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Abstract
The approximation of a circle with the edges of a fine square grid distorts the perimeter
by a factor about 4

π
. We prove that this factor is the same on average (in the ergodic

sense) for approximations of any rectifiable curve by the edges of any non-exotic
Delaunay mosaic (known as Voronoi path), and extend the results to all dimensions,
generalizing Voronoi paths to Voronoi scapes.
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1 Introduction

Given a locally finite set A ⊆ R
d and a line segment, the Voronoi path of the line

segment is the dual of the Voronoi tessellation of A intersected with the segment.
In other words, it consists of all Delaunay edges dual to Voronoi cells of dimension
d − 1 crossed by the line segment. We generalize it to the Voronoi scape of A and a
p-dimensional set � ⊆ R

d , which is a multiset of the cells in the Delaunay mosaic
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Table 1 The average, resp. expected distortion in small dimensions. Note that even rows and columns form
the Pascal triangle
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of A. In the generic case, when � intersects a Voronoi (d − p)-cell in a finite number
of points, μ, the Voronoi scape contains the corresponding Delaunay p-cell μ times.
We are interested in the distortion, which is the ratio of the p-dimensional volume of
the Voronoi scape over the p-dimensional volume of �.

Considering the Voronoi tessellation of a stationary Poisson point process and a line
segment in R

2, Baccelli et al. [2] proves that the expected distortion is 4
π
. Extending

this work to d > 2 dimensions, de Castro et al. [4] proves that the expected distortion
is

√
2d/π + O(1/

√
d). We remove the ambiguity in this answer by proving that the

expected distortion in Rd is d!!/(d − 1)!!, if d is odd, and 2
π
d!!/(d − 1)!!, if d is even,

in which !! is the double factorial. Furthermore, we generalize the result from the line
segment to rectifiable p-dimensional sets and prove that the expected distortion is the
binomial coefficient

(d/2
p/2

)
, in which non-integer parameters are understood in the way

the Gamma function extends the factorial:

Dp,d =
(
d/2

p/2

)
= �( d2 + 1)

�(
p
2 + 1) �(

d−p
2 + 1)

=
⎧
⎨

⎩

d!!
p!! (d−p)!!

2
π
if d is even and p is odd,

d!!
p!! (d−p)!! otherwise.

(1)

The binomial interpretation also provides the asymptotics for Dp,d ; for the values in
small dimensions see Table 1. More precisely, we prove that (1) is the average dis-
tortion for sufficiently regular p-dimensional sets and Voronoi tessellations, in which
the average is taken over all rigid motions of the set. The claim for stationary Poisson
point processes follows because they are invariant under rotations and translations.
The proof is based on a decomposition of Rd × Gr p,d related to the mixed complex
introduced in [5]. As a byproduct, we get an expression for the volumes of the cells
in the mixed complex; see Corollary 5.1.
Outline. Section2 prepares the proof of our main result by computing the first and
second moments of the p-dimensional volume of the projection of a unit p-cube in
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R
d . Section3 studies the space of point-direction pairs. Section4 introduces a mild

regularity condition for Voronoi tessellations. Section5 computes the volume of the
cells in the mixed complex. Section6 proves that Dp,d is the average distortion for
p-dimensional shapes in R

d , and the expected distortion if the tessellation is of a
stationary Poisson point process. Section7 concludes the paper.

2 Random Projections

We need some preliminary computations. Let Gr p,d be the (linear) Grassmannian
manifold, whose points are the p-planes that pass through the origin in R

d . Given a
p-dimensional unit cube, E ⊆ R

d , and a p-plane, L ∈ Gr p,d , we write E |L for the
projection of the cube onto the plane, and ‖E |L‖p for its p-dimensional volume. The
j-th projection moment is the average j th power of the volume of the projection. We
express this moment as an integral over the Grassmannian equipped with the uniform
probability measure in (2) and convert it to two equivalent expressions involving the
angle to a fixed plane in (3) and (4):

m( j)
p,d =

∫

L∈Gr p,d
‖E |L‖ j

p dL (2)

=
∫

L∈Gr p,d
cos j ϕ(L, L0) dL (3)

=
∫

F∈St p,d
‖F |L0‖ j

p dF . (4)

To explain (3) and (4), we fix the plane L0 ∈ Gr p,d containing E . The angle between
two p-planes, ϕ(L, L0) ∈ [0, π

2 ], is defined as the arc-cosine of the ratio of ‖B|L‖p
over ‖B‖p for any compact set with non-empty interior, B ⊆ L0. The angle is sym-
metric, so we can instead consider the integrand in (3) as the projection of a unit
p-cube in a random p-plane onto L0. Formally, we write St p,d for the Stiefel manifold
of orthonormal p-frames inRd , we identify a frame with the unit p-cube it spans, and
we integrate using the uniform probability measure of St p,d to arrive at (4).

By construction, the 0th projection moment is equal to 1, independent of p and d.
We compute the 1-st and 2-nd projectionmoments, which curiously both have intuitive
geometric interpretations.

Lemma 2.1 (Projection moments) Let d ≥ 0 and 0 ≤ p ≤ d. Then

m(1)
p,d = �(

p+1
2 ) �(

d−p+1
2 )

�( 12 ) �( d+1
2 )

, (5)

m(2)
p,d = 1/

(
d

p

)
= p! (d − p)!

d! . (6)

Proof The 1-st projection moment appears in the classic Crofton formula of integral
geometry, which says that the volume of a convex body is proportional to the average
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volume of its orthogonal projections. The constant of proportionality given in (5) can
be found in [8, Formula (5.8)].

We use (4) together with a generalization of the Pythagorean theorem to compute
the 2-nd moment. By Pythagoras, the squared length of a line segment is the sum of
squared lengths of its projections onto the coordinate axes. The Cauchy–Binet formula
[3, §4.6] can be used to generalize this to the squared volume of a p-dimensional
parallelepiped in R

d . Let P be such a parallelepiped, and write Pi for its projection
onto the i th coordinate p-plane (in which the numbering is arbitrary). There are

(d
p

)

coordinate p-planes, and the Cauchy–Binet formula asserts

‖P‖2p =
∑(dp)

i=1
‖Pi‖2p. (7)

Letting P = F ∈ St p,d be the uniformly random unit p-cube, we can take the
expectation on both sides of (7). We get 1 on the left-hand side and the sum of

(d
p

)

identical terms on the right-hand side. Hence, the average squared p-dimensional
volume of the projection is 1/

(d
p

)
, as claimed. �	

We set Dp,d = m(1)
p,d/m

(2)
p,d and leave it to the reader to verify that this agrees with

(1), where Dp,d is given in terms of Gamma functions as well as double factorials.

3 Tiling the Space of Point-Directions

We use the Delaunay mosaic to tile the space of point-direction pairs, Rd × Gr p,d .
Given a Delaunay mosaic of a set A ⊆ R

d , denoted Del(A), consider a p-dimensional
cell, γ ∈ Del(A), and its dual (d − p)-dimensional Voronoi cell, γ ∗ ∈ Vor(A). We
define the p-tile of γ to consist of all pairs (x, L) ∈ R

d × Gr p,d such that L + x has
a non-empty intersection with γ ∗, and x lies in the projection of γ onto L + x :

J (γ, γ ∗) = {(x, L) ∈ R
d × Grp,d | x ∈ γ |L+x and (L + x) ∩ γ ∗ �= ∅}. (8)

The tiles decompose the spaceRd ×Gr p,d in the sense that they cover the space while
their interiors are pairwise disjoint. Since the detailed analysis of the boundaries is
irrelevant for the current work, we only prove a weaker statement.

Lemma 3.1 (Uniqueness of Tile) Let A ⊆ R
d be locally finite with convA = R

d , and
let 0 ≤ p ≤ d. Then for almost every point-direction pair, (x, L) ∈ R

d ×Gr p,d , there
exists a unique p-tile, J (γ, γ ∗), that contains (x, L).

Proof Take any point-direction pair, (x, L). Assume without loss of generality that
x = 0 is the origin and L = R

p is a coordinate p-plane in R
d . Map each point

a ∈ A to the point a′ = a|L ∈ R
p, and let a′′ = −‖a − a′‖2 ∈ R be its weight.

The weighted points define a weighted Voronoi tessellation and the corresponding
weightedDelaunaymosaic; see e.g. [1]. Themosaic is generically a simplicial complex
and generally a polyhedral complex, which is geometrically realized inRp by drawing
each cell, γ , as the convex hull of the points that generate the p-dimensional Voronoi
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cells sharing γ ∗. Consider the cells in Vor(A) that have a non-empty intersection with
L , write VL(A) for the collection of dual cells in Del(A), and observe that VL(A) is
the Voronoi scape of L .

As proved in [9], the weighted Voronoi tessellation is the intersection of L with
Vor(A) and, by duality, the weighted Delaunay mosaic is the orthogonal projection
of VL(A) to L . If L and Del(A) are in general position, then all Delaunay cells in
VL(A) project injectively to L , and the cells of dimension less than p form a set of
zero measure. If Del(A) covers Rd , then the weighted Delaunay mosaic covers Rp.
Hence, for almost all point-direction pairs, (x, L), there is a unique Delaunay p-cell
γ , such that (x, L) ∈ J (γ, γ ∗), as claimed. �	

The proof of the lemma gives some insight into the motivation for choosing this
particular tiling of the space of point-direction pairs. We now compute the measure of
a tile.

Lemma 3.2 (VolumeofTile) Themeasureof J=J (γ, γ ∗) is‖J‖=‖γ ‖p ‖γ ∗‖d−p/
(d
p

)
.

Proof The measure of the tile is the integral of 1 over its pairs. Setting x = y + z, in
which y ∈ L and z ∈ L⊥, the integral is

‖J‖ =
∫

L∈Gr p,d

∫

y∈L
1y∈γ |L

∫

z∈L⊥
1(L+z)∩γ ∗ �=∅ dz dy dL (9)

= ‖γ ‖p ‖γ ∗‖d−p

∫

L∈Gr p,d
cos2 ϕ(L, γ ) dL, (10)

where we get (10) by noticing that the innermost integral in (9) is the (d − p)-
dimensional volume of the projection of γ ∗ to L⊥, which is ‖γ ∗‖d−p cosϕ(L⊥, γ ∗) =
‖γ ∗‖d−p cosϕ(L, γ ), and the middle integral is the p-dimensional volume of the
projection of γ to L , which is ‖γ ‖p cosϕ(L, γ ). Using (3), we see that the integral in

(10) ism(2)
p,d , and using (6), we get the claimed equation. �	

We take a closer look at the projection of a tile toRd . Let (x, L) be a point-direction
pair in J = J (γ, γ ∗) with dim γ = p. There are points u ∈ γ and v ∈ γ ∗ such that
x = u|L+x and v = (L+x)∩γ ∗. Because of the right angle between the direction and
the projection, we have ‖x − u‖2 + ‖x − v‖2 = ‖u − v‖2, so x lies on the smallest
sphere that passes through u and v. Indeed, u and v define a (d − 1)-dimensional set
of point-direction pairs, and the points of these pairs all lie on the mentioned sphere.

Let z1 = aff γ ∩ aff γ ∗ and observe that the sphere defined by u and v also passes
through z1. Let R0 be the maximum distance between a point of γ and a point of γ ∗,
and note that R0 is the radius of every largest sphere that passes through the vertices
of γ and does not enclose any of the points in A; see Fig. 1. A sphere with the latter
property is commonly called an empty sphere of A. Since the diameter of the sphere
spanned by u and v is ‖u − v‖ ≤ R0, it follows that the ball with center z1 and radius
R0 contains this sphere and thus the projection of J = J (γ, γ ∗) to R

d ; see again
Fig. 1. Hence, the volume of the projection of J is at most Rd

0 times the volume of the
unit ball in Rd . Since we assume the uniform probability measure onGr p,d , the same
upper bound holds for the measure of J itself.
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γ*

z1

z1

z2

γγ

z2
γ*

Fig. 1 On the left, the (pink) projection of the tile defined by a Delaunay edge, γ , and its dual Voronoi edge,
γ ∗, has the topology of a disk, while on the right, its projection has the topology of a pinched annulus. In
both cases, it is contained in the disk with radius R0 centered at z1, and this disk and therefore also the
projection of the tile is contained in the disk with radius 2R0 centered at z2

Aweaker bound on thismeasure implied by a different ball will bemore convenient.
Consider therefore the largest empty sphere that passes through the vertices of γ . Its
radius is R0 and its center, z2, lies on γ ∗. Hence ‖z2 − z1‖ ≤ R0, which implies that
the ball with center z2 and radius 2R0 contains the ball with center z1 and radius R0
and therefore also the projection of J to R

d ; see again Fig. 1. We state the result for
later reference.

Lemma 3.3 (Projection of Tile) Let z2 and R0 be the center and radius of the largest
empty sphere that passes through the vertices of γ ∈ Del(A). Then the ball with center
z2 and radius 2R0 contains the projection of J = J (γ, γ ∗) to Rd .

4 Mixed Regularity

Taking the union of progressively more tiles, we eventually cover all of Rd × Gr p,d .
However, at each step during this construction, some of the points miss some of the
directions, and which directions are covered depends on the mosaic. In what follows,
we require a mild regularity condition for this tiling. For a set � ⊆ R

d , we call a tile
a boundary tile of � if its projection to R

d contains at least one point inside and at
least one point outside �.

Definition 4.1 (Mixed Regularity) Let A ⊆ R
d be locally finite. We say that A has

the property ofmixed regularity if, for any p, the total measure of the boundary p-tiles
of a d-ball of radius R centered at the origin is o(Rd).

Note that convA = R
d is necessary for A to have the mixed regularity property.

Indeed, if convA does not cover Rd , then there exists an unbounded Voronoi cell and
thus a tile with infinite measure. Motivated by the analysis in Sect. 3, we give some
sufficient conditions for a set A ⊆ R

d to have the mixed regularity property:

Lemma 4.2 (Sufficient conditions)A locally finite set A ⊆ R
d has themixed regularity

property if one of the following holds:

1. the radii of all circumspheres of top-dimensional Delaunay cells are bounded;
2. each ball in R

d of radius greater than some finite R0 contains a point of A;
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3. there is a function g(R) = o(R) such that every ball of radius g(R) that intersects
the d-ball of radius R centered at the origin contains at least one point of A.

Conditions 1 and 2 are equivalent, while Condition 3 is weaker. We finish this
section with an application to Poisson point processes:

Lemma 4.3 (Mixed Regularity in Expectation) A stationary Poisson point process,
A ⊆ R

d , has the mixed regularity property in expectation; that is: the total expected
measure of the boundary tiles of a d-ball with radius R centered at the origin is o(Rd).

Proof Let B(R) be the ball with radius R centered at the origin, and let J = J (γ, γ ∗)
be a boundary tile. Its Delaunay cell, γ , is almost surely a simplex. Consider the top-
dimensional cell that contains γ as a face and whose circumsphere is the largest empty
sphere that passes through the vertices of γ . Letting z2 and R0 be the center and radius
of this sphere, Lemma 3.3 implies that the concentric ball with twice the radius, 2R0,
contains the projection of J to Rd and thus intersects the boundary of B(R). [6, App.
A] studies the total number of such balls (albeit without doubling the radius), and it
is straightforward to modify the proof to take the volume and doubling of the radius
into account. With that, we get that the expected total volume of such balls containing
the boundary tiles is o(Rd). This implies the same upper bound for the expected total
measure of the boundary tiles. �	

5 Mixed Cells

Call ‖γ ‖p ‖γ ∗‖d−p themixed cell volume of a p-cell γ ∈ Del(A) and its dual (d− p)-
cell γ ∗ ∈ Vor(A). This concept relates to a particular decomposition of Rd , as we
now explain. Given A ⊆ R

d , the d-dimensional cells of the mixed complex defined
in [5] are translates of the products 1

2γ × 1
2γ

∗. We refer to 1
2γ × 1

2γ
∗ as a mixed cell

and note that its volume is ‖ 1
2γ × 1

2γ
∗‖d = ‖γ ‖p ‖γ ∗‖d−p/2

d . As proved in [5], the
mixed cells have pairwise disjoint interiors and they cover Rd . Assuming the mixed
regularity property, this implies that, up to a lower order term, the cells for p = 0 cover
a fraction of 1/2d of B(R). By symmetry, this is also true for p = d. We continue
with a generalization of these bounds to dimension p between 0 and d.

Corollary 5.1 (Mixed Cell Volumes) Let A ⊆ R
d have the mixed regularity property.

For any 0 ≤ p ≤ d, the sum of the mixed cell volumes, over all p-cells of Del(A)

contained in a ball of radius R, is
(d
p

)
Rdνd + o(Rd), in which νd is the volume of the

unit ball in Rd .

Proof Recall that B(R) is the ball with radius R centered at the origin. Set Bp(R) =
B(R) × Gr p,d , let Mp(R) be the smallest union of p-tiles that contains Bp(R), and
let ∂Mp(R) be the union of boundary tiles of B(R). Clearly,

Mp(R) \ ∂Mp(R) ⊆ Bp(R) ⊆ Mp(R). (11)

If a tile, J = J (γ, γ ∗), contains a point inside the ball, then either γ is inside the
ball, or J is a boundary tile. Indeed, for every point x ∈ γ \ B(R), there is a direction
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L , such that L + x intersects γ ∗, hence (x, L) ∈ J (γ, γ ∗). In other words, if γ is
not contained in B(R), then neither is the projection of J to R

d . By Lemma 3.2,
the measure of this tile is ‖γ ‖p‖γ ∗‖d−p/

(d
p

)
and, by the mixed regularity property,

the measures of the tiles corresponding to Delaunay cells inside the ball sum up to
‖B(R)‖d(1 + o(1)). Multiplying by

(d
p

)
completes the proof. �	

6 Average and Expected Distortion

For a locally finite A ⊆ R, a generically placed p-dimensional set � ⊆ R
d intersects

only (d − p)-dimensional Voronoi cells of A, and any such intersection has a finite
multiplicity. In this case, the Voronoi scape of� and A, denoted V�(A), is the multiset
of Delaunay p-cells, in which every γ ∈ Del(A) appears as many times, as � inter-
sects its dual γ ∗. For completeness we mention that for a non-generically placed A,
the multiplicity can be defined as the (potentially infinite) Euler characteristic of the
intersection, and the Voronoi scape can contain Delaunay cells of dimensions different
from p. For our analysis these zero-measure set of placements are however irrelevant.
We are ready to prove the main result of the paper.

Theorem 6.1 (Average Volume) Let A ⊆ R
d have the mixed regularity property, and

let � be a p-dimensional rectifiable set in R
d . The average p-dimensional volume

of V�(A), averaged over all congruent copies of � inside the d-ball with radius R
centered at the origin, is ‖�‖p(Dp,d + o(1)) as R goes to infinity.

Proof We start with the Crofton formula [8, Formula (5.7)], which states that the p-
dimensional volume of � is a constant times the integral of crossings between � and
a (d − p)-plane, and this constant is the 1-st projection moment:

∫

Q∈Grd−p,d

∫

y∈Q⊥
χ((Q + y) ∩ �) dy dQ = m(1)

p,d‖�‖p. (12)

Here χ((Q + y) ∩ �) is the multiplicity of the intersection between Q + y and �,
which is almost always finite; see [7, 3.16] for the general statement that applies to
rectifiable sets. Next consider a bounded convex polyhedron, P , whose dimension
is d − p. Applying a rigid motion (a rotation composed with a translation), we get
a congruent copy, P ′ ∼= P . We represent P ′ as a polyhedron P ′′ in Q ∈ Grd−p,d

and a shift y ∈ Q⊥. For any fixed p-plane Q + y and any fixed point inside it, the
total measure of the congruent copies of P inside Q + y that contain this fixed point
is ‖P‖d−p. We can thus compute the total measure of intersection points over all
congruent copies of P as

∫

P ′∼=P
χ(P ′ ∩ �) dP ′ =

∫

Q∈Grd−p,d

∫

y∈Q⊥

∫

P∼=P ′′⊆Q
χ((P ′′ + y) ∩ �) dP ′′ dy dQ

(13)

=
∫

Q∈Grd−p,d

∫

y∈Q⊥
‖P‖d−pχ((Q + y) ∩ �) dy dQ (14)
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= ‖P‖d−p‖�‖pm
(1)
p,d . (15)

Taking P = γ ∗ and moving� instead of the polyhedron, we see that the total measure
of intersection points of congruent copies of � with γ ∗ is ‖γ ∗‖d−p‖�‖pm

(1)
p,d .

A p-cell γ ∈ Del(A) belongs to the Voronoi scape of a congruent copy �′ of �

precisely χ(�′ ∩γ ∗) times, and we just computed this quantity. The total contribution
of γ to the p-dimensional volume of the Voronoi scapes of the congruent copies of
� is therefore ‖γ ‖p‖γ ∗‖d−p‖�‖pm

(1)
p,d . We get the final result by dividing the total

contribution of the p-cells in Del(A) inside B(R) by the total measure of the congruent
copies inside the ball:

∑
γ ‖γ ‖p‖γ ∗‖d−p‖�‖pm

(1)
p,d

‖B(R)‖d(1 + o(1))
=

(d
p

)‖B(R)‖d(1 + o(1))‖�‖pm
(1)
p,d

‖B(R)‖d(1 + o(1))
(16)

= ‖�‖p(Dp,d + o(1)), (17)

in which we use Corollary 5.1 to get the right-hand side of (16), and (6) to get (17).
�	

We finish by stating the answer to the original question that motivated the work
reported in this paper. We showed in Sect. 4 that the stationary Poisson point process
has the mixed regularity property in expectation, which allows us to repeat all results
while adding the expectation to all quantities.By the isometry invariance of the process,
for any set �, the expected volume of V�(A) does not depend on the position of �.
Exchanging the expectation and the average inside the ball of radius R centered at the
origin and letting R go to infinity, we arrive at probabilistic versions of Theorem 6.1:

Theorem 6.2 (Expected Volume) Let A ⊆ R
d be a stationary Poisson point process

with intensity ρ > 0, and let � be a compact rectifyable p-manifold in R
d . Then the

expected p-dimensional volume of the Voronoi scape of � and A is Dp,d‖�‖p.

Note that the expected volume of the Voronoi scape does not depend on the intensity
of the Poisson point process. On the other hand, the variance does, but this is beyond
the scope of this paper.

7 Discussion

The main contribution of this paper is a complete analysis of the average and expected
distortion of p-dimensional Voronoi scapes in R

d , for 0 ≤ p ≤ d. For p = 1, these
scapes are known as Voronoi paths, for which the expected distortion has been studied
but was known only in R

2; see [2]. A useful insight from our analysis is that the
expected distortion for a stationary Poisson point process is the average distortion for
a general locally finite point set. We make crucial use of this insight in the proof of our
results. Can these results be extended to other measures, such as notions of curvature,
for example? The proof of Theorem 6.1 suggests that this extension would require a
detailed analysis of the Crofton formula. Insights in this direction could be helpful in
using the Voronoi scape to measure otherwise difficult to measure shapes.
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In our analysis, the properties that make a mosaic a Delaunay mosaic are not used
other than in the quantification of the mixed regularity property for locally finite sets.
Indeed, we only need a pair of dual complexes in which dual cells are orthogonal to
each other, a property that holds also for the generalizations of Voronoi tessellations
and Delaunay mosaics to points with real weights; see e.g. [1].
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