xi‖2 − r2

i . For example if ri = 0, then πi(x) is the squared Euclidean
distance from the center of Bi. Following [7], we define the Voronoi domain of a subset Q ⊆ B as the set of
points x ∈ Rn for which πq(x) ≤ π`(x) for all Bq ∈ Q and all B` ∈ B \Q. Given an integer k, the order-k
Voronoi diagram of B is the collection of Voronoi domains of sets Q of size k. As an example, the solid edges
in Figure 4 show the order-2 Voronoi diagram of the disks in Figure 3. We find it convenient to generalize
the concept by allowing for two parameters, j < k. The Voronoi domain of a pair P ⊂ Q ⊆ B is the set of
points x whose weighted distance to the balls in Q is at least that to the balls in P and at most that to the
other balls in B:

Vor(P,Q) = {x ∈ Rn | πp(x) ≤ πq(x) ≤ π`(x)}, (26)

for all Bp ∈ P , all Bq ∈ Q \ P , and all B` ∈ B \ Q. Note that Vor(Q) = Vor(∅, Q) is the Voronoi domain
of Q as defined above. Being the intersection of finitely many closed half-spaces, Vor(P,Q) is a possibly
empty convex polyhedron. Collecting all Voronoi domains for pairs of sizes j < k, we get the (j, k)-Voronoi
diagram:

Vj,k(B) = {Vor(P,Q) | P ⊂ Q ⊆ B}, (27)
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where cardP = j and cardQ = k; see Figure 4. We are primarily interested in the case j = 0, which is the
order-k Voronoi diagram, and the case j = k − 1, which is the degree-k Voronoi diagram as defined in [16,65

page 207]. We write Vk(B) = V0,k(B) and V (B) = V1(B) = V0,1(B).

Figure 4: The solid lines show the (0, 2)-Voronoi diagram, and the solid together with the dotted lines show the (1, 2)-Voronoi
diagram of the disks in Figure 3.

A cell, γ, of the (j, k)-Voronoi diagram is a non-empty common intersection of a collection of Voronoi
domains. We call it an i-cell if its dimension is dim γ = i or, equivalently, codim γ = n − i. For example,
the n-cells are the Voronoi domains, and the 0-cells are the vertices. The cells form a complex in the usual
sense of the term: the cells have pairwise disjoint interiors and the boundary of every cell is a union of70

lower-dimensional cells. As a word of caution, we mention that this complex is not necessarily simple, not
even if the balls in B satisfy reasonable general position requirements. For example, many vertices in the
(1, 2)-Voronoi diagram shown in Figure 4 belong to six rather than three domains as required for a simple
complex in R2.

Affine functions. Important aspects of the Voronoi diagrams are easier to explain by first mapping the
balls in Rn to non-vertical hyperplanes in Rn+1. We therefore introduce the affine functions Ai : Rn → R
defined by Ai(x) = 2〈x, xi〉 − ‖xi‖2 + r2

i for 1 ≤ i ≤ m, writing A = A(B) for the set of these functions. At
each point x ∈ Rn, we may sort the values of the m functions and form new functions by selecting the pieces
where a single function is the k-largest. More formally, we introduce functions fk : Rn → R, for 1 ≤ k ≤ m,
defined by fk(x) = ξ such that Ai(x) > ξ for at most k− 1 indices, and Ai(x) < ξ for at most m−k indices.
To explain the connection to the Voronoi diagrams of B, we introduce $ : Rn → R defined by $(x) = ‖x‖2.
For each x ∈ Rn, the difference between the values of Ai and $ at x is the weighted distance of x from Bi:

$(x)−Ai(x) = ‖x‖2 − 2〈x, xi〉+ ‖xi‖2 − r2
i = ‖x− xi‖2 − r2

i , (28)

for 1 ≤ i ≤ m. We can therefore express the k-fold cover as well as the (k − 1, k)-Voronoi diagram in terms75

of the arrangement.

Lemma 2 (Level Projection Lemma). Let B be a set of m balls in Rn, and A the corresponding set of affine
functions from Rn to R. Then

(i) x ∈ Bk iff fk(x) ≥ $(x), and
(ii) fk is affine on every domain of the (k − 1, k)-Voronoi diagram of B.80

Instead of giving a proof, which is not difficult, we illustrate the result in dimension n = 1; see Figure 5.

Hyperplane arrangements. The graphs of the Ai are n-planes that partition Rn+1 into open convex cells
of dimension 0 to n+ 1. We call this partition the arrangement of the n-planes. Each cell is characterized
by a partition A = A+tA0tA−, and consists of all points (x, ξ) ∈ Rn×R such that ξ is smaller than, equal85
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Figure 5: Three intervals in R1 and the corresponding lines in R2. The 2-nd level of the arrangement projects to the (1, 2)-
Voronoi diagram. The points of the parabola that lie on or below the 2-nd level project to the points of the 2-fold cover.

to, larger than Ai(x) whenever Ai ∈ A+,A0,A−. The cells of dimension n+ 1 are referred to as chambers.
Note that the graph of fk is a union of cells of dimension 0 to n in the arrangement and does not include
any chambers. We call this the k-th level of the arrangement. To simplify the exposition, we assume the
n-planes are in general position. By this we mean that the common intersection of any p of the n-planes in
A is a q-plane with p+q = n+1 in Rn+1. In particular, if p > n+1, then the common intersection is empty.90

Assuming general position, the subset A0 ⊆ A in the partition that characterizes a q-cell has cardinality p.
It follows that the q-cell belongs to exactly p levels of the arrangement.

It is perhaps surprising but not difficult to see that the number of q-cells in an arrangement of m n-planes
in general position can be written as a function of m, n, and q and thus does not depend on the n-planes
themselves:

#Cellsn+1
q (m) =

(
m

p

)
·
q∑
i=0

(
m− p
i

)
, (29)

where p+q = n+1, as usual; see e.g. [16, page 10]. For example, the number of chambers is #Cellsn+1
n+1(m) =∑n+1

i=0
(
m
i

)
. For other values of q, we get the number of q-cells by counting the (q-dimensional) chambers in the

arrangements within the q-planes defined by the n-planes. We have
(
m
p

)
such q-planes, with #Cellsqq(m− p)95

chambers each, which implies (29).

Cubes. In the analysis of local structures within the hyperplane arrangement, we will need a few combi-
natorial facts about the (n + 1)-dimensional unit cube, [0, 1]n+1. For 0 ≤ p ≤ n + 1, its number of p-faces
is

#Facesn+1
p =

(
n+ 1
p

)
· 2n+1−p. (30)

To see (30), we select q = n + 1 − p coordinate directions and intersect the (n + 1)-cube with a q-plane
parallel to these directions. There are

(
n+1
q

)
=
(
n+1
p

)
choices, each producing a q-cube with 2q = 2n+1−p

vertices. Each of these vertices lies on a p-face of the (n+ 1)-cube.
Each of the n+ 1 coordinates of a vertex u of the (n+ 1)-cube is either 0 or 1, and we write #u for the

number of coordinates that are equal to 1. Directing the edges of the cube from smaller to larger numbers
of 1s, we get a partial order of the vertices; see Figure 6. There is a bijection between the faces and the
pairs u � v of the partial order, and we call u the lower and v the upper bound of the face. The dimension
of the face is of course p = #v −#u. As noted in the proof of (30), the p-faces of the (n+ 1)-cube can be
organized in

(
n+1
p

)
sets, each the product of a p-face with the vertices of a q-cube. The number of vertices

of the q-cube with #u = k is
(
q
k

)
. It follows that the number of p-faces of the (n+ 1)-cube whose lower and



In memory of a good friend and trusted collegue

111

000

001

110

010

011

100

101

Figure 6: Left: the 3-dimensional unit cube with edges indicating the partial order on the vertices. Right: the dual vertex star
in a 3-dimensional arrangement. The direction we call vertical downward in the text is given by the vector from vertex 000 to
vertex 111.

upper bounds satisfy #u = k and #v = k + p is

#Facesn+1
p,k =

(
n+ 1
p

)(
q

k

)
= (n+ 1)!
p! · k! · (q − k)! . (31)

Note that #Facesn+1
p,k = 0 whenever p < [0, n+ 1] or k < [0, q].100

4. The Order-k Formulas

In this section, we use the geometry of the problem to derive a first set of short inclusion-exclusion
formulas that generalize the formulas in [8, 9] from the union to the k-fold cover.

Star-convexity. As before, we let B be a finite set of balls in Rn, and we write Bk for the set of points in Rn
that are contained in at least k of the balls. Writing Vk = V0,k(B) for the order-k Voronoi diagram, we note
that its domains decompose the k-fold cover into convex sets; see Figure 7. We need a structural property

Figure 7: The 2-fold cover of the ten disks in Figure 3. The order-2 Voronoi diagram decomposes the cover into convex sets,
each the intersection of a Voronoi domain with two disks.

of the Voronoi domains and their restrictions to the k-fold cover. To state it, we recall that Vor(Q) is the
Voronoi domain of Q, and we write Res(Q) =

⋂
Q ∩ Vor(Q) for its restriction to the common intersection

of the balls. Given a point x ∈ Rn, we let Qk(x) be the system of collections Q ⊆ B of size k that satisfy
x ∈

⋂
Q and Vor(Q) , ∅. Clearly, if x < Bk, then Qk(x) is empty. If x ∈ Bk, then Qk(x) is necessarily

non-empty as it contains all collections Q of size k with x ∈ Vor(Q), but there may be additional collections
in the system. We are interested in the union of the restricted and unrestricted Voronoi domains whose
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balls contain the point x:

Vk(x) =
⋃

Q∈Qk(x)

Vor(Q), (32)

Rk(x) =
⋃

Q∈Qk(x)

Res(Q). (33)

To prepare the analysis of these sets, we recall a basic property of the weighted distance functions. If Bi
and Bj are balls in Rn, then f : Rn → R defined by f(x) = πi(x)− πj(x) is an affine function:

f(x) = ‖x− xi‖2 − r2
i − ‖x− xj‖

2 + r2
j

= 2〈x, xj − xi〉+ ‖xi‖2 − ‖xj‖2 − r2
i + r2

j .
(34)

It follows that the restriction of f to any line, L, in Rn is an affine function that is constant iff L is normal
to xj − xi. The main property of interest is the star-convexity of Vk(x) and Rk(x). In particular, we will105

show that for every point y in Vk(x) or Rk(x), the entire line segment connecting x with y is contained in
this set.

Lemma 3 (Star-convexity Lemma). Let B be a finite set of balls in Rn, k an integer, and x a point in Rn.
Then Vk(x) is either empty or star-convex, and so is Rk(x).

Proof. We first consider Vk(x). Assuming x ∈ Bk, we let y be a point in Vk(x), and we let Q be a collection110

of k balls in B such that y ∈ Vor(Q). By construction, the balls in Q minimize the weighted distance for y,
and the weighted distance of x to any of these balls is non-positive. Let L be the line that passes through x
and y, and let u ∈ L be strictly between x and y. To derive a contradiction, assume u < Vk(x). Then there
exists a ball B0 ∈ B that is among the k closest for u such that π0(x) > 0. It can therefore not be in Q.
Hence, there is a ball B1 ∈ Q with π0(u) ≤ π1(u). But we also have π1(y) ≤ π0(y) and π1(x) < π0(x), which115

contradicts that π1 − π0 restricts to an affine function on L. We conclude that u ∈ Vk(x), which implies
that Vk(x) is star-convex, as claimed.

The argument for the restricted Voronoi domains is similar, implying that Rk(x) is star-convex as well.

Short inclusion-exclusion. The formulas we prove have at most one term for each cell in the order-k
Voronoi diagram. For constant dimension, the number of such cells is bounded from above by a polynomial
in the number of balls, which is much smaller than the number of subsets of the balls. This is our justification
for calling the formulas short. To state them, we associate each cell γ of Vk with the subset Qγ ⊆ B of balls
that are among the k closest for at least one Voronoi domain containing γ. Assuming general position, we
have

k ≤ cardQγ ≤ k + n. (35)

To prove these inequalities, we set q = n − dim γ and observe that k = cardQγ iff q = 0. To prove the120

upper bound, we assume q > 0 and let x be an interior point of γ. By assumption of general position, x
has equal weighted distance to q + 1 balls. Let ` be the number of balls to which x has smaller weighted
distance than to these q + 1 balls. We have ` < k, else γ would not be a face of the Voronoi domains. The
k balls defining a Voronoi domain that contains γ include the ` balls as well as k − ` of the q + 1 balls.
It follows that Qγ contains the ` balls together with the q + 1 balls. But ` < k and q ≤ n, which implies125

cardQγ ≤ `+ q + 1 ≤ k + n, as claimed.
To state the main result of this section, we introduce two subsystems of the nerve of Vk(B), which is

an abstract simplicial complex. Recall that every simplex in the nerve is a collection of Voronoi domains
that intersect in a non-empty cell of the order-k Voronoi diagram. We call a simplex maximal if it is not
a proper face of a simplex whose domains intersect in the same cell. The first subsystem, Vk, consists of130

all maximal simplices in the nerve of Vk(B). Making use of the bijection between the simplices in Vk and
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the cells in Vk we write γ(σ) for the common intersection of the Voronoi domains in σ ∈ Vk. The second
subsystem, Rk, is defined similarly, except that it is limited to simplices whose corresponding cells have
non-empty intersection with Bk. As before, we pick only maximal simplices from this smaller system.

Theorem 2 (Order-k Pie Theorem). Let B be a finite set of balls in Rn, and k an integer. Then the volume
of the k-fold cover is

Vol(Bk) =
∑
σ∈Vk

(−1)codim γ(σ)Vol(
⋂
Qγ(σ)), (36)

=
∑
σ∈Rk

(−1)codim γ(σ)Vol(
⋂
Qγ(σ)). (37)

Proof. We first prove (36). Recall that Vk(x) is the union of the order-k Voronoi domains, Vor(Q), such
that x ∈

⋂
Q. Each such domain is a vertex in Vk, and we write Vk(x) ⊆ Vk for the simplices these vertices

span. We introduce χ : Rn → R defined by mapping x to the Euler characteristic of Vk(x). To avoid any
ambiguity arising for unbounded sets, we clip Rn to within a sufficiently large n-dimensional box and take
the Euler characteristic of Vk(x) intersected with this box. Recall that Vk(x) is either empty or star-convex.
In the former case, the Euler characteristic is 0, and in the latter case, it is 1. Hence, χ is the indicator
function of the k-fold cover:

χ(x) =
{

1 if x ∈ Bk,
0 if x < Bk.

(38)

It follows that Vol(Bk) =
∫
x∈Rn χ(x) dx. By the Nerve Theorem[17, 18], χ(x) is the alternating sum of135

simplices in the nerve of the Voronoi domains whose union is Vk(x). If the Voronoi diagram is simple, then
Vk(x) contains all and exactly these simplices and we are done. In the general case however, Vk(x) may
contain fewer simplices, and our task is to show that they suffice to compute the Euler characteristic of
Vk(x).

To explain this, let γ be a cell of Vk, and let `+1 ≥ n+1−dim γ be the number of Voronoi domains that140

contain γ. The corresponding `-simplex in the nerve of Vk is maximal, but if `+ 1 > n+ 1−dim γ, then this
`-simplex has faces that are not maximal. We continue the proof assuming γ is a vertex. Indeed, if dim γ > 0
then we may intersect the local configuration with an orthogonal (n− dim γ)-plane, which intersects γ in a
point. The remainder of the argument would then be worded within this (n− dim γ)-dimensional plane.

Thus assuming dim γ = 0, we distinguish between the maximal and non-maximal faces by drawing a
sufficiently small (n − 1)-sphere with center at γ. Denote this sphere as S and the n-ball bounded by S
as B (Figure 8, left). The Voronoi domains intersect B in ` + 1 cones and S in ` + 1 (n − 1)-dimensional
caps, which are the bases of the cones. The nerve of the cones is isomorphic to the nerve of the Voronoi
domains. To relate the nerve of the caps to the nerve of the Voronoi domains, we map each cap in S to
the corresponding cone in B. Let τ be a face of the `-simplex, and consider the common intersection of
its Voronoi domains. It is not difficult to see that this common intersection is γ iff τ does not correspond
to a simplex in the nerve of the caps in S. Since the cones form an n-ball and the (n − 1)-caps form an
(n − 1)-sphere, the Euler characteristic of their nerves are 1 and 1 + (−1)n−1, respectively. It follows that
the alternating sum of the non-maximal simplices whose Voronoi domains intersect in γ is:

1− (−1)` − [1 + (−1n−1)] =

 2 if ` is odd and n is even,
0 if `− n is even,
−2 if ` is even and n is odd.

(39)

In words, the alternating sum of the non-maximal simplices is precisely the difference between the contri-
bution of the vertex γ and the `-simplex:

(−1)n − (−1)` = (−1)codim γ − (−1)`. (40)

This proves the claimed formula for points x equal to or sufficiently close to γ. We need additional arguments145

for points x that are not contained in the intersection of the k balls for all Voronoi domains meeting at γ.
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Figure 8: The `-simplex has non-maximal faces ad, bd, acd, . . .. On the left, with ` = 4 and n = 2, we shade the ball and draw
the partition into caps as dashed arcs. On the right, with ` = 4 and j = 3, only a proper subset of the Voronoi domains contain
x.

Suppose j + 1 < ` + 1 of the Voronoi domains meeting at γ contain x in the intersection of their balls.
The nerve of the corresponding j+1 cones in B is a j-simplex with Euler characteristic equal to 1 (Figure 8,
right). We will prove shortly that the Euler characteristic of the corresponding j + 1 caps is also equal to 1.
The alternating sum of the non-maximal faces of the j-simplex is the difference, which vanishes as desired.150

It remains to prove that the Euler characteristic of the union of the j + 1 caps is 1. It suffices to prove that
this union is homologically trivial, with β0 = 1 the only non-zero Betti number. Suppose it is not (Figure 9,
left). Then there is a non-bounding cycle, Z, in the union of caps. By construction Z ⊆ Vk(x), and since
Vk(x) is star-convex we can draw straight line segments from x to all points of Z and thus form a chain,
C, with boundary Z (Figure 9, middle). Since we can locally perturb x, we may assume that the point γ155

does not belong to C. We can therefore centrally project C from γ to S. By construction, the image of
this projection is a chain in the union of caps (Figure 9, right). Its boundary is Z, which contradicts the
assumption that the union of caps is homologically non-trivial.

Figure 9: Hypothetical example in which the union of caps is homologically non-trivial, as indicated by the shaded Voronoi
domains in Vk(x). Such configuration leads to a contradiction.

To make the step to the claimed equation, we repackage the contributions of the points x to the integral.
Specifically, we focus on a cell γ of the order-k Voronoi diagram. The contribution of γ to the integral is160

±1 times the integral of 1 over all points in
⋂
Qγ . The sign alternates with the codimension, which gives

(−1)codim γ , and the integral evaluates to the volume of the common intersection. This implies (36). The
proof of (37) is the same, using again that the sets Rk(x) are star-convex.

For k = 1, (36) specializes to the formula for the volume of the union of balls given in [8], and (37)
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specializes to the smaller formula given in [9]. We note that the terms in the difference between the two165

formulas are not necessarily zero. Even for k = 1, the first formula may contain non-zero terms that cancel
with others and do not belong to the second formula.

5. The Level-k Formulas

In this section, we present an alternative approach to deriving short inclusion-exclusion formulas for the
k-fold cover. Importantly, it leads to formulas whose terms are limited to common intersections of at most170

n+ 1 balls.
Indicator function for polyhedra. Letting B be a set of m balls in Rn, we write A for the corresponding
set of m affine functions from Rn to R, as introduced in Section 2. For an integer k, let Uk be the set of
points y ∈ Rn+1 that lie on or above the k-th level of A, and let Lk be the set of points on or below the
k-th level; see Figure 5, which shows L2 for three intervals in R1.175

To derive the formulas, we begin with Uk and then move to Lk. Because Uk is a not necessarily convex
polyhedron, its indicator function can be assembled from simple components, each the indicator function of
a face and its immediate neighborhood; see [11]. To explain how this works, we refer to the faces of Uk as
sides. For 0 ≤ q ≤ n, the q-sides of Uk are the closures of the q-cells in the arrangement that belong to the
k-th level. Clearly, all these cells are convex. The only (n+1)-side of Uk is Uk itself, which is not necessarily
convex but contractible. The star of a side, ψ, is the set of sides that contain ψ. Let y be a point in the
interior of ψ, and let ε > 0 be small enough such that the sphere, S, with center y and radius ε in Rn+1

intersects only sides that belong to the star of ψ. The negative face figure of ψ is the union of all half-lines
that emanate from y whose central reflections pass through points of the intersection of this sphere with the
polyhedron:

Fψ = {(1− λ)y + λu | u ∈ S ∩ Uk, λ ≤ 0}. (41)

Intuitively, it is the central reflection of the local view of the polyhedron as seen from y (Figure 10). Note

Figure 10: The region U2 above the second level is white and its complement, L2, is shaded. For each side ψ of U2, we draw a
sphere centered in the interior of ψ and shade the portion of its inside that points in the direction of its negative face figure.

that Fψ does not depend on the choice of the point y in the interior of ψ. The main theorem in [11] implies
that indicator function of Uk can be written as an alternating sum of indicator functions of interiors of
negative face figures: 1Uk(y) =

∑
ψ(−1)codimψ · 1int Fψ (y), in which the sum ranges over all sides of Uk,

including Uk itself for which the negative face figure is the entire Rn+1. Substituting the closed for the open
negative face figures, the indicator function changes from Uk to intUk, and subtracting it from 1, it changes
to the complement, which is closed:

1Lk(y) = 1− 1int Uk(y) =
∑
ψ

(−1)n−dimψ · 1Fψ (y), (42)
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in which the sum now ranges over all sides of dimension 0 to n, which are the same for Uk and Lk.

Negative face figures. To further decompose the indicator function given in (42), we need to understand
the negative face figures. It suffices to study a vertex, since the negative face figure of a q-side is that of a
vertex in an arrangement of (n − q)-planes in Rn+1−q, extruded along q additional dimensions. Assuming
general position, a vertex w is the intersection of n + 1 n-planes in Rn+1, and its star is dual to a cube of
dimension n + 1; see Figure 6. The n-planes are non-vertical so we can order the chambers accordingly,
which corresponds to directing the edges of the cube from top to bottom. To make this concrete, we sort
the n-planes, and we assign to each chamber a string of n + 1 labels in which the p-th label is 0 if the
chamber lies above the p-th n-plane, and it is 1 if the chamber lies below the p-th n-plane. It should be
clear that the assigned labels are the coordinates of the corresponding vertices of the dual (n+ 1)-cube. Let
k0 + `0 = m− (n+ 1) such that w lies below k0 and above `0 of the n-planes. It follows that w belongs to
the k-th level of A iff k0 < k ≤ m− `0. Which cells around w belong to the k-th level and are therefore sides
Lk depends solely on j = j(w) = k − k0, which we call the index of w. Specifically, the q-cells that belong
to the k-th level are dual to p-faces of the (n+ 1)-cube whose lower and upper bounds satisfy #u < j ≤ #v.
Using (31), we see that the number of such q-cells is

#Sidesn+1
q,j =

j−1∑
i=j−p

#Facesn+1
p,i . (43)

Depending on the index of w, different cells in its neighborhood contribute to the indicator function of its
negative face figure. For example in 3 dimensions, we have three indicator functions:

j = 1 : abc, (44)
j = 2 : ab+ ac+ bc− 2abc, (45)
j = 3 : a+ b+ c− ab− ac− bc+ abc, (46)

where we write a, b, c for the indicator functions of the half-spaces bounded from above by the graphs of the
three affine functions. In dimension n+ 1, there are n+ 1 indices and n+ 1 different indicator functions of
the negative face figures. To express them formally, we write 1A for the indicator function of the half-space
bounded from above by the affine function A.180

Lemma 4 (Face Figure Lemma). Let A be a set of n+ 1 affine functions from Rn to R whose graphs form
an arrangement with a single vertex w in Rn+1. For 1 ≤ j ≤ n + 1, the indicator function of the negative
face figure of w with index j satisfies

1Fw(y) =
n+1∑

i=n+2−j
(−1)i−n+j

(
i− 1

n− j + 1

) ∑
A′∈(A

i )

∏
A∈A′

1A(y). (47)

Proof. Since we have only n + 1 affine functions in Rn, we cannot gain from the geometry of the situation
and use the general inclusion-exclusion formula (1). Specifically, we use the indicator function from which
(1) follows by integration:

1Xk(y) =
∑
i≥k

(−1)i−k
(
i− 1
k − 1

) ∑
Q∈(X

i )
1⋂Q(y), (48)

where X denotes a finite collection of measurable sets in Rn+1, and Xk is the k-fold cover. To specialize this
result to our situation, we note that the negative face figure of w is the (n + 2 − j)-fold cover of the n + 1
closed half-spaces bounded from above by the graphs of the Ai ∈ A. Substituting n+ 2− j for k and A for
X , and writing the indicator function of the intersection as a product, we get the claimed relation.
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Short inclusion-exclusion. Combining (42) and (47), we get the indicator function of Lk with terms
that are products of at most n + 1 indicator functions of half-spaces. To state it formally, we write Lk for
the abstract simplicial complex whose abstract simplices are the collections Q ⊆ B such that the graphs of
the corresponding affine functions contain a common side of Lk. For each Q ∈ Lk, we write 1Q : Rn+1 →
{0, 1} for the indicator function of the intersection of half-spaces bounded from above by the graphs of the
corresponding affine functions. Combining the mentioned relations, we get 1Lk(y) =

∑
Q∈Lk LQ · 1Q(y),

in which LQ is sum of coefficients of 1Q(y) contributed by the various negative face figures. We can now
compute the n-dimensional volume of the k-fold cover of the set of balls in B by integration:

Vol(Bk) =
∫
x∈Rn

1Lk(x, ‖x‖2) dx =
∑
Q∈Lk

LQ

∫
x∈Rn

1Q(x, ‖x‖2) dx. (49)

Note that the last integral is the volume of the intersection of the balls. This gives the first inclusion-185

exclusion formula for the volume of Bk derived in this section. However, there are redundant terms that can
be removed to obtain an even shorter formula. To identify them, we call a collection of balls, Q, independent
if for every P ⊆ Q there is a point x ∈ Rn such that every ball in P contains x and every ball in Q \ P
does not contain x; that is:

⋂
P \

⋃
(Q \ P ) , ∅. Let Ik be the system of collections Q ∈ Lk such that Q is

independent. We claim there are integer coefficients IQ not necessarily equal to LQ such that the weighted190

sum over Ik gives the volume of the k-fold cover. We state both results.

Theorem 3 (Level-k Pie Theorem). Let B be a finite set of balls in Rn, and k an integer. Then the volume
of the k-fold cover is

Vol(Bk) =
∑
Q∈Lk

LQ ·Vol(
⋂
Q) (50)

=
∑
Q∈Ik

IQ ·Vol(
⋂
Q). (51)

Proof. The proof of (50) has been given above. To prove (51), we show that whenever Q ∈ Lk is not
independent, then Vol(

⋂
Q) can be written as an integer combination of the Vol(

⋂
P ) in which the P are

proper subsets of Q. Repeated substitution of dependent terms in (50) eventually gives (51). To prove that
the substitution is always possible, we consider the system of linear equations that relates the volumes of the
common intersections with the volumes of the cells that appear in the definition of independence. Writing

µ =
[
Vol(

⋂
P )
]
∅,P⊆Q

, ν =
[
Vol(

⋂
P \

⋃
(Q \ P ))

]
∅,P⊆Q

(52)

for the vectors of volumes, we get µ = Mν, in which M is a 0-1 matrix. Writing q = cardQ, M is a 2q − 1
times 2q − 1 matrix. It has the regular structure reflecting the incidences between the linear spaces spanned
by the non-empty subsets of q independent vectors; see Figure 11 for an example. In particular, all entries
in the diagonal are 1, and all entries above the diagonal are 0. Furthermore, the number of non-zero entries195

in each row is a power of 2.
Assume now that Q is not independent. Then at least one component of ν is zero. Equivalently, we

may set the corresponding column of M to zero, without violating the correctness of µ = Mν. This creates
dependences between the linear equations. We use the special structure of M to prove that in this case, we
can write the volume of

⋂
Q as an integer combination of the Vol(

⋂
P ), in which P ⊆ Q but P , Q. Fixing200

2 ≤ r ≤ 2q − 1, we can reduce the r-th row until its only non-zero entry is in the diagonal of M . To do this,
we work from the diagonal element backward, adding an integer multiple of a row above for every non-zero
entry. Since r ≥ 2, the r-th row contains an even number of 1s before reduction. Adding an integer multiple
of any row other than the first changes the sum of non-zero entries by an even number, and since the sum in
the end is odd, we conclude that the first row has been added with a non-zero coefficient. If we now set the205

r-th column to zero, we have a zero r-th row. But this implies that the first row is an integer combination
of the r-th row and all rows used in its reduction, other than the first row of course.
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Figure 11: The matrix relating the vectors µ and ν for a collection of size cardQ = 3.

6. Computation

In this section, we comment on the main challenges in implementing the inclusion-exclusion formulas
for the k-fold cover of balls proved in the preceding sections. Our main concern is the correctness of the210

formulas, leaving considerations of size and speed to future research. We begin with experimental results
for a small 3-dimensional example.

Example. As explained shortly, we implemented two formulas in n = 3 dimensions: the order-k formula
(36) and the level-k formula (50), both after reduction. The reduced formulas are readily evaluated without
further case analysis. The input for our example is generated by sampling 10 points uniformly at random215

from the unit cube in R3. Centering balls of radius 0.25 at these points gives the first set, B1, and increasing
the radius to 0.875 gives the second set, B2, see Figure 12.

Figure 12: Two sets of ten random balls with centers in the unit cube and radii 0.25 on the left and radii 0.875 on the right.

Computing the volume of the k-fold cover of B1 and B2, for k = 1, 2, . . . , 10, we show the volume as well
as the number of terms and the average number of balls per term in Table 1. In every case, the reduced
order-k formula is identical to the reduced level-k formula, so we show only three integers per case: the220

number of terms of the order-k formula (36), of the level-k formula (50), and of the reduced formula. While
the number of terms in the level-k formulas tend to be smaller than in the order-k formulas, the difference is
neither significant nor consistent. We also note that for B1, most redundant terms have zero volume, while
for B2, all redundant terms have non-zero volume.

Algorithm. Without going into details, we sketch the main steps in constructing and evaluating an225

inclusion-exclusion formula for the k-fold cover of a set B of m balls in R3. For the order-k formula (36), we
construct the order-k Voronoi diagram of B as the order-1 (weighted) Voronoi diagram of the k-fold averages,
as explained in [19]. The latter diagram is then computed with the 3D Cgal weighted Delaunay triangula-
tion software [13]. For the level-k formula (50), we construct in addition the order-(k− 1) Voronoi diagram
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B1, radius = 0.25 B2, radius = 0.875
k order-k level-k reduced vol order-k level-k reduced vol
1 103× 2.7 103× 2.7 34× 2.0 0.523 103× 2.7 103× 2.7 95× 2.6 7.842
2 166× 3.4 166× 3.1 29× 2.4 0.106 166× 3.4 166× 3.1 149× 3.0 5.176
3 220× 4.3 219× 3.4 14× 2.9 0.023 220× 4.3 219× 3.4 186× 3.4 4.137
4 221× 5.1 228× 3.6 4× 3.3 0.001 221× 5.1 228× 3.6 191× 3.5 3.118
5 190× 6.0 238× 3.6 0× 0.0 0.000 190× 6.0 238× 3.6 189× 3.6 2.450
6 140× 6.8 203× 3.7 156× 3.7 1.857
7 80× 7.6 184× 3.6 128× 3.6 1.417
8 34× 8.3 127× 3.5 80× 3.5 1.024
9 9× 9.1 65× 3.4 32× 3.5 0.704

10 1× 10.0 17× 3.3 11× 3.4 0.332

Table 1: The volume of the k-fold covers of B1 and B2, together with the number of terms in the inclusion-exclusion formulas
and the average number of balls per term.

and we obtain Vk−1,k(B) by superimposing Vk−1(B) and Vk(B). While there are standard procedures, we230

mention that superimposing the two diagrams was perhaps the most laborious task in implementing the
algorithm. An important aspect of the above computations is the use of exact arithmetic in making final de-
cisions on the connectivity of the diagrams. Without it, there is little hope to get correct inclusion-exclusion
formulas. Cgal offers the exact computation paradigm [20] as part of the package, which is the main reason
we decided to use Cgal and not one of the many available alternatives. To illustrate the need for exact235

arithmetic, we mention that already for k = 2, the order-k Voronoi diagram is not simple even if the balls
are in general position. Taking m = 4 points not in a plane, the order-2 Voronoi diagram has six domains
that meet at the center of the circumsphere. This is in contrast to the at most four domains that are allowed
to meet in a simple diagram in R3.

Assuming we have Vk(B) or Vk−1,k(B), we construct the formula by translating each cell into a term or a240

small number of terms. This is straightforward for the order-k formula but can be confusing for the level-k
formula, for which we give some more details. Iterating over all cells ψ of Vk−1,k(B), we write j(ψ) for its
index in the corresponding arrangement, as defined in Section 4. We begin with an initially empty formula.

Case 1: dimψ = 3. Add the volume of the corresponding ball to the formula.
Case 2: dimψ = 2. Set i = 3− j(ψ) and subtract the volume of the i-fold cover of the two corresponding245

balls.
Case 3: dimψ = 1. Set i = 4 − j(ψ) and add the volume of the i-fold cover of the three corresponding

balls.
Case 4: dimψ = 0. Set i = 5− j(ψ) and subtract the volume of the i-fold cover of the four corresponding

balls.250

Once we have the complete formula, we evaluate it, translating each i-fold cover to an alternating sum of
intersections among the balls. But even this is not an easy task as the balls we intersect are not in any
particular geometric configuration. We therefore first reduce the formula until all terms are independent,
as explained shortly. In the reduced formula, we have only four different cases: one, two, three, and four
independent balls. Analytic formulas for computing the volume of the intersection in each case can be found255

in [14].

Reduction. Assume we have an inclusion-exclusion formula for the volume of the k-fold cover of m balls
in R3. Each term is a common intersection of balls, but the collections are not necessarily independent. We
now explain how to reduce this formula into a form in which all collections are independent. We proceed
one term at a time, starting with one whose collection has a maximum number of balls.260

Let Q be the balls that appear in the considered term, and write q + 1 = cardQ. If q > 3, then we can
be sure that Q is not independent, and we can replace this term using a relation computed as described in
the proof of the Level-k Pie Theorem. To get started, we need a subset P of Q whose common intersection
is contained in the union of Q\P , and to find it, we use the affine functions from R3 → R, writing Ai for the
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ones that correspond to balls in P , and Aj for the ones that correspond to balls in Q \ P . A point x ∈ R3
265

belongs to
⋂
P iff ‖x‖2 ≤ Ai(x) for all Ai, and x does not belong to

⋃
(Q \ P ) iff ‖x‖2

> Aj(x) for all Aj .
Hence, for

⋂
P \

⋃
(Q \P ) to be non-empty, it is necessary that the chamber below the hyperplanes defined

by the Ai and above the hyperplanes defined by the Aj exists. Recalling the formula for the number of
chambers in n+ 1 = 4 dimensions (29), we see that for q+ 1 > 4 hyperplanes their number is less than 2q+1.
It follows that there is at least one subset P whose corresponding chamber is empty. This subset witnesses270

the non-independence of Q and can be used to start the procedure outlined in the proof of the Level-k Pie
Theorem. A drawback of this procedure is the exponential size of the matrix, but it suffices to run it on a
subset Q′ ⊆ Q of 5 ≤ q + 1 balls, and to use the relation for Q′ to get a relation for Q.

The above method for finding P does not work for sets Q with cardinality q + 1 ≤ 4. But here we can
use the fact that Q is independent iff the nerve of the Voronoi domains restricted to the balls is the full275

q-simplex spanned by the centers of the q+ 1 balls. If Q is not independent, then the simplices missing from
the nerve give the desired relation. To see this, we note that the full q-simplex and the mentioned nerve
give two different inclusion-exclusion formulas for the union of the q + 1 balls [9]. The difference of the two
evaluates to zero and contains the intersection of the q + 1 balls as a term.

7. Discussion280

The main results of this paper are short inclusion-exclusion formulas for the k-fold cover of a finite set
of balls in Rn, one based on the order-k Voronoi (or power) diagram, and the other on the k-th level in the
lifted hyperplane arrangement. In addition, we have formalized the reduction to independent terms, which
is essential to get effective implementations of the formulas. This work raises a number of questions we have
not been able to answer.285

• How big are the formulas, in terms of k,m, n, and how fast can they be computed? For constant
dimension, the level-k formula gives a polynomial upper bound, but we do not know an asymptotically
tight bound.

The same claim is probably not true for the order-k formula for which the reduction may take a large
number of steps. Another advantage of the level-k approach is it extends to computing the volume of290

weighted multiple covers: assigning a real weight to every ball, we ask for the volume of the set of points
covered by balls whose sum of weights exceeds a given threshold. What about shapes that are more general
than balls?

• Following a general reduction argument, we see that families of simple shapes, such as ellipsoids
and axes-aligned boxes, also have short inclusion-exclusion formulas for the k-fold cover. Are there295

polynomial-time methods to compute them?

Indeed, it is not difficult to generalize the reduction outlined in the proof of the Level-k Pie Theorem to
shapes for which the cardinality of an independent collection is bounded. Starting from the exponential size
formula (1), we can reduce the terms until they are all independent, but this approach takes exponential
time. Finally, there is the less specific connection of the work in this paper to optimal sphere arrangements300

that neither pack nor cover. We mention one such question:

• What is the best way to arrange equal-size balls in Rn if the objective is to maximize the probability
that a random point is covered by exactly one ball?

Based on the application of our work and software to the SDC model of the eukaryotic cell nucleus, we hope
to identify additional promising optimization criteria.305
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