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Abstract. Consider a random set of points on the unit sphere in Rd, which can be either uniformly
sampled or a Poisson point process. Its convex hull is a random inscribed polytope, whose boundary
approximates the sphere. We focus on the case d = 3, for which there are elementary proofs and
fascinating formulas for metric properties. In particular, we study the fraction of acute facets, the
expected intrinsic volumes, the total edge length, and the distance to a fixed point. Finally we
generalize the results to the ellipsoid with homeoid density.

1. Introduction

The study of random geometric structures has been an active field of mathematics for the last
several decades. With an effort of being as general as possible, results often end up as cumbersome
formulas with multiple parameters, sometimes being recurrent, and involving special functions. As
such, many beautiful formulas remained hidden, despite being special cases of more general ones.
For example, the expected intrinsic volumes of a random polytope have been computed first in [4]
for spherical polytopes, and later in [9] for Beta polytopes, but the following exciting expressions for
the 2-sphere were overlooked in the first and lost within a large number of corollaries in the second
article:

E[W(Xn)] = W(B3) · n−1
n+1

,(1)

E[A(Xn)] = A(B3) · n−1
n+1

n−2
n+2

,(2)

E[V(Xn)] = V(B3) · n−1
n+1

n−2
n+2

n−3
n+3

,(3)

in which W,A,V map a 3-dimensional convex body to its mean width, surface area, and volume;
and Xn is the convex hull of n points chosen uniformly at random on the 2-sphere. We prove a
similar relation for the total edge length and extend (1), (2), (3) to random centrally symmetric
polytopes. In addition, we derive the rather similar corresponding relations for a stationary Poisson
point process:

E[W(X%)] = W(B3) · 2π%0.5e−2π% I1.5(2π%),(4)

E[A(X%)] = A(B3) · 2π%0.5e−2π% I2.5(2π%),(5)

E[V(X%)] = V(B3) · 2π%0.5e−2π% I3.5(2π%),(6)

in which Iα(x) is the modified Bessel function of the first kind. The generic proofs tend to be
probabilistically analytic, hiding the beautiful geometry implied by the formulas. An example is
the Blaschke–Petkantschin type formula for the sphere [6], which is sufficiently powerful to compute
expectations of metric properties of random inscribed polytopes, but the authors overlooked its
simple interpretation, namely that for a random p-simplex inscribed in the n-sphere, its shape and
its size are independent. A similar statement holds in Euclidean space, but this is beyond the scope
of this paper.
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All of this inspired us to study the special case of random polytopes inscribed in the 2-sphere, with
the aim of casting light on the geometric intuition that works behind the scenes. By minimizing the
use of heavy machinery, we get intuitive geometric proofs that appeal to our sense of mathematical
beauty. The results we present — some known and some new — tend to have inspiringly simple
form, even if we miss the deeper symmetries that govern them.

Outline. Section 2 motivates the study of random inscribed polytopes with results of computational
experiments that give evidence of a strong correlation between their intrinsic volumes. Section 3
collects geometric facts Archimedes would have established in the third century BC if probability
would have been a subject of inquiry back then. Section 4 recalls the independence of shape and size
and uses it to prove that a random triangle bounding a random polytope inscribed in the 2-sphere
is acute with probability 1

2
. Section 5 uses a geometric approach to compute the expected intrinsic

volumes of a random inscribed polytope. We do this for the uniform distribution, for which we
also consider centrally symmetric polytopes, and for Poisson point processes. Section 6 studies the
total edge length of a random inscribed polytope—for which it proves a formula that is surprisingly
similar to (4) to (6)—as well as the minimum distance of the vertices to a fixed point on the 2-
sphere, providing evidence for strong correlation between the intrinsic volumes. Section 7 probes
how far random inscribed polytopes are from maximizing the intrinsic volumes. Section 8 discusses
an application to the distribution of electrons on an ellipsoid. Section 9 concludes the paper.

2. Experiments and Motivation

What if we could tell all intrinsic volumes of a polytope knowing just one of them? The ex-
periments show that the triplets of volumes concentrate along a curve, as we now explain. In the
subsequent sections, we will show where these curves originate from. To begin, we show the distri-
butions of the intrinsic volumes of randomly generated inscribed polytopes in Figure 1. Considering
the mean width, area, and volume, in this sequence, we see that the normalized expectations get pro-
gressively smaller, and the distributions get progressively wider. To further visualize these results,

0.986 0.988 0.990 0.992 0.994 0.996 0.998
0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 1. From left to right : the distributions of the normalized mean volume, area, width of a
random inscribed polytope with n = 1000 vertices in m = 1 000 000 experiments.

consider the curve γ : [3,∞)→ R3 defined by

γ(t) =
(
W(B3) t−1

t+1
; A(B3) t−1

t+1
t−2
t+2

; V(B3) t−1
t+1

t−2
t+2

t−3
t+3

)
,(7)

and note that it maps positive integers t = n to the triplets of expected intrinsic volumes; com-
pare with (1), (2), (3). Dropping the intrinsic volumes of the ball, we get the three normalized
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expectations, which we note decrease from left to right; compare with Figure 1. These inequalities
generalize to the normalized intrinsic volumes of any inscribed polytope:

W(Xn)

W(B3)
≥ A(Xn)

A(B3)
≥ V(Xn)

V(B3)
,(8)

no matter whether Xn is chosen randomly or constructed. The inequality between the area and
the volume follows from the easy observation that the height of every tetrahedron connecting a
triangular facet to the origin has height less than 1. The same argument together with the Crofton
formula applied to the planar projections proves the inequality between the mean width and the
area.

Our experiments show that the three intrinsic volumes deviate from the expected values in a
highly correlated manner. Indeed, in Figure 2 we see how the intrinsic volumes hug the graph of γ
even when they are far from the expected values. In the two panels, we see four families of random
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Figure 2. Projections of the graph of γ and the triplets of expected intrinsic volumes into the
width-area plane on the left and the width-volume plane on the right. Top: the 150 blue, orange,
green, and red points belong to polytopes with 10, 40, 100, and 200 vertices each.

polytopes with 10, 40, 100, and 200 vertices, respectively. As shown in the inserts, the surprisingly
tight fit to the curve can even be observed for random polytopes with n = 200 points, for which
the difference between minimum and maximum intrinsic volume is on the order of 10−2. Given
one intrinsic volume of a randomly generated polytope, we can therefore reasonably well predict
the other two. For example, given the mean width, w, we can invert (1) to get n(w) = 2+w

2−w , and

plugging n = n(w) into (2) and (3), we get A(w) = 4πw 3w−2
6−w and V (w) = 4π

3
w 3w−2

6−w
w−1
4−w as estimates

of the area and the volume.

3. Archimedes’ Lemma and Implications

The classic version of Archimedes’ Lemma says that the area of a slice of width h of the 2-
dimensional sphere with radius r is 2πrh. Equivalently, dropping a point onto a 2-sphere uniformly
at random and then projecting it orthogonally to a diameter is equivalent to just dropping the
point uniformly at random onto the line segment. Similarly, we recall the concept of a stationary
Poisson point process with intensity %: the Poisson measure of a Borel set is defined to be % times
the Lebesgue measure of the set, and the points are sampled in such a way that the expected
number in every Borel set is its Poisson measure; see [19] for the complete definition. We state the
interpretation of Archimedes’ Lemma for uniform distributions and Poisson point processes as a
lemma:
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Lemma 1 (Archimedes). (1) The orthogonal projection of the uniform distribution on S2 ⊆ R3 onto
any given diameter is the uniform distribution on this line segment. (2) The orthogonal projection of
the stationary Poisson point process with intensity % on S2 onto any given diameter is the stationary
Poisson point process with intensity 2π% on this line segment. �

We need a few auxiliary statements for our proofs. We can obtain them in different ways, including
direct integration, but we prefer the more illustrative application of Archimedes’ Lemma.

Lemma 2 (Expected Projection). For a line segment with endpoints a, b ∈ R3, the expected length
of the orthogonal projection onto a random direction is half the distance between a and b.

Proof. Assume without loss of generality that a = 0 is the origin of R3, and b has unit distance
from a. The orthogonal projection of the connecting line segment onto a random direction with
unit vector e has length 〈b− a, e〉, which is also the length of the orthogonal projection of e onto the
direction of b− a. Thus the average length of the projection is the distance to 0 of the projection of
a random point on the unit sphere onto b− a. By Archimedes’ Lemma, the projection is uniform,
so the expected distance is 1

2
or, in the general case, half the length of b− a. �

The next lemma uses the previous one to get the expected length of a random chord.

Lemma 3 (Expected Distance). The expected Euclidean distance between two uniformly and inde-
pendently chosen points on the unit sphere in R3 is 4/3.

Proof. Call the points a, b ∈ S2 and project them orthogonally onto a fixed diameter of the sphere.
By Archimedes’ Lemma, the projections are uniformly distributed on this diameter. The expected
distance between two uniformly and independently chosen points on a line segment is one third of
the length of the segment. This is easy to see, either by direct computation, or by gluing the ends of
the segment and noticing that the experiment is equivalent to dropping three points onto a circle.
Thus, the expected distance between the projection of a and b is 2

3
. Averaging over all diameters

and applying Fubini’s Theorem, we get that 2
3

is half of the expected Euclidean distance between a
and b by Lemma 2. �

Consider three points dropped uniformly and independently onto the unit circle S1 ⊆ R2. The
probability that the triangle defined by the points is acute is 1

4
. Perhaps the simplest argument

was provided by Wendel [21]: the central reflection of the points through the center of the circle
preserves the measure, and for each triple of points, two of the eight possible reflections of a triangle
(picking a point or its reflection) contain the center of the circle. This argument does not generalize
to triangles in higher dimensions: central reflection through the center of the circumcircle no longer
preserves the measure. Indeed, for triangles with vertices on S2 the situation is already different.

Lemma 4 (Acute Triangle). The Euclidean triangle formed by three uniformly and independently
chosen points on S2 ⊆ R3 is acute with probability 1

2
.

Proof. Let a, b, c be the three vertices of the triangle. Since at most one angle of a triangle can be
obtuse, it suffices to show that the angle at a is obtuse with probability 1

6
. For any two points a and

b on the sphere, the angle ∠bac is obtuse if and only if the plane passing through the point a and
perpendicular to b− a separates b and c; see the shaded area in Figure 3. The desired probability
can thus be written as E[1c∈shaded region], which, after integrating c out, is equal to the expected
fraction of the area of the cap bounded by the plane. Archimedes’ Lemma asserts, that this fraction

is the ratio of the height of the cap to the diameter. The height equals 1 − ‖a−b‖
2

, so the ratio is
1
2
− ‖a−b‖

4
. By Lemma 3, the expected value of this ratio is 1

6
, which completes the proof. �
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a b

Figure 3. The angle at vertex a is obtuse iff c lies in the shaded area beyond the plane with
normal b− a that passes through a.

4. Shape and Size

Now choose n ≥ 4 points uniformly and independently on the sphere and take their Euclidean
convex hull. With probability 1, the points are in general position, implying that the convex hull is
a simplicial polytope. The Euler formula and the integral geometric properties of the distribution
of such random polytopes facilitate the extension of Lemma 4.

4.1. Shape vs. Size. The spherical Blaschke–Petkantschin formula for the sphere (see [6, Equation
(2.1)] and [15, Theorem 7]), implies that the shape of a random inscribed simplex is independent
of its size. This is a special case of a more general result proved in [18, Section 5] and [10, Theorem
3.3], but the spherical case is more illustrative and shows a hidden symmetry of the random simplex.

Lemma 5 (Shape vs. Size). Let n ≤ d points be uniformly and independently chosen from Sd−1 ⊆
Rd, which almost surely form an (n − 1)-simplex and thus define a unique (n − 2)-dimensional
circumsphere. Then the radius of this sphere is independent of the shape of the simplex, i.e., the
simplex scaled to unit circumradius.

Proof. The spherical Blaschke–Petkantschin formula gives a decomposition of the measure on n-
tuples of points on the sphere. Let a1, a2, . . . , an ∈ Sd−1, write z and r for the center and the radius
of the (n−2)-dimensional circumsphere, and define ui = (ai−z)/r for 1 ≤ i ≤ n. Ignoring constant
factors, the formula is

dPd(a1, a2, . . . , an) = c · Vold−n+1
n−1 (conv {u1, u2, . . . , un}) dPn−1(u1, u2, . . . , un)⊗ dgn,d(r).(9)

On the left, we have the measure Pd on n-tuples of points on Sd−1, and on the right the measure
Pn−1 on n-tuples of points on Sn−2. Further, gn,d is a relatively complicated but explicit measure
on the real line, and Voln−1 denotes the (n− 1)-dimensional volume of the simplex. Since r and the
ui appear in different factors, the distributions are independent. �

More precisely, the lemma states that the conditional probability of seeing a simplex, conditioned
on its circumsphere, is proportional to some power of its volume. This implies that the distribution
on the circle, induced by restricting the uniformly random triangle on S2 to its circumcircle, is not
uniform. In particular, the conditional probability of an acute triangle equals the probability of an
acute triangle in S2, which is 1/2 and thus double the probability for picking the vertices uniformly
along the circle.

4.2. Random Triangles. With this observation, we are ready to generalize Lemma 4.

Theorem 6 (Random Triangle). Let n ≥ 3 points be chosen uniformly and independently on the
unit sphere in R3, and let Xn be their convex hull. Then a uniformly chosen random facet of Xn is
an acute triangle with probability 1

2
.

Proof. The case n = 3 has already been proved, so we assume n ≥ 4. By Euler’s formula, all
simplicial polytopes with n vertices have the same number of facets, namely f = 2n−4. We choose
any three points on the sphere and condition on the event that the polytope has these three points
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as vertices. The probability, that the points form a facet of the random polytope depends only on
the circumradius of the triangle spanned by them. Indeed, the requirement is equivalent to having
all other points contained in only one of the two spherical caps determined by the triangle, and
the probability of this event is a function of the areas of the caps, which in turn are functions of
the circumradius. Further, the probability that a given facet of a polytope is the chosen one is
1
f
, which is a constant. By the previous lemma, the circumradius is independent of whether or

not the triangle is acute. Also, being acute or obtuse is clearly independent of the position of the
other points. These independencies allow us to conclude that being a facet of a random inscribed
polytope is independent of being acute, so Lemma 4 implies that the probability of being acute is
indeed 1

2
. �

This theorem is aligned with the previous work on the topic. Miles in [13] showed that for a
Delaunay triangulation — which is the Euclidean space analogue of the convex hull — of a Poisson
point process in the plane, half of the triangles are acute ergodically. This has been transferred to
the identical limiting statement for a sphere in [6]. The current theorem removes the asymptotic
limit from the statement, showing that the behavior is the same for a finite number of points.

4.3. Measure of Facets. Another way of looking at the Blaschke–Petkantschin formula gives an
interpretation of the measure on the facets of a random inscribed polytope. Three points, θ, define
a facet if all other sampled points lie on one side of the plane spanned by θ. With probability 1, this
plane splits the sphere into the two unequal caps : the small circumcap, Sm(θ), on the side of the
plane that does not contain the center of the sphere, and the big circumcap, Bg(θ), on the other side
of the plane. Call θ and the facet it defines small or big, depending which of the two caps is empty.
With probability 1, only one of them can be empty, unless n = 3, in which case the triangle is
double-covered, by one big and one small facet. Let Θ = (S2)3 be the set of ordered triangles in S2,
and let fsm be the intensity measure on Θ of small facets. According to the Blaschke–Petkantschin
formula, it is absolutely continuous with respect to the Lebesgue measure on Θ:

dfsm(θ) =

(
A(Bg(θ))

A(S2)

)n−3
n(n− 1)(n− 2)

A(S2)3
dθ.(10)

An analogous formula holds for fbg, the intensity measure of big facets. The area of the circumcap
of θ depends only on the circumradius, so the spherical Blaschke–Petkantschin formula gives a
representation of this measure as a product of measures like in (9): dfsm(θ) = f1(r) dr f2(s) ds, in
which f1(r) is the distribution of the circumradius of a random triangle, and f2(s) is the distribution
of its shape. This decomposition is useful in computing the expectation of any quantity that depends
on the shape and the radius in a multiplicative way, such as the area, the volume, the total edge
length, etc. As an example, writing h(r) =

√
1− r2 for the height of the pyramid over the facet,

we get the volume of the polytope and its expectation:

V(Xn) =
∑

θ small

1
3
A(s) r2h(r)−

∑
θ big

1
3
A(s) r2h(r),(11)

E[V(Xn)] = 1
3!

∫
θ∈Θ

1
3
A(s) r2h(r) [ dfsm(θ)− dfbg(θ)],(12)

where the Blaschke–Petkantschin decomposition can be applied to compute the integral. Note that
the same observation applies for the Poisson case, and it generalizes to any dimension. We refer to
the proof of Theorem 15 as an application of this viewpoint.

5. Intrinsic Volumes

This section is devoted to the expected intrinsic volumes of a random polytope inscribed in S2.
The recurrent integral expressions for these quantities have been computed in the uniform case for
a random convex hull inside a ball [3], they have been extended for the spherical case in [4], and
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the asymptotic was established in [14]. Integral expressions for the Poisson case were developed in
[20].

5.1. Uniform Distribution. We give precise formulas for n points sampled uniformly at random
on S2 and notice the special relation of the intrinsic volumes of their convex hull to the intrinsic
volumes of the ball. We present proofs based on Crofton’s formula and mention that the general
approach outlined in Section 4.3 could also be used; see [9]. We begin with the mean width.

Theorem 7 (Mean Width I). Let n ≥ 1 points be chosen uniformly and independently on the unit
sphere in R3, and let Xn be their convex hull. Then the expected mean width of Xn is

E[W(Xn)] = W(B3) · n−1
n+1

,(13)

in which W(B3) = 2 is the mean width of the unit ball.

Proof. The formula follows from Archimedes’ Lemma. Indeed, by rotational symmetry, the mean
width is the expected length of the projection of the random polytope onto a fixed direction. By
Archimedes’ Lemma, the projection is distributed as the segment connecting the first and last of
n points chosen uniformly and independently from [−1, 1]. Like in the proof of Lemma 3, we note
that n points divide a segment into n+ 1 identically (though not independently) distributed pieces,
so the expected distance between the first and the last point is 2n−1

n+1
, as claimed. �

We now move to the area. We start with a lemma that somehow escaped from Section 3 to the
third millennium. We need the Crofton measure on the space of lines in Rd, which is the unique
isometry-invariant measure on lines in Rd normalized to have the total measure 1 of lines intersecting
the unit ball. In vague terms, it can be obtained by choosing a uniformly random direction, followed
by assigning the measure of the lines parallel to this direction to be the Lebesgue measure on the
orthogonal plane. It is interesting, that in R3 the Crofton measure has a simple description.

Lemma 8 (Random Chords). The probability distribution on lines intersecting S2, defined by choos-
ing two points uniformly and independently on S2, coincides with the Crofton measure.

Proof. A line that intersects S2 in two points defines a chord, which is the straight segment connect-
ing the two points. We compare the lengths of the chords under the two distributions. Since the
two distributions are invariant under rotations, showing that both give rise to identical distributions
of chord lengths suffices to prove the lemma.

When we choose two random points, we can assume that one of them is the north pole, N . Then,
for ` ∈ [0, 2], the probability that the second point, x, is closer to N than ` equals the fraction of
the sphere covered by the spherical cap centered at N , such that the furthest point of the cap has
Euclidean distance ` to N . It is easy to see that the height of this cap is `2/2. Thus, Archimedes’
lemma implies that the fraction in question is `2/4.

For the Crofton measure, the lines that intersect the ball in a chord of length less than ` are the
ones that avoid the ball of radius

√
1− (`/2)2 centered at the origin. For any fixed direction, the

ratio of such lines to the measure of lines intersecting the ball is the area fraction of the annulus
with inner radius

√
1− (`/2)2 and outer radius 1. This ratio is again `2/4, which concludes the

proof. �

The Crofton’s formula asserts that the (d − 1)-volume of the boundary of any convex body in
Rd is proportional to the Crofton measure of the lines intersecting it. Applying this in R3, we see
that the ratio of the area of the inscribed polytope Xn to the area of S2 is the fraction of the lines
intersecting S2 that also intersect Xn. This observation lets us conclude the theorem.

Theorem 9 (Area I). Let n ≥ 4 points be chosen uniformly and independently on the unit sphere
in R3, and let Xn be their convex hull. Then the expected surface area of Xn is

E[A(Xn)] = A(B3) · n−1
n+1

n−2
n+2

,(14)

in which A(B3) = 4π is the area of the boundary of the unit ball.
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Proof. By Lemma 8, the mentioned fraction is the probability that a random chord—which has the
distribution of X2—intersects Xn. Joining all points together, it is the probability that the extra
two points span a diagonal of Xn+2. There are 1

2
(n + 2)(n + 1) pairs of vertices and (by Euler’s

formula) 3n edges, so this probability is

1
2
(n+ 2)(n+ 1)− 3n

1
2
(n+ 1)(n+ 2)

=
(n− 1)(n− 2)

(n+ 1)(n+ 2)
.(15)

Multiplying by the area of S2, we get the claimed identity. �

For the volume, we present a combinatorial proof without going into the integral geometry details
and refer the reader to [9, Corollary 3.11] for an alternative proof.

Theorem 10 (Volume I). Let n ≥ 4 points be chosen uniformly and independently on the unit
sphere in R3, and let Xn be their convex hull. Then the expected volume of Xn is

E[V(Xn)] = V(B3) · n−1
n+1

n−2
n+2

n−3
n+3

,(16)

in which V(B3) = 4π
3

is the volume of the unit ball.

Proof. The idea is similar to the proof of Theorem 9 but less direct. To write an integral geometry
formula for the volume of the tetrahedron with base abc and height h, we note that 2A(abc)/4π is
the fraction of lines intersecting S2 that also intersect the triangle, and h

2
is the fraction of points on

the diameter normal to abc for which the plane parallel to the triangle intersects the tetrahedron.
Relating this formalism to the volume of the inscribed polytope, we pick a vertex z as apex and
form tetrahedra by connecting z to all triangular facets not incident to z. The total volume of these
tetrahedra is V(Xn). Taking the sum over all vertices z ∈ Xn, we get the 2n−4 triangles connected
to n− 3 vertices each, which amounts to (2n− 4)(n− 3) tetrahedra with total volume nV(Xn).

The rest of the argument is combinatorial. Picking n + 3 points on S2, we use n to define the
polytope, 2 to define the line, and keep the remaining 1 point to construct the plane. There are
1
2
(n + 3)(n + 2)(n + 1) ways to partition Xn+3 into Xn, X2, X1. The plane that contains a facet

of Xn bounds two half-spaces, and we call the one that contains Xn the positive side, while the
other is the negative side of the facet. Note that X1 is on the negative side iff the facet of Xn is
not a facet of Xn+1 = conv (Xn ∪X1). We measure the volume of the (2n − 4)(n − 3) tetrahedra
combinatorially, and we do this for all partitions of the n + 3 points simultaneously. Specifically,
for each tetrahedron zabc, we multiply the number of lines that intersect abc with the number of
planes parallel to abc that intersect the tetrahedron. If X1 is on the negative side of abc, then the
product vanishes, so we can focus on the remaining facets, which are also the facets of Xn+1.

Consider a facet, F , of Xn+1 that intersects X2. There are n−2 choices for X1, namely all vertices
of Xn+1 that are not incident to F . Picking 2 of the n − 2 vertices—one for X1 and the other for
the apex of the tetrahedron—we note that for one of two ordered choices the plane parallel to F
intersects the tetrahedron. This gives a total of

(
n−2

2

)
plane-tetrahedron intersections, computed for

a fixed choice of Xn+1 and X2 and for a fixed triangle. Importantly, this number depends only on
n. Next we recall Lemma 8, which asserts that X2 gives a uniform measure on the lines intersecting
S2. Each partition of the n+ 3 points into Xn+1 and X2 gives a line that either intersects two facets
(namely when X2 is not an edge of Xn+3) or no facet (when X2 is an edge of Xn+3). As argued in
the proof of the area case above, of the

(
n+3

2

)
pairs there are 3(n+ 3)− 6 = 3n+ 3 edges. The total

number of line-triangle intersections is therefore 2
(
n+3

2

)
− 2(3n + 3) = 2

(
n
2

)
, which again depends

only on n. Multiplying with the number of plane-tetrahedron intersections, and averaging over all
partitions of the n+ 3 points, we get

2
(
n
2

)(
n−2

2

)
1
2
(n+ 3)(n+ 2)(n+ 1)

=
n(n− 1)(n− 2)(n− 3)

(n+ 1)(n+ 2)(n+ 3)
,(17)

which is n times the volume fraction, as required. �
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Remark. If we declare that the convex hull of three points is a double covered triangle, then the
formula (14) holds for n ≥ 3. With this stipulation, the formulas for the scaled intrinsic volumes
V1 = W, V2 = A and V3 = V can be combined in a single expression that holds for all n ≥ 1:

E[Vk(Xn)] = Vk(B3) · Γ(n)

Γ(n− k)

Γ(n+ 1)

Γ(n+ k + 1)
.(18)

5.2. Centrally Symmetric Polytopes. We extend the analysis to centrally symmetric poly-
topes inscribed in the unit sphere, reproving with combinatorial arguments the formulas first ob-
tained in [9]. To construct a random such polytope, we drop n points uniformly and independently
on S2 and take the convex hull of these points as well as their antipodes: Xsym

2n = conv (Xn ∪ (−Xn)).

Theorem 11 (Intrinsic Volumes II). Let n ≥ 3 points be chosen uniformly and independently on
the unit sphere in R3. Then the expected intrinsic volumes of Xsym

2n are

E[W(Xsym
2n )] = W(B3) · n

n+1
,(19)

E[A(Xsym
2n )] = A(B3) · n−1

n+2
,(20)

E[V(Xsym
2n )] = V(B3) · n

n+1
n−2
n+3

.(21)

Proof. First the mean width. Dropping n points into [−1, 1] and adding their reflections across 0 is
equivalent to choosing n points in [0, 1] and adding their negatives in [−1, 0]. The expected distance
between the first and the last point is 2− 2

n+1
= 2 n

n+1
, which proves (19).

Second the area. Consider n+2 random pairs of antipodal points, which we divide into the vertices
of Xsym

2n , and an ordered quadruplet, (a, b,−a,−b), forming the vertices of Xsym
4 . We use the latter

to define a uniformly random line that intersects S2. The probability that this line intersects Xsym
2n

is the fraction of non-antipodal diagonals of Xsym
2n+4 among the non-antipodal vertex pairs. The

number of such pairs is 1
2
(2n+ 4)(2n+ 2), from which we subtract the 3(2n+ 4)− 6 = 6n+ 6 edges

of Xsym
2n+4. The fraction is

2(n+ 2)(n+ 1)− 6(n+ 1)

2(n+ 2)(n+ 1)
=
n− 1

n+ 2
.(22)

Accordingly, the expected area of Xsym
2n is A(B3) = 4π times this fraction, which proves (20).

Third the volume. We modify the proof of Theorem 10 by working with only one set of tetrahedra,
constructed by connecting the origin with the facets of the centrally symmetric polytope. To
compute their total volume, we consider n + 3 antipodal point pairs, which we divide into Xsym

2n ,
Xsym

4 , Xsym
2 . As before, we use Xsym

4 and Xsym
2 to encode a line and a point, which we use to measure

volume. The line defined byXsym
4 intersects either two or zero facets ofXsym

2n+2 = conv (Xsym
2n ∪X

sym
2 ).

For half of the intersected facets, the plane parallel to the facet that passes through the point defined
by Xsym

2 intersects the corresponding tetrahedron. The reason is that the plane intersects exactly
one of the two tetrahedra spanned by the facet and its antipodal copy. The expected volume is
therefore the fraction of non-antipodal diagonals of Xsym

2n+6 among the non-antipodal vertex pairs,
times the fraction of vertices that are incident neither to the facet nor its antipode:

2(n+ 3)(n+ 2)− 6(n+ 2)

2(n+ 3)(n+ 2)
· n− 2

n+ 1
=

n

n+ 3

n− 2

n+ 1
.(23)

Accordingly, the expected volume of Xsym
2n is V(B3) = 4π

3
times this fraction, which proves (21). �

5.3. Poisson Point Process. This subsection considers the same three intrinsic volumes but for
a Poisson point process rather than a uniform distribution on the 2-sphere. After proper rescaling, in
the limit, the expected values for this process should be the same as for the uniformly sampled points.
Here we give explicit expressions: given a Poisson point process on S2 of intensity ρ, we write Xρ for
its convex hull, and we study expected intrinsic volumes of this random polytope. There are two ways
of working with this case as well: the general approach, which uses Slivnyak–Mecke and Blaschke–
Petkantschin formulas (see the proof of Theorem 15), and the reduction to the uniform distribution
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case, which we employ in this section. It uses the conditional representation of the Poisson point
process in a Borel set of finite measure λ: first pick a random variable, n0, from a Poisson distribution
with parameter λρ, and second sample n0 points independently and uniformly in the Borel set. As
such, all quantities of our interest can be written as E[·(Xρ)] =

∑∞
n=0 E[·(Xn)]P[n0 = n], in which

P[n0 = n] = e−4πρ (4πρ)n

n!
since the measure of the sphere is λ = 4π. To state the result, we recall the

modified Bessel functions of the first kind defined for a real parameter, α:

Iα(x) = 1
π

∫ π

θ=0

ex cos θ cos(αθ) dθ − sin(απ)

π

∫ ∞
t=0

e−x cosh t−αt dt;(24)

see e.g. [16]. The functions in this section all have explicit expressions, and can be expanded using
any mathematical software, but we keep them in form of Bessel functions for uniformity. To prepare
the proof of Theorem 13, we present a straightforward but technical computation of a specific series.

Lemma 12 (Bessel representation). For positive k,∑∞

m=0

Γ(m+ k + 1)

Γ(m+ 2k + 2)

zm+k+1

Γ(m+ 1)
= e

z
2 (πz)0.5 Ik+0.5

(
z
2

)
.(25)

Proof. In addition to straightforward transformations on the expression, (∗) uses the definition of the
Kummer confluent hypergeometric function [12], (∗∗) uses the relation between modified Bessel and
Kummer hypergeometric functions [16, Formula 10.39.5], and (∗∗∗) uses the Legendre Duplication
Formula Γ(2k + 2) = 22k+1Γ(k)Γ(k + 1.5)π−0.5 [16, Formula 5.5.5]:∑∞

m=0

Γ(m+ k + 1)

Γ(m+ 2k + 2)

zm+k+1

Γ(m+ 1)
= zk+1 Γ(k + 1)

Γ(2k + 2)

∑∞

m=0

Γ(m+ k + 1)

Γ(k + 1)

Γ(2k + 2)

Γ(m+ 2k + 2)

zm

m!
(26)

(∗)
= zk+1 Γ(k + 1)

Γ(2k + 2)
1F1(k + 1; 2k + 2; z)(27)

=

[
(z/2)k+ 1

2

2k+ 1
2 e

z
2 Γ(k + 1.5)

1F1(k + 1; 2k + 2; z)

]
22k+1e

z
2 Γ(k + 1.5)z0.5Γ(k + 1)

Γ(2k + 2)
(28)

(∗∗)
= Ik+0.5

(
z
2

) 22k+1e
z
2 Γ(k + 1.5)z0.5Γ(k + 1)

Γ(2k + 2)
(29)

(∗∗∗)
= e

z
2 (πz)0.5 Ik+0.5

(
z
2

)
. �

Having this prepared, the following theorem is easy to prove.

Theorem 13 (Intrinsic Volumes III). Let X% be the convex hull of the stationary Poisson point
process with intensity % > 0 on the unit sphere in R3. Writing W(X%), A(X%), and V(X%) for the
mean width, surface area, and volume, we obtain the following expressions for their expectations:

E[W(X%)] = W(B3) · 2π%0.5e−2π% I1.5(2π%),(30)

E[A(X%)] = A(B3) · 2π%0.5e−2π% I2.5(2π%),(31)

E[V(X%)] = V(B3) · 2π%0.5e−2π% I3.5(2π%),(32)

in which Iα(x) is the modified Bessel function of the first kind.

Remark. As expected, the factors after the intrinsic volumes of B3 tend to 1 when ρ→∞.

Proof. According to the conditional representation of a Poisson point process, it suffices to compute
the sum of a series with terms from the uniform case (18). We can thus write

E[Vk(Xρ)] = Vk(B3)e−4πρ
∑∞

n=k+1

Γ(n)

Γ(n− k)

Γ(n+ 1)

Γ(n+ k + 1)

(4πρ))n

n!
.(33)
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Now we do a simple substitution, m = n− k− 1, and use the identity Γ(n+ 1) = n! to get into the
setting of Lemma 12 with z = 4πρ:

E[Vk(Xρ)] = Vk(B3)e−4πρ
∑∞

m=0

Γ(m+ k + 1)

Γ(m+ 1)Γ(m+ 2k + 2)
(4πρ)m+k+1(34)

= Vk(B3)e−4πρe2πρ(π · 4πρ)0.5 Ik+0.5(2πρ)(35)

= Vk(B3)2πρ0.5e−2πρ Ik+0.5(2πρ). �

6. Length and Distance

In this section, we study two questions about expected length, namely the total edge length of
a random inscribed polytope and the Euclidean distance to a fixed point. The total edge length
is not an intrinsic volume, but the most generic version of the Blaschke–Petkantschin formula can
deal with almost any function of the polytope, including the sum of edge lengths. As in Section 5,
we consider both the uniform distribution and the Poisson point process, noting that the result in
the latter case bears striking resemblance to the formulas given in Theorem 13.

6.1. Total Edge Length. We again prepare with a technical lemma.

Lemma 14. We have

JL(n) =

∫ 1

t=0

t3/2(1− t)−1/2

[(
1+
√

1−t
2

)n−3

+
(

1−
√

1−t
2

)n−3
]

dt = 32 · B(n− 1
2
, 5

2
);(36)

KL(%) =

∫ 1

t=0

t3/2(1− t)−1/2
[
e−2π%(1+

√
1−t) + e−2π%(1−

√
1−t)
]

dt = 3
2π
%−2 e−2π% I2(2π%).(37)

To get the right-hand side of (36), we first apply a change of variables s = 1 +
√

1− t to the
left term and s = 1−

√
1− t to the right term or, equivalently, t = 2s− s2 to both. Then writing

q = s/2, we recognize the integral as a multiple of the beta function for parameters n − 0.5 and
2.5. For (37), we first use the same change of variables, and then set s = 1 + cos θ to arrive at the
expression of 10.32.2 in [16]. We leave the details to the reader, and note that the integrals can also
be computed with mathematical software.

Theorem 15 (Total Edge Length). Let Xn be the convex hull of n ≥ 3 points chosen uniformly and
independently at random on S2, and let X% be the convex hull of a stationary Poisson point process
with intensity % > 0 on S2. Then the sums of lengths of the edges on the two inscribed polytopes
satisfy

E[L(Xn)] =
(
n
3

)
512
3π
·B
(
n− 1

2
, 5

2

) [
= 64

3
√
π

√
n · (1 + o(1))

]
,(38)

E[L(X%)] = 128
3
%0.5 · 2π%0.5e−2π% I2(2π%)

[
= 64

3
√
π

√
4π% · (1 + o(1))

]
.(39)

Proof. The arguments for the two random models are sufficiently similar, so we can present them
in parallel, writing X whenever a relation holds for both, Xn and X%. We follow the strategy
sketched in Section 4.3. Write L(F ) for the perimeter of a triangle F . Every edge belongs to two
triangles, which implies that the total edge length satisfies L(X) =

∑
{a,b,c}⊆X 1facet[abc]

1
2
L(abc),

where 1facet[abc] is the indicator that abc is a facet of X. Recall that the plane passing through
a, b, c cuts the sphere into two spherical caps, one big and the other small. Three points form a
facet iff one of their circumcaps is empty. If the total number of points is at least 4, the two caps
cannot be empty simultaneously, so 1facet[abc] = 1empty[Bg(abc)] + 1empty[Sm(abc)], in which the
indicators on the right-hand side of the equation sense if the caps are empty. If X has only 3 points,
we consider it to be a double cover with two facets, so the formula still make sense. Rewriting the
total edge length in terms of the circumcaps and taking the expectation, we get

E[L(Xn)] =
(
n
3

)
1
2
E[1empty[Sm(abc)] + 1empty[Bg(abc)]] L(abc).(40)
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Rewriting the expectation, we get

E[L(X)] = C

∫
a,b,c∈S2

(P[Sm(abc) empty] + P[Bg(abc) empty]) 1
2
L(abc) da db dc,(41)

in which X = Xn and C =
(
n
3

)
/(4π)3. Using the Slivnyak–Mecke formula, we get the same relation

for X = X% except that C = %3/3!. Call the Euclidean radius of the circle passing through a, b, c
the (common) radius of Sm(abc) and Bg(abc), and write P+(r) for the probability that one of the
two caps of radius r is empty. We apply the Blaschke–Petkantschin formula to get

E[L(X)] = C · 2π
∫ 1

t=0

t(1− t)−1/2

∫
u,v,w∈S1

P+(
√
t) 1

2
L(
√
t · uvw)2!A(uvw) du dv dw dt(42)

= C · 2π
∫ 1

t=0

t3/2(1− t)−1/2P+(
√
t) dt

∫
u,v,w∈S1

A(uvw)L(uvw) du du du,(43)

with C =
(
n
3

)
/(4π)3 in the uniform distribution case, and C = %3/3! in the Poisson point process

case. Explicitly,

P+(n, r) = (1+h
2

)n−3 + (1−h
2

)n−3,(44)

P+(%, r) = e−2π%(1+h) + e−2π%(1−h),(45)

in which h =
√

1− r2 so that 1− h and 1 + h are the heights of the two caps. Plugging them into
(43), we get the first integral on the right-hand side equal to JL(n) and to KL(%), respectively; see
Lemma 14. To compute the second integral, we fix u = (1, 0) and parametrize v, w with their angles
relative to u, which we denote α, β. The integral of the area times the length is thus 2π times the
double integral over the two angles:

2π

∫ 2π

α,β=0

A(α, β)L(α, β) dβ dα = 32π

∫ 2π

α,β=0

(
sin α

2
+ sin β

2
+ | sin γ

2
|
)

sin α
2

sin β
2
| sin γ

2
| dβ dα,(46)

in which we use L(α, β) = U + V + W and A(α, β) = 1
4
UVW , with edges of length U = 2 sin α

2
,

V = 2 sin β
2
, and W = 2| sin γ

2
|, where γ = α−β, to get the right-hand side. Using the Mathematica

software, we find that (46) evaluates to 512π
3

. Combining the values, we get

E[L(Xn)] =
(
n
3

)
512
3π
·B(n− 1

2
, 5

2
),(47)

E[L(X%)] = E[L(Xn)] · %3(4π)3

n(n−1)(n−2)
· KL(%)
JL(n)

.(48)

The asymptotic expansion claimed in (38) can now be obtained from (47) using Mathematica. The
relation claimed in (39) follows straightforwardly from (48). �

Remark. Like in Theorem 13, it is also easy to obtain (39) from (38) using the conditional repre-
sentation of the Poisson point process and Lemma 12.

6.2. Minimum Distance. We finally study how close a random collection of points approaches a
fixed point on the unit 2-sphere. Somewhat surprisingly, there is a connection to the volumes of
high-dimensional unit balls. To state the result, we write V(Bm) for the m-dimensional volume of
the unit ball in Rm.

Theorem 16 (Minimum Distance). Let n points be chosen uniformly and independently on the unit
sphere in R3. Then the expected minimum Euclidean distance from a fixed point on the sphere is
V(B2n+1)/V(B2n).

Proof. Let N ∈ S2 be the fixed point and consider the cap of points with Euclidean distance at
most r from N . Equivalently, the spherical radius of the cap is 2 arcsin r/2. Using Archimedes’
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Lemma, we get r2π for the area of this cap. The probability that none of the n points lie in this
cap is therefore

P[R ≥ r] =
(

4π−πr2
4π

)n
=
(

1− r2

4

)n
,(49)

in which R is the maximum Euclidean radius for the which the cap has no point in its interior. This
maximum radius is the minimum distance to N , whose expectation we compute using the formula

E[R] =

∫ ∞
r=0

P[R ≥ r] dr =

∫ 2

0

(
1− r2

4

)n
dr =

∫ 1

−1

V(B2n)

V(B2n)
(1− t2)n dt =

V(B2n+1)

V(B2n)
,(50)

in which we get the ratio on the right by observing that the 2n-dimensional volume of the slice of
B2n+1 at distance t from the center is V(B2n)(1− t2)n. �

We recall that the double factorial of an even positive integer is (2n)!! = 2nn! and that of an
odd positive integer is (2n + 1)!! = (2n + 1)!/(2n)!!. The volumes of the balls are V(B2n+1) =
2n+1πn/(2n+ 1)!! and V(B2n) = πn/n!. It follows that the ratio is

E[R] =
V(B2n+1)

V(B2n)
= 2(2n)!!

(2n+1)!!
∼

n→∞

√
π
n
,(51)

in which the final formula is obtained using Stirling’s Formula for factorials. We can repeat the
argument from Theorem 16 to get the expected minimum spherical distance from N , which we
denote Φ. The probability that this distance exceeds a threshold is P[Φ ≥ φ] = (1 − sin2 φ

2
)n =

cos2n φ
2
. The expected value of the minimum spherical distance is therefore

E[Φ] =

∫ π

φ=0

cos2n φ
2

dφ = 2

∫ π/2

φ=0

cos2n φ dφ = B(n+ 1
2
, 1

2
) =

π(2n)!

4n(n!)2
∼

n→∞

√
π
n
.(52)

Similarly, we can get the higher moments of the minimum distance. Returning to the Euclidean
distance, and writing s = r2/4, we get the density of the distribution of s from (49): it is the
negative of the derivative of (1− s)n, which is n(1− s)n−1. From this we get the k-th power of the
minimum distance as rk = 2ksk/2:

E[Rk] =

∫ 1

s=0

2ksk/2 n(1− s)n−1 ds = n2k B(n, k
2

+ 1) ∼
n→∞

√
2πkk

2knk .(53)

7. Deficiencies

Since the random inscribed polytopes approximate the unit 3-ball, we compare their measures
with that of the ball. Letting µ be a measure that applies to B3 and to inscribed polytopes alike,
we call

∆µ(Xn) = 1− µ(Xn)/µ(B3)(54)

the corresponding normalized deficiency. Besides the deficiency of a random inscribed polytope, we
consider the deficiency in the ideal regular case, for what we call the virtual model, Mn. Despite
the construction in [1], there are no regular simplicial polytopes inscribed in S2 other than for
n = 4, 6, 20 vertices. We therefore consider the regular spherical triangle of area an = 4π

2n−4
, tacitly

ignoring the fact that for most n, we cannot decompose the sphere into congruent copies of this
triangle. All three of its angles are equal, namely αn = (an + π)/3, by Girard’s Theorem. We are
interested in the corresponding Euclidean triangle.

Lemma 17 (Euclidean Triangle). Consider two Euclidean triangles that share their four vertices
with two adjacent regular spherical triangles of area 4π/(2n − 4) each. The length of an edge, the
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area of a triangle, the volume of the tetrahedron connecting the Euclidean triangle to the origin, and
the angle between the two normals are

Ln = 2
√

2π
4√3
·
√

1
n

+
√

2π(18−5
√

3π)

9 4√3
·
√

1
n3 +O

(√
1
n5

)
,(55)

An = 2π · 1
n

+ 36π−10
√

3π2

9
· 1
n2 +O( 1

n3 ),(56)

Vn = 2π
3
· 1
n

+ 4π−2
√

3π2

3
· 1
n2 +O( 1

n3 ),(57)

ϑn =
√

8π 4√3
3
·
√

1
n

+ 18
√

6π+5π
√

2π

27 4√3
·
√

1
n3 +O

(√
1
n5

)
.(58)

We omit the proof, which is straightforward but tedious. As mentioned before, a convex polytope all
of whose facets are regular triangles does not exist for most n. We nevertheless define the total edge
length, the area, and the volume of the virtual model as L(Mn) = (3n−6)Ln, A(Mn) = (2n−4)An,
and V(Mn) = (2n− 4)Vn. To get a similar definition of the mean width, we recall it is 1

2π
times the

mean curvature, and a convenient formula for the latter is the sum, over all edges, of half the length
times the angle between the outer normals of the two incident faces: W(Mn) = (3n − 6) 1

4π
Lnϑn.

We conjecture that the mean width, area, and volume of the virtual model are beyond the reach of
convex inscribed polytopes:

Conjecture 18 (Upper Bounds). Let Xn be the convex hull of n ≥ 4 points on the unit sphere in
R3. Then W(Xn) ≤W(Mn), A(Xn) ≤ A(Mn), and V(Xn) ≤ V(Mn).

Compare the inequalities in Conjecture 18 with [7, Section 9]. The total edge length permits no
such inequality.

It is of some interest to probe how close or far from the virtual model the random inscribed
polytopes are. To this end, we take a look at the ratio of deficiencies. We will see shortly that the
ratios of the mean width, the area, and the volume converge to 1.984 . . ., 1.984 . . ., and 2.205 . . .,
respectively. For the total edge length, we do not have deficiencies but we can compare the lengths
directly. We get the expected normalized mean width deficiency of a random inscribed polytope
from (13), compute the normalized mean width of the virtual model using (55), (58), and look at
the ratio to compare:

E[∆W(Xn)] = 1− E[W(Xn)]

W(B3)
= 1− n−1

n+1
= 2 · 1

n
+O

(
1
n2

)
,(59)

∆W(Mn) = 1− W(Mn)

W(B3)
= 5

√
3π

27
· 1
n

+O
(

1
n2

)
,(60)

E[∆W(Xn)]

∆W(Mn)
= 18

√
3

5π
+O

(
1
n

)
−→
n→∞

1.984 . . . .(61)

We repeat the comparison for the area, using (14) and (56) to compute the normalized deficiencies:

E[∆A(Xn)] = 1− E[A(Xn)]

A(B3)
= 1− (n−1)(n−2)

(n+1)(n+2)
= 6 · 1

n
+O

(
1
n2

)
,(62)

∆A(Mn) = 1− A(Mn)

A(B3)
= 5

√
3π

9
· 1
n

+O
(

1
n2

)
,(63)

E[∆A(Xn)]

∆A(Mn)
= 18

√
3

5π
+O

(
1
n

)
−→
n→∞

1.984 . . . .(64)



THE BEAUTY OF RANDOM POLYTOPES INSCRIBED IN THE 2-SPHERE 15

We repeat the comparison for the volume, using (16) and (57) to compute the normalized deficien-
cies:

E[∆V(Xn)] = 1− E[V(Xn)]

V(B3)
= 1− (n−1)(n−2)(n−3)

(n+1)(n+2)(n+3)
= 12 · 1

n
+O

(
1
n2

)
,(65)

∆V(Mn) = 1− V(Mn)

V(B3)
=
√

3π · 1
n

+O
(

1
n2

)
,(66)

E[∆V(Xn)]

∆V(Mn)
= 4

√
3

π
+O

(
1
n

)
−→
n→∞

2.205 . . . .(67)

We finally consider the total edge length. Since L(B3) is not defined, we are not able to compute
any deficiency. Nevertheless, we can compare the total edge length of a random inscribed polytope,
which we get from (38), with that of the model, which we compute with (55):

E[L(Xn)]√
n

= 64
3
√
π

+O
(

1
n

)
−→
n→∞

12.036 . . . ,(68)

L(Mn)√
n

= 6
√

2π
4√3

+O
(

1
n

)
−→
n→∞

11.427 . . . .(69)

The ratio converges to 1.053 . . .. The fact that the model has smaller total edge length than the
random inscribed polytope suggests a nearby local minimum. It can of course not be a global
minimum because there are inscribed polytopes with arbitrarily small total edge length for any
number of vertices.

8. Ellipsoid with Homeoid Density

In this section, we extend the expressions for the intrinsic volumes and total edge length from the
sphere to the ellipsoid. On the latter, we consider the homeoid density, which is the push-forward
of the uniform measure on S2 under the linear transform, T , that sends the sphere to the ellipsoid.
It can also be defined as the limit of the uniform measure in the layer between the ellipsoid and
its concentrically scaled copy; see [2, Section 9.2]. It follows from work of Newton and Ivory that

Figure 4. Five eighths of the solid ellipsoid, and the layer between its boundary and the boundary
of a scaled copy.

in a charged metal shell, electrons distribute according to this homeoid density. This is the only
distribution in which the electric field inside the shell vanishes and, in addition, the level sets of the
potential energy outside the shell are confocal ellipsoids.

We write E3 for the solid ellipsoid and ∂E3 for its boundary; that is: E3 = T (B3) and ∂E3 = T (S2).
Letting p ≥ q ≥ r be the half-lengths of its axes, we note that the volume of E3 is 4π

3
pqr. There is

no such simple expression for the area, but there are incomplete elliptic functions of the first and
second kind, E and F , such that

A(E3) = 2π

[
r2 + qr2√

p2−r2
F

(√
1− r2

p2
; p
q

√
q2−r2
p2−r2

)
+ q
√
p2 − r2E

(√
1− r2

p2
; p
q

√
q2−r2
p2−r2

)]
.(70)
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To get a formula for the mean width, we use a well known relation between E3 and its dual ellipsoid,
denoted D3, whose half-lengths are 1

p
, 1
q
, 1
r
, namely W(E3) = pqr

2π
·A(D3). We refer to [11, Prop. 4.8]

for a formulation of this relation and to [17] for an application in R3. We now generalize the theorems
from Sections 5 and 6 to state how the convex hull of a random inscribed polytope approximates
the intrinsic volumes of the ellipsoid.

Theorem 19 (Inscribed in Ellipsoid). Let n ≥ 4 points be chosen independently according to the
homeoid distribution on ∂E3 ⊆ R3, and let Yn be their convex hull. The intrinsic volumes satisfy

E[W(Yn)] = W(E3) · n−1
n+1

,(71)

E[A(Yn)] = A(E3) · n−1
n+1

n−2
n+2

,(72)

E[V(Yn)] = V(E3) · n−1
n+1

n−2
n+2

n−3
n+3

,(73)

and the expected total edge length is

E[L(Yn)] = W(E3) ·
[

32
3
√
π

√
n · (1 + o(1))

]
.(74)

Proof. We first prove the relations for the intrinsic volumes, (71), (72), and (73). For the volume,
the extension from S2 to ∂E3 is straightforward. Since linear transformations preserve volume ratios,
we have V(Yn)/V(E3) = V(Xn)/V(B3), in which we write Xn = T −1(Yn). The expectation of V(Yn)
is therefore V(E3) times the expectation of V(Xn)/V(B3). The image of the homeoid density under
T −1 is the uniform measure on S2. so we get (73) from (16).

For the area, we use Crofton’s formula from integral geometry, which says that A(Yn) is four
times the average area of the orthogonal projection of Yn onto a random plane. To state this more
formally, let G(2, 3) be the Grassmannian of 2-dimensional planes passing through the origin in
R3, noting that it is isomorphic to the 2-dimensional projective plane. Letting projP (Yn) be the
orthogonal projection of the polytope onto P ∈ G(2, 3), Crofton’s formula for the area is

A(Yn) = 4
2π

∫
P∈G(2,3)

A(projP (Yn)) dP.(75)

The area of projP (Yn) is really the measure of lines orthogonal to P that intersect Yn. Every such
line L ⊥ P corresponds to a line T −1(L) that intersects T −1(Yn). Similarly, every line L ⊥ P that
intersects E3 corresponds to a line T −1(L) that intersects B3. Hence,

A(projP (Yn))

A(projP (E3))
=

A(projQ(Xn))

A(projQ(B3))
,(76)

in which Xn = T −1(Yn) and Q is the plane normal to the lines T −1(L). Fixing P , E[A(projP (Yn))] is
therefore A(projP (E3))/π times E[A(projQ(Xn))]. The latter is independent of Q and by Crofton’s

formula equal to 1
4
E[A(Xn)]. Hence,

E[A(Yn)] = 4
2π

∫
P∈G(2,3)

E[A(projP (Yn))] dP(77)

= 4
2π2

∫
P∈G(2,3)

A(projP (E3)) · E[A(projQ(Xn))] dP(78)

=

[
4

2π

∫
P∈G(2,3)

A(projP (E3)) dP

]
· 1

4π
E[A(Xn)].(79)

By Crofton’s formula, the first factor in (79) is A(E3), and by (14), the second factor is n−1
n+1

n−2
n+2

,
which implies the claimed formula for area. The proof for the mean width is similar and thus
omitted.

We second prove the relation for the total edge length, (74). To that end, we show that for any
vector x ∈ S2, the length of T (x) is half the length of the projection of E3 onto the line defined by
x. This implies that the average length of T (x) — with x chosen uniformly at random on S2 —
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is half the mean width of E3. The directions of the edges of Xn = T −1(Yn) are indeed uniformly
distributed. Therefore, the expected total edge length of Yn is 1

2
W(E3) times the expected total edge

length of Xn, and we get (74) from (38). To show the relation between T (x) and the projection
of E3, we assume that the axes of E3 are aligned with the coordinate axes of R3. Equivalently,
the linear map that maps B3 to E3 is represented by the diagonal matrix with entries p, q, r along
its diagonal. The dual ellipsoid, D3, is obtained by applying the inverse matrix. Equivalently,
the points of ∂D3 satisfy p2y2

1 + q2y2
2 + r2y2

3 = 1. Let x = (x1, x2, x3) be a unit vector, and set
y = (y1, y2, y3) with yi = xi/(p

2x2
1 + q2x2

2 + r2x2
3)1/2, for i = 1, 2, 3. By construction, y belongs to

∂D3, it is parallel to x, and its length is

‖y‖ =
√
y2

1 + y2
2 + y2

3 = 1√
p2x21+q2x22+r2x23

=
1

‖T (x)‖
.(80)

Since D3 is dual to E3, this length is one over the half-length of the orthogonal projection of E3 on
the line defined by x, as required. �

The same arguments work for polytopes generated by a Poisson point process, thus generalizing
Theorems 13 and 15 to the case of an ellipsoid with homeoid density.

9. Discussion

By focusing on random polytopes that are inscribed in the unit sphere in R3, we find surpris-
ingly elementary proofs for a number of their stochastic properties. As an example, we mention
that combinatorial arguments together with Archimedes’ Lemma and Crofton’s Formula suffice to
compute the expected mean width, area, and volume as functions of the number of vertices. We
mention a number of open questions:

1. While there exist several proofs, we ask whether there is an elementary explanation for
Lemma 5, namely that the shape and the size of a random inscribed simplex are independent?

2. Are there intuitive geometric reasons for the strikingly simple formulas for the intrinsic vol-
umes highlighted in the Introduction? Can we generalize the formulas to higher dimensions
without losing their appeal?

3. What is the meaning of the constant in the expression for the total edge length of a random
Poisson polytope? What is the meaning of the modified Bessel functions appearing in the
expressions? Can we get a simpler expression for the total edge length in the uniform case?

4. Investigate the surprisingly tight correlation between the intrinsic volumes of the random
inscribed polytopes illustrated in Figure 2.

5. Can we say something about the distributions of the normalized intrinsic volume deficiencies?
The distributions shown in Figure 1 seem to be asymmetric, growing slower than they decay.

6. Prove Conjecture 18 about the extremal properties of the virtual model. Is there a natural
optimization criterion based on the total edge length that favors inscribed polytopes whose
vertices are well spread and whose total edge length is on the order of

√
n?

7. What is the distribution of vertices of Xn that have degree k? Asymptotic formulas but no
closed-form expressions for Delaunay mosaics in R2 can be found in [5, 8]. Are their results
also valid for polytopes inscribed in S2?
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[10] Z. Kabluchko, C. Thäle, and D. Zaporozhets. Beta polytopes and Poisson polyhedra: f -vectors and angles. Adv.

Math., 374:107333, 2020. URL: https://doi.org/10.1016/j.aim.2020.107333, doi:10.1016/j.aim.2020.
107333.

[11] Z. Kabluchko and D. Zaporozhets. Intrinsic volumes of Sobolev balls with applications to Brownian convex hulls.
Trans. Amer. Math. Soc., 368(12):8873–8899, 2016. doi:10.1090/tran/6628.

[12] E. E. Kummer. De integralibus quibusdam definitis et seriebus infinitis. J. Reine Angew. Math., 17:228–242,
1837. doi:10.1515/crll.1837.17.228.

[13] R. E. Miles. On the homogeneous planar Poisson point process. Math. Biosci., 6:85–127, 1970. doi:10.1016/
0025-5564(70)90061-1.

[14] J. Müller. Approximation of a ball by random polytopes. J. Approx. Theory, 63(2):198–209, 1990. doi:10.1016/
0021-9045(90)90103-W.

[15] A. Nikitenko. Integrating by spheres: summary of Blaschke–Petkantschin formulas. arXiv:1904.10750, 2019.
[16] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST Handbook of Mathematical Functions.

Cambridge University Press, Cambridge, England, 2010.
[17] F. Petrov and A. Tarasov. Uniqueness of a three-dimensional ellipsoid with given intrinsic volumes. Arnold

Mathematical Journal, apr 2020. URL: https://doi.org/10.1007/s40598-020-00137-9, doi:10.1007/

s40598-020-00137-9.
[18] H. Ruben and R. E. Miles. A canonical decomposition of the probability measure of sets of isotropic ran-

dom points in Rn. J. Multivariate Anal., 10(1):1–18, 1980. URL: https://doi.org/10.1016/0047-259X(80)
90077-9, doi:10.1016/0047-259X(80)90077-9.

[19] R. Schneider and W. Weil. Stochastic and Integral Geometry. Springer, Berlin, Germany, 2008.
[20] D. Temesvari. Discrete Stochastic Geometry: Beta-polytopes, Random Cones and Empty Simplices. PhD thesis,

Ruhr University Bochum, Germany, 2019.
[21] J. G. Wendel. A problem in geometric probability. Math. Scand., 11:109–111, 1962. doi:10.7146/math.scand.

a-10655.

Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg,
Austria

E-mail address: akopjan@gmail.com, edels@ist.ac.at, anton.nikitenko@ist.ac.at

http://pub.ist.ac.at/~edels/hexasphere/
http://dx.doi.org/10.2307/3213693
http://dx.doi.org/10.2307/3213693
http://dx.doi.org/10.1007/BF01455988
http://dx.doi.org/10.1239/aap/1067436323
http://dx.doi.org/10.1214/18-AAP1389
http://dx.doi.org/10.1088/1742-5468/2005/09/P09005
https://doi.org/10.1002/mana.201700255
http://dx.doi.org/10.1002/mana.201700255
http://dx.doi.org/10.1002/mana.201700255
https://doi.org/10.1016/j.aim.2020.107333
http://dx.doi.org/10.1016/j.aim.2020.107333
http://dx.doi.org/10.1016/j.aim.2020.107333
http://dx.doi.org/10.1090/tran/6628
http://dx.doi.org/10.1515/crll.1837.17.228
http://dx.doi.org/10.1016/0025-5564(70)90061-1
http://dx.doi.org/10.1016/0025-5564(70)90061-1
http://dx.doi.org/10.1016/0021-9045(90)90103-W
http://dx.doi.org/10.1016/0021-9045(90)90103-W
https://doi.org/10.1007/s40598-020-00137-9
http://dx.doi.org/10.1007/s40598-020-00137-9
http://dx.doi.org/10.1007/s40598-020-00137-9
https://doi.org/10.1016/0047-259X(80)90077-9
https://doi.org/10.1016/0047-259X(80)90077-9
http://dx.doi.org/10.1016/0047-259X(80)90077-9
http://dx.doi.org/10.7146/math.scand.a-10655
http://dx.doi.org/10.7146/math.scand.a-10655

	1. Introduction
	Outline

	2. Experiments and Motivation
	3. Archimedes' Lemma and Implications
	4. Shape and Size
	4.1. Shape vs. Size
	4.2. Random Triangles
	4.3. Measure of Facets

	5. Intrinsic Volumes
	5.1. Uniform Distribution
	Remark
	5.2. Centrally Symmetric Polytopes
	5.3. Poisson Point Process
	Remark

	6. Length and Distance
	6.1. Total Edge Length
	Remark
	6.2. Minimum Distance

	7. Deficiencies
	8. Ellipsoid with Homeoid Density
	9. Discussion
	Acknowledgements

	References

