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Abstract
Given a locally finite set X ⊆ Rd and an integer k ≥ 0, we consider the function wk : Delk(X) → R
on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha
shapes from order-1 to order-k [4, 12]. While this function is not necessarily generalized discrete
Morse, in the sense of [9, 10], we prove that it satisfies similar properties so that its increments
can be meaningfully classified into critical and non-critical steps. This result extends to the case
of weighted points and sheds light on k-fold covers with balls in Euclidean space.
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1 Introduction

Given a locally finite set X ⊆ Rd and non-negative integer k, the order-k Voronoi tessellation
decomposes Rd into closed convex domains in which the k nearest points in X are the same
[8, 13]. In other words, knowing the domain that contains a point x ∈ Rd is equivalent to
knowing which k points of X are nearest to x. This motivates the use of the tessellation as
a data structure for the k-nearest neighbor problem [3]. Similar to the ordinary (order-1)
Voronoi tessellation, the order-k Voronoi tessellation has a natural dual [1], which we refer to
as the order-k Delaunay mosaic, denoted Delk(X). Its cells represent collections of domains
with non-empty common intersection. We are interested in the function wk : Delk(X) → R
that maps each cell to the minimum radius, r, such that the corresponding intersection of
domains contains a point at distance at most r from each one of its k nearest neighbors.
The sublevel sets of wk generalize the notion of alpha shapes from k = 1 to orders k ≥ 1
[4, 12]. Recently, the stochastic properties of wk have been studied [5] and algorithms
for computing the persistence have been presented [6]. We shed additional light on these
results by establishing that wk behaves similar to a discrete Morse function. We hasten
to mention that wk neither satisfies the requirements of a discrete Morse function [9] nor
the slightly weaker requirements of a generalized discrete Morse function [10]. Nevertheless,
we can classify the increments in the sublevel sets into critical and non-critical steps with
predictable impact on the homotopy type. To state the result, we note that each cell of the
order-k Delaunay mosaic is spanned by several size-k subsets of X, and we shall determine
how to characterize incremental steps of wk in terms of such subsets. Specifically, taking
any set of ℓ + 1 ≤ d + 1 points in X, there is the unique smallest sphere that passes through
these points. Assuming general position, the convex hull of these points is an ℓ-simplex.
Some of the size-k subsets of the ℓ + 1 points defining the sphere together with the points
of X inside the sphere form cells of the Delaunay mosaic, and some of these cells constitute
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the unique step of wk corresponding to this sphere; see Section 2. Our main result is the
following classification of the topology types of the steps:

We call the configuration that defines a step self-centered if the center of the correspond-
ing sphere is contained in the simplex spanned by the points on the sphere. Adding the
cells in the step changes the Euler characteristic of the sublevel set, which implies that
it also changes the homotopy type, so we refer to it as a critical step of wk.
We call the configuration altruistic if the center of the corresponding sphere is not con-
tained in the simplex spanned by the points on the sphere. Adding the cells in the step
preserves the homotopy type, so we refer to it as a non-critical step of wk.

With minor adjustments, this classification extends to the case in which the points have
real weights and the squared Euclidean distance is replaced by the power distance. This is
most transparent when we view the Voronoi tessellations in Rd as projections of the levels
in a hyperplane arrangement in Rd+1; see e.g. [7]. Correspondingly, we view the Delaunay
mosaics as horizontal slices of a rhomboid tiling in Rd+1; see [6] for the construction in the
unweighted case, which readily extends to points with weights.

Outline. Section 2 introduces background on weighted Voronoi tessellations and hyperplane
arrangements, their dual Delaunay mosaics and rhomboid tilings, and discrete Morse func-
tions. Section 3 gives the proof of the main result, thus extending the framework of discrete
Morse theory to include squared radius functions on order-k Delaunay mosaics. Section 4
concludes the paper.

2 Background

It will be useful to see Voronoi tessellations as levels in hyperplane arrangements and
Delaunay mosaics as slices of rhomboid tilings. To avoid redundancies, we explain everything
for the more general, weighted case.

Hyperplane arrangements. Let X be a locally finite set of points with real weights
in Rd, and let J be the corresponding index set. The power distance of a point x ∈ Rd

from a weighted point (xj , wj) ∈ X ⊆ Rd × R is πj(x) = ∥x − xj∥2 − wj . For I ⊆ J , the
corresponding (weighted) Voronoi domain is the set of points that satisfy πi(x) ≤ πj(x) for
all i ∈ I and j ∈ J \ I. For each non-negative integer k, the (weighted) order-k Voronoi
tessellation, denoted Vork(X), is the collection of Voronoi domains for sets I that satisfy
|I| = k. Setting wj = 0 for all indices j, we get the unweighted situation as a special case.

To illuminate the structure of the order-k Voronoi tessellation, let ϖ, fj : Rd → R be
defined by mapping x ∈ Rd to ϖ(x) = 1

2 ∥x∥2 and to fj(x) = ⟨x, xj⟩ − 1
2 [∥xj∥2 − wj ]. The

graph of ϖ is a paraboloid in Rd+1, and the graph of fj is the hyperplane that touches
the shifted paraboloid defined by ϖ + 1

2 wj in the point (xj , ϖ(xj) + 1
2 wj). We refer to the

collection of hyperplanes as the arrangement of X. Let now S = S(x, w) be the (d − 1)-
dimensional sphere with center x ∈ Rd and squared radius w ∈ R. For w > 0 this is an
ordinary sphere, for w = 0 it is a point, and for w < 0 it is what we call an imaginary sphere.
There are different ways of visualizing the latter concept, but singularly important in this
paper is that its squared radius is negative, giving the correct power distance if plugged into
the formula given above. In either case, S partitions the index set into three subsets:

In(S) = {j ∈ J | πj(x) < w}, (1)
On(S) = {j ∈ J | πj(x) = w}, (2)

Out(S) = {j ∈ J | πj(x) > w}. (3)
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In the unweighted case, when wj = 0 for all indices j, the three sets correspond to the points
inside, on, and outside the sphere. In the weighted case, the condition in (2) can be rewritten
as ∥x − xj∥2 = w + wj , which we geometrically interpret as having two spheres, S(x, w) and
S(xj , wj), that intersect at a right angle. It is easy to see that i ∈ In(S), On(S), Out(S) iff
fj(x)− 1

2 [∥x∥2 −w] = 1
2 [wj +w−∥x − xj∥2] is positive, zero, negative or, equivalently, iff the

point y(x) = (x, 1
2 [∥x∥2 − w]) in Rd+1 lies below, on, above the graph of fj . This motivates

us to consider the decomposition of Rd+1 defined by the hyperplanes. For each partition of
J into three sets, we consider the corresponding partition of the set of the hyperplanes in
Rd+1, and define the corresponding cell to consist of points that at the same time are on
or under the hyperplanes in the first set, on the hyperplanes in the second set, and on or
above the hyperplanes in the third set. For example, the three-partition defined by a fixed
sphere S corresponds to the cell whose points y = (x, z) — in which x is not necessarily the
center of S — that satisfy z ≤ fj(x) if j ∈ In(S), z = fj(x) if j ∈ On(S), and z ≥ fj(x) if
j ∈ Out(S). Assuming general position, this cell has dimension d − p = d + 1 − |On(S)|. We
refer to the (d−p)-dimensional cells as (d−p)-cells and to the (d+1)-cells as chambers. We
write Arr(X) for the set of all cells. The sphere defines a chamber if On(S) = ∅, and in this
case we call k = |In(S)| the depth of the chamber, because there are precisely k hyperplanes
above it. The relation between the chambers and the Voronoi domains should be clear.

I Proposition 2.1 (Chambers and Domains [7]). Let X be a locally finite set of points with
real weights in Rd. For every non-negative integer k, there is a bijection between the domains
of Vork(X) and the chambers at depth k of Arr(X) such that every Voronoi domain is the
vertical projection of its corresponding chamber to Rd. �

Rhomboid tiling. To dualize the Voronoi tessellations, we generalize the construction of
[1] to the unweighted case. Specifically, we map every domain of Vork(X) to the sum of the
corresponding k points, for the moment ignoring the weights. For every non-empty common
intersection of domains, we collect the images of the domains that contain this intersection,
and we add the convex hull of these points as a cell to the dual, which we refer to as the
order-k Delaunay mosaic of X, denoted Delk(X). Note that this definition is not coordinate
invariant, but it can be made so by substituting the average for the sum, which is just a
rescaling. We refrain from doing this to simplify the notation.

We give an alternate description of these mosaics after dualizing the hyperplane arrange-
ment. To this end, we write yj = (xj , −1) ∈ Rd+1, for every (xj , wj) ∈ X, and yI =

∑
i∈I yi,

for every I ⊆ J . The (d + 1)-st coordinate of yI is −|I|, and we call k = |I| the depth of the
point. For every sphere S in Rd+1 — which we recall may be a point or imaginary — we let
rho(S) = conv {yI | In(S) ⊆ I ⊆ In(S) ∪ On(S)} be the rhomboid of S. It is anchored at the
vertex with least depth, which is yIn(S), and it is spanned by the vectors yi with i ∈ On(S).
We say X is in general position if for every collection of d + 2 − p ≥ 1 spheres S there are
at most p + 1 weighted points that belong to all d + 2 − p sets On(S). For such a set X,
the dimension of the rhomboid defined by a sphere S is the number of vectors that span it,
which is dim rho(S) = |On(S)|. The rhomboid tiling of X, denoted Rho(X), is the collection
of all rhomboids defined by spheres in Rd+1; see Figure 1. As argued for the unweighted case
in [6], Rho(X) is a regular complex in Rd+1, which means its cells are convex polytopes with
disjoint interiors such that the boundary of every polytope is the union of other polytopes
in the complex. Indeed, we claim the following properties:

I Proposition 2.2 (Rhomboid Tiling). Let X be a locally finite set of points with real weights
in general position in Rd. Then
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Figure 1 The rhomboid tiling of five weighted points on the real line. The weights are the
squared radii of the colored half-circles. The horizontal line at depth k intersects the tiling in the
order-k Delaunay mosaic of the points. Since D has much smaller weight than its two neighbors, it
is not part of the order-1 mosaic. Nonetheless, D participates in all mosaics of order higher than
one.

1. Rho(X) is dual to Arr(X);
2. Rho(X) is a regular complex of rhomboids;
3. the horizontal slice at integer depth k ≥ 0 is the order-k Delaunay mosaic of X.

We refer to the proof of the corresponding result for unweighted points in [6] and note that it
readily generalizes to the weighted case. We explain Property 1 of Proposition 2.2 because
it is repeatedly used. The duality is established by a bijection ρ 7→ ρ∗ in which ρ is a
(p + 1)-dimensional rhomboid in Rho(X) and ρ∗ is a (d − p)-cell in Arr(X) such that ρ ⊆ ϱ

iff ϱ∗ ⊆ ρ. The points inside, on, and outside the sphere that defines ρ correspond to the
hyperplanes above, containing, under the cell ρ∗. Note also that the vertical partial order
of the cells in the arrangement agrees with the same order on the rhomboids in the tiling.

Discrete Morse theory. Next we assign to each rhomboid in the tiling a real value. Before
doing so, we give a few definitions. Let K be a regular complex. Its Hasse diagram is a
directed graph whose nodes are the cells in K and whose arcs are the pairs of cells σ ⊆ τ

with dim τ = dim σ + 1. A function f : K → R is monotonic if f(σ) ≤ f(τ) whenever σ ⊆ τ .
The level set for a value w ∈ R is the set of cells f−1(w) ⊆ K. It is a set of nodes in the
Hasse diagram. A step of f is a maximal subset of a level set whose induced subgraph in
the Hasse diagram is connected. We note that the steps of f partition K. An interval of
K is given by cells σ ⊆ υ and consists of all faces of υ that share σ as a face, denoted
[σ, υ] = {τ ∈ K | σ ⊆ τ ⊆ υ}. We call σ the lower bound and υ the upper bound of [σ, υ].
The interval is singular if σ = υ. A monotonic function f : K → R is generalized discrete
Morse if every step is an interval; see [10]. For comparison, f is discrete Morse if every step
is an interval of size 1 or 2; see [9] but note that the original definition is in-essentially more
general by allowing f(σ) > f(τ) for pairs σ ⊆ τ in a step.

We are interested in the case in which K = Rho(X) and f is the squared radius function,
which we now define. Recall that each rhomboid ρ ∈ Rho(X) has a dual cell ρ∗ ∈ Arr(X).
For each point y = (x, z) ∈ ρ∗, we set w(y) = ∥x∥2 − 2z, and we define the squared radius
function, w : Rho(X) → R, by mapping ρ to w(ρ) = miny∈ρ∗ w(y). To develop a geometric
intuition for this function, we sweep the hyperplane arrangement from top to bottom with
a paraboloid. Specifically, for t ∈ R, the paraboloid is the graph of ϖ − 1

2 t. Then w(ρ) is
the minimum t ∈ R such that the corresponding paraboloid has a non-empty intersection
with ρ∗. Assuming general position, the sequence in which the paraboloid encounters the
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cells in Arr(X) follows a few simple rules. For example, when the paraboloid encounters
a vertex in Arr(X), then it has already encountered 2d+1 − 1 of the chambers incident to
the vertex, and it touches the unique last incident chamber for the first time, as well as all
faces of this chamber that share the vertex. More generally, when the paraboloid touches
the intersection of p + 1 hyperplanes for the first time, this happens at an interior point of a
(d − p)-cell contained in this intersection. At the same time the paraboloid touches a unique
chamber together with all faces of this chamber that share the (d−p)-cell as a common face.
We therefore have the following result.

I Proposition 2.3 (Squared Radius Function). Let X be a locally finite set of points with real
weights in general position in Rd. Then w : Rho(X) → R is a generalized discrete Morse
function. Furthermore, every step of w has a vertex as a lower bound, and there is only one
singular interval, namely the vertex at the origin, which corresponds to the empty index set.

The same claim restricted to the unweighted case can be found in [6]. Its proof extends
with obvious modifications to the proof in the weighted case, which we therefore omit. This
proposition says that the paraboloid always enters a chamber together with a subset of its
faces while sweeping. This chamber corresponds to the vertex of a rhomboid and the faces
of the chamber correspond to the faces of the rhomboid that share this vertex. As we will
see shortly, the vertex is not necessarily the lowest vertex of the rhomboid. Note that w
is rather special because it has a limited collection of interval types. This is best seen by
constructing Rho(X) one step at a time. After starting with the vertex at the origin, each
step glues a new rhomboid of dimension at least 1 together with all missing faces to the
complex. Such a step preserves the homotopy type, which implies that every non-empty
sublevel set of w is contractible.

Horizontal integer slices. Let Pk be the horizontal hyperplane at integer depth k in
Rd+1. By Proposition 2.2, the intersection of Pk with Rho(X) gives the (weighted) order-k
Delaunay mosaic. We aim at associating each cell in Delk(X) with the rhomboid in Rho(X)
such that the cell is the intersection of Pk with the rhomboid, but there is an ambiguity
for the vertices of Delk(X), which belong to several intersections. We will associate them
to the vertices of Rho(X), but to avoid special cases, we formulate the definitions for the
rhomboids without their boundary. Note that the (relative) interiors of the rhomboids
partition the union of the rhomboids. Accordingly, each cell σ ∈ Delk(X) is the closure of
the intersection of Pk with the interior of a unique rhomboid ρ = ρ(σ). Writing p = dim σ,
we have dim ρ(σ) = p + 1 if p ≥ 1, and dim ρ(σ) = 0 if p = 0. Similarly, we get the squared
radius function of Delk(X) from that of Rho(X): wk(σ) = w(ρ(σ)). We are interested in the
partition of Delk(X) into the steps of wk. To this end, let σ and τ be two cells in Delk(X)
and note that σ ⊆ τ iff ρ(σ) ⊆ ρ(τ). It follows that each step of wk is the horizontal slice of
a step of w.

Letting ρ ∈ Rho(X), we write top(ρ) and btm(ρ) for the vertices with minimum and
maximum depth, and we write last(ρ) for the vertex with maximum value of w. Proposition
2.3 implies that λ = last(ρ) for every interval [λ, ρ] of w : Rho(X) → R. For some rhomboids,
we have last(ρ) = btm(ρ), but not necessarily for all. Depending on the shape of the
rhomboid, λ can indeed be any vertex of ρ other than top(ρ). We formally state this as a
lemma:

I Lemma 2.4 (Last not Top Vertex). Let X be a locally finite set of points with real weights
in general position in Rd. Then λ ̸= top(ρ) for every non-singular interval [λ, ρ] of w.

Indeed, the chamber in Arr(X) that is dual to top(ρ) lies above ρ∗. Since ρ is an upper
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bound, the point at which the paraboloid first touches ρ∗ during the sweep is an interior
point. Hence, top(ρ)∗ has a lower value of w and therefore does not belong to the interval.

3 Topology of a Step

This section proves our main result: that critical and non-critical steps of wk can be distin-
guished by whether last(ρ) is equal to or different from btm(ρ), with ρ the smallest rhomboid
in Rho(X) that contains the corresponding step of w. The addition of a critical step changes
the homotopy type of the sublevel set and the addition of a non-critical step preserves it.
We begin with an enumeration of the types.

Step types. By Proposition 2.3, every step of w : Rho(X) → R is an interval [λ, ρ] in which
ρ is the maximum rhomboid that satisfies λ = last(ρ). The interval consists of all faces of
ρ that share λ. Assuming dim ρ = p + 1 ≥ 0, the rhomboid has vertices at p + 2 depth
values, and letting k be the depth value of btm(ρ), these values are k − g for 0 ≤ g ≤ p + 1.
By Lemma 2.4, λ can assume only p + 1 of these depth values. If λ ̸= btm(ρ), then Pk−g

has a non-empty intersection with the interior of at least one rhomboid in the interval for
1 ≤ g ≤ p, and if λ = btm(ρ), then there is one more, namely for 0 ≤ g ≤ p. In total,
we count p2 + p + 1 possible types of slices; see Figure 2 for an illustration of the types for
p = 2. Some of these types are symmetric. We refer to the p+1 slices in case λ = btm(ρ) as

λ = btm(ρ)

λ

top(ρ)

btm(ρ)

top(ρ)

λ

top(ρ)

btm(ρ)

Figure 2 A 3-rhomboid ρ with dashed silhouette separating the (gray) faces that share λ from the
(transparent) other faces. Each slice is blue and shown together with the corresponding subgraph of
the Hasse diagram. Left: the self-centered configurations whose corresponding critical steps consist
of a triangle without its boundary, a triangle with its edges but without vertices, and a vertex.
Middle and right: the altruistic configurations whose correspond non-critical steps consist in both
cases of a triangle with one edge, and a triangle with two edges and the shared vertex.

self-centered and the p2 other slices as altruistic. The terminology is motivated by the fact
that last(ρ) = btm(ρ) iff the convex hull of the points whose indices are in On(S) contain the
center of S. There is an ambivalent case, when the center lies on the boundary of the convex
hull, but this can be prevented by slightly strengthening the general position assumption.

Topology type. Letting A ⊆ Rho(X) be a step of w, we write Pk ∩ A ⊆ Delk(X) for the
corresponding step of wk. The Euler characteristic of A is χ(A) =

∑
ρ∈A(−1)dim ρ. Since

A is necessarily an interval, its Euler characteristic vanishes, unless A = {0}, in which case
it is 1. The Euler characteristic of the slice is χ(Pk ∩ A) =

∑
τ∈Pk∩A(−1)dim τ , which may

or may not be zero. We write |A| for the union of interiors of the rhomboids in A, and
Pk ∩ |A| for its slice at depth k. Let Hp ⊆ Rp be the set of points with non-negative first
coordinate, and note that χ(Hp) = 0 for all p ≥ 1. Two topological spaces have the same
topology type if there is a homeomorphism between them, and in this case they have the
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same Euler characteristic. For example, the half-open interval, [0, 1), has the same topology
type as H1, which we denote as [0, 1) ≈ H1. We represent [0, 1) by an edge together with one
of its endpoints, so the Euler characteristic, which is the alternating sum of cells vanishes.
We will see that every altruistic configuration has the topology type of Hp, for some value
of p, while every self-centered configuration has non-zero Euler characteristic.

I Theorem 3.1 (Topology of a Step). Let X be a locally finite set of points with real weights
in general position in Rd, let A = [λ, ρ] be a step of w, set p + 1 = dim ρ, write k for the
depth of btm(ρ), and recall that Pk−g ∩ A is a step of wk−g.
1. If last(ρ) = btm(ρ), then χ(Pk−g ∩ A) ̸= 0 for 0 ≤ g ≤ p.
2. If last(ρ) ̸= btm(ρ), then Pk−g ∩ |A| ≈ Hp and therefore χ(Pk−g ∩ A) = 0 for 1 ≤ g ≤ p.
All other horizontal integer slices of A are empty.

Proof. We first consider the self-centered configurations, when λ = last(ρ) = btm(ρ). For
g = 0, the hyperplane Pk−g contains λ and avoids the interiors of all other rhomboids in
A = [λ, ρ]. The Euler characteristic of this slice is one and therefore non-zero, as claimed. For
1 ≤ g ≤ p, Pk−g has non-empty intersections with the interiors of the rhomboids of dimension
larger than g and empty intersections with the interiors of all other rhomboids in the interval;
see the left panel of Figure 2 for the three cases that occur for p = 2, and see Figure 3 for
three of the four cases that occur for p = 3. Therefore, χ(Pk−g ∩ A) =

∑p+1
q=g+1(−1)q

(
p+1

q

)
,

in which the binomial coefficient is the number of q-dimensional faces of a (p+1)-dimensional
rhomboid that share a common vertex, namely λ. This sum evaluates to (−1)g+1(

p
g

)
, which

is non-zero, as claimed.

Figure 3 Three self-centered configurations in R3. From left to right: a tetrahedron without
boundary faces, an octahedron with four of its triangles but no other faces, and a tetrahedron with
all of its faces except for the vertices.

We second consider the altruistic configurations, when λ ̸= btm(ρ). Let λ′ be the vertex
of ρ opposite to λ, and project ρ orthogonally to the hyperplane normal to λ′ − λ. The
projection is a p-dimensional convex polytope. Call the preimage of its (relative) boundary
the silhouette of ρ, and note that it is a (p − 1)-dimensional topological sphere that contains
all vertices of ρ other than λ and λ′; see Figure 2. None of the rhomboids in the silhouette
belong to A = [λ, ρ]. In fact, the silhouette separates the boundary rhomboids of ρ that
are in this interval from the boundary rhomboids that are not in the interval. Since btm(ρ)
and top(ρ) belong to the silhouette, Pk and Pk−(p+1) both have empty intersection with
the interiors of all rhomboids in [λ, ρ], as claimed. We thus assume 1 ≤ g ≤ p for the
remainder of this proof. At depth k − g, the horizontal hyperplane intersects ρ in a convex
polytope of dimension p, and it intersects the boundary of ρ on both sides of the silhouette.
To go from one side to the other along the boundary of ρ intersected with Pk−g, we have
to cross the intersection of Pk−g with the silhouette, which we will prove is a topological
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(p − 2)-sphere. We conclude that an open (p − 1)-ball of the boundary belongs to Pk−g ∩ |A|,
and the complementary closed (p − 1)-ball does not belong to Pk−g ∩ |A|. It follows that the
slice of the interval has the topology type of Hp, as claimed. The middle and right panels
of Figure 2 illustrate the four altruistic configurations for p = 2, and Figure 4 illustrates the
nine altruistic configurations for p = 3. Reading the eight outer cases in a circle around the
center case, we note that each is symmetric to the diagonally opposite type. In other words,
there are really only five altruistic types for p = 3.

Figure 4 The 9 altruistic configurations in R3. Compared to btm(ρ) at depth k, the vertex
λ = last(ρ) has depth k − 3, k − 2, and k − 1 in the top, middle, and bottom row. Similarly, the slice
is at depth k − 3, k − 2, and k − 1 in the left, middle, and right column.

We return to the intersection of Pk−g with the silhouette and the claim that this inter-
section is a topological sphere of dimension p − 2. For p = 1, ρ is a convex quadrangle,
its silhouette consists of two vertices, top(ρ) and btm(ρ), and Pk−1 passes through the
other two vertices thus intersecting the silhouette in the empty set — the (−1)-sphere — as
claimed. Assuming p ≥ 2, we denote the silhouette by S, we recall that it is a (p − 1)-sphere,
and we write e : S → R for the depth function on the silhouette. Its extreme values are
e(top(ρ)) = k − (p + 1) and e(btm(ρ)) = k, and Pk−g ∩ S = e−1(k − g). To prove that this
level set is a (p − 2)-sphere, it suffices to show that e has only two critical points, namely
the minimum at top(ρ) and the maximum at btm(ρ). The case p = 2 is easy. Here we
have a 3-rhomboid whose silhouette is a hexagon. The difference between the depths of the
endpoints of any edge is 1. We thus need three edges to go from btm(ρ) at depth k to top(ρ)
at depth k − 3 and another three edges to go back. It follows that Pk−g meets the silhouette
in two points — a 0-sphere — as claimed.
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The argument for p > 2 is different. Recall that e is a continuous function on a (p − 1)-
sphere, this sphere is decomposed into (p − 1)-rhomboids, and e is affine on each of these
rhomboids. If e has a critical point in addition to the minimum at top(ρ) and the maximum
at btm(ρ), then it also has a saddle, and this saddle must be a vertex of some of the
rhomboids. To contradict the existence of a saddle, note that the (p − 1)-rhomboids meet in
groups of p at a common vertex. Let ν be such a shared vertex and cut each incident (p−1)-
rhomboid with the (p − 2)-dimensional plane that passes through the vertices adjacent to ν.
We thus get p (p − 1)-simplices, which can be seen are the facets of a p-simplex. It follows
that ν can be a minimum, a maximum, or a regular point, but it cannot be a saddle of e.
Hence, every horizontal slice at depth strictly between k − (p + 1) and k is a (p − 2)-sphere,
as required. �

Consequences. Our main technical result is Theorem 3.1, which we now turn into a
statement about the filtration of order-k Delaunay mosaics. Let w0 < w1 < . . . be the
sorted values of wk and write Kℓ = w−1

k [−∞, wℓ] ⊆ Delk(X) for every ℓ ≥ 0. Assuming
X is in general position, the difference between any two contiguous mosaics is a collection
of steps, and by slightly strengthening the notion of general position, we may assume that
each difference is a single step: Aℓ = Kℓ \ Kℓ−1. For example, all vertices of the order-1
Delaunay mosaic of unweighted points share the function value, 0, and we can perturb the
set by assigning small weights. While it is not necessary, we simplify the following statement
by using this stronger notion of general position.

I Corollary 3.2 (Filtration of Order-k Delaunay Mosaics). Let X be a locally finite set of
points with real weights in general position in Rd, and let 0 ≤ k and 0 ≤ u ≤ v be integers.
1. If exactly one of the steps Au, Au+1, . . . , Av of wk is critical, then Ku and Kv have

different Euler characteristics and therefore different homotopy types.
2. If Au, Au+1, . . . , Av are all non-critical steps of wk, then Ku and Kv have the same

homotopy type.

This corollary of Theorem 3.1 is a direct extension of a theorem about discrete Morse
functions in [9]. Other results in this theory can be similarly extended.

4 Discussion

The main result of this paper is a topological characterization of the incremental steps of
the squared radius function on the order-k Delaunay mosaic of a locally finite set of possibly
weighted points in Euclidean space. With this insight, we gain a topological interpretation
of the probabilistic analysis of this function for a stationary Poisson point process [5]. While
the critical steps do not determine the topology of the sublevel sets, they provide bounds
on the ranks of their homology groups. In contrast to the order-1 case studied in [2], the
squared radius function in the order-k case is neither discrete Morse nor generalized discrete
Morse [9, 10]. Since the function nevertheless behaves similar to a Morse function, it may
be considered a geometrically motivated further extension of the framework; see also [11,
Chapter 11] for algebraically motivated extensions of discrete Morse theory.

In conclusion, we mention that our result requires the given points be in general position.
While this assumption does not imply that the Delaunay mosaics are simplicial, it simplifies
the analysis by guaranteeing that the dual of the corresponding hyperplane arrangement is
a complex of rhomboids. It would be interesting to generalize the theory to locally finite
sets that are not necessarily in general position.
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