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Abstract1

This note proves that only a linear number of holes in a Čech complex of n points in Rd can persist2

over an interval of constant length. The proof uses a packing argument supported by relating the3

Čech complexes with corresponding snap complexes over the cells in a partition of space. The bound4

also applies to Alpha complexes and Vietoris–Rips complexes.5
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1 Introduction6

What is the maximum number of holes created by n possibly overlapping closed unit balls in7

a Euclidean space, and how big can they be? To move toward a more precise formulation of8

this question, let p < d be two positive integers, and consider the asymptotic behavior of9

Mp,d(n) = max
{
βp

(⋃
x∈A

B(x, 1)
)

|A ⊆ Rd, cardA = n
}

(1)10

as n → ∞. Here, B(x, 1) is the closed ball of radius 1 centered at x, and βp of the union of11

such balls is the p-th Betti number of this space. The Čech complex of A for radius r, denoted12

by Čr = Čr(A), is the simplicial complex whose vertices are the points in A, and whose13

simplices are the subsets of points such that the closed balls of radius r centered at these14

points have a non-empty common intersection. By the Nerve Theorem, the Čech complex for15

radius r = 1 has the homotopy type of the union of the unit balls in (1). Therefore, Mp,d(n)16

is also the maximum p-th Betti number of Č1, for any set of n points in Rd.17

Recently, Edelsbrunner and Pach [4] proved that Mp,d(n) = Θ(nmin{p+1,⌈d/2⌉}). For18

example, M1,2(n) grows linearly in n, but M1,3(n) and M2,3(n) grow quadratically in n. The19

upper bound is easily derived from the Upper Bound Theorem for convex polytopes, see e.g.20

[9], and their main contribution is the actual construction that proves that this upper bound21

is asymptotically tight. However, most holes in their construction appear to be small: they22

vanish when the balls are slightly enlarged. In the language of persistent homology, they23

have short lifetimes. This motivates us to fix ε > 0 and to look at24

Mp,d,ε(n) = max{βp(Č1, Č1+ε) | A ⊆ Rd, cardA = n}, (2)25

where βp(Č1, Č1+ε) is the p-th persistent Betti number of the inclusion of Č1 in Č1+ε. In26

other words, this is the number of p-dimensional holes in Č1 that are still holes in Č1+ε.27
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XX:2 Persistent Homology Classes of the Čech Complex

When we fix the parameter ε > 0, most of the holes in Edelsbrunner and Pach’s construction28

are no longer counted since they do not persist even to radius 1 + ε, so it is not surprising29

that the asymptotic behavior of Mp,d,ε(n) is different from that of Mp,d(n), and we show30

that Mp,d,ε(n) grows only linearly in n, for every fixed p and d. In words, the number of31

holes that cover a fixed interval of positive length in the Čech filtration is at most some32

constant times the number of points.33

The Čech complex has the same homotopy type as the Alpha complex for the same points34

and the same radius [3, Section III.4], which is a subcomplex of the Delaunay mosaic of the35

points [2]. Hence, Mp,d(n) is also the maximum p-th Betti number of the Alpha complex of n36

points in Rd, and Mp,d,ε(n) is also the maximum p-th persistent Betti number of the Alpha37

complex for unit radius included in that of radius 1 + ε. Less obviously, our linear upper38

bound for Mp,d,ε(n) extends to the inclusion of Vietoris–Rips complexes for unit radius in39

that of radius 1 + ε. While we do not know of a direct connection, every step in our proof40

of the bound for Čech complexes extends to Vietoris–Rips complexes. The resulting linear41

upper bound for the persistent Betti numbers should be compared to the bounds of Goff [5]42

on the (non-persistent) Betti numbers of Vietoris–Rips complexes. For p = 1, he shows a43

linear upper bound in all dimensions, which is stronger than our linear upper bound for the44

persistent Betti numbers. However, for p > 1, his bound is only o(np), which is much higher45

than our linear upper bound for the persistent Betti numbers.46

The outline of this paper is as follows. Section 2 proves technical lemmas about how47

cycles are maintained if we glue vertices in a simplicial complex. Section 3 introduces the48

snap complex of a Čech complex and relates its Betti numbers to the persistent Betti numbers49

of the Čech complex. Section 4 combines these preparations to prove the linear upper bound50

on the persistent Betti number of Čech complexes. Section 5 concludes the paper.51

2 Gluing Vertices52

Let A ⊆ Rd be finite. By definition, the Čech complex of A for radius r ≥ 0 consists of53

all subsets B ⊆ A such that the closed balls of radius r centered at the points in B have a54

non-empty common intersection. Writing r(B) for the radius of the smallest enclosing sphere55

of B, we have B ∈ Čr(A) iff r(B) ≤ r. Letting B′ ⊆ Rd be another finite set, the Hausdorff56

distance between B and B′ is57

H(B,B′) = max
{

max
b∈B

min
b′∈B′

∥b− b′∥, max
b′∈B′

min
b∈B

∥b′ − b∥
}
. (3)58

We show that the difference between r(B) and r(B′) is at most the Hausdorff distance59

between the two sets.60

▶ Lemma 2.1. |r(B) − r(B′)| ≤ H(B,B′).61

Proof. Let x be the center of the smallest enclosing sphere of B, whose radius is r(B). By62

definition of Hausdorff distance, B′ is contained in the union of balls of radius ε = H(B,B′)63

centered at the points in B. Hence, the sphere with center x and radius r(B) + ε encloses64

B′, so r(B′) ≤ r(B) + ε. Symmetrically, r(B) ≤ r(B′) + ε, which implies the claim. ◀65

We employ Lemma 2.1 to reduce the size of a cycle. To explain how, we use standard66

terminology for homology with Z/2Z coefficients, which we briefly review. A p-chain, γ,67

is a collection of p-simplices, and the vertices of γ are the vertices of its p-simplices. To68

add two p-chains means taking their symmetric difference: γ + γ′ = γ ⊕ γ′. The boundary69
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of a p-simplex are its (p − 1)-dimensional faces, and the boundary of γ is the sum of the70

boundaries of its p-simplices. A p-cycle is a p-chain with empty boundary, denoted by ∂γ = 0.71

Two p-cycles are homologous, denoted by γ ∼ γ′, if there is a (p+ 1)-chain, Γ, that satisfies72

∂Γ = γ + γ′. In this case, we say Γ is a filling of γ + γ′. Finally, γ is trivial if γ ∼ 0.73

▶ Definition 2.2. Let γ be a p-cycle and x ̸= y vertices of γ. To glue x and y, we substitute74

a new vertex, z, for x and y in all p-simplices, and write γ|x∼y for the resulting p-chain.75

After the substitution, a p-simplex that contains both, x and y, is a (p− 1)-simplex and thus76

implicitly removed from the p-cycle by the gluing operation.77

To reason about the gluing of x and y, we write Stγ(x) for the p-simplices in γ that share78

x, and note that Stγ(x, y) = Stγ(x) ∩ Stγ(y) are the p-simplices in γ that share the edge79

connecting x and y. As illustrated in Figure 1, it is possible that after substituting z for x

zzx y

Figure 1: A portion of a 2-cycle on the left, in which x and y belong to two triangles that share an
edge different from the edge connecting x and y. For better visibility, we shade the triangles in the stars
of x and y depending on whether they share such an edge, they belong to both stars, or neither. The
contraction of the edge connecting x and y produces two bi-gons and two triangles with the same three
vertices in the middle, which are removed to get the portion of a 2-cycle on the right.

80

and y, we have two p-simplices with the same p+ 1 vertices, which, by definition, are two81

copies of the same p-simplex. By the logic of modulo-2 arithmetic, the two copies cancel82

each other. We prove that γ|x∼y is a p-cycle.83

▶ Lemma 2.3. Let γ be a p-cycle and x ̸= y two vertices of γ. Then γ|x∼y is a p-cycle.84

Proof. By construction, γ′ = γ|x∼y is a p-chain, so it suffices to show that every (p − 1)-85

simplex belongs to an even number of p-simplices in γ′. Before the gluing, every (p−1)-simplex,86

σ, belongs to an even number of p-simplices in γ, by assumption.87

Consider first the case in which σ is a (p− 1)-face of a p-simplex τ ∈ Stγ(x, y). We may88

assume that σ contains x but not y, else it becomes a (p−2)-simplex after gluing, which is no89

longer relevant. But then there is a second (p− 1)-simplex, σ2, that substitutes y for x and90

shares the other p− 1 vertices with σ. After gluing, σ and σ2 become one (p− 1)-simplex,91

σ′, which is shared by all p-simplices that share σ or σ2. That number of such p-simplices is92

the sum of two even numbers minus 2, which is even, as required.93

A configuration of two (p − 1)-simplices that are glued to one is also possible even if94

they are not faces of a p-simplex in Stγ(x, y); see Figure 1 for an example. The argument is95

the same except there is no −2, at least not at first. The only remaining possibility for the96

number of p-simplices that share a (p− 1)-simplex to change is if p-simplices cancel. But97

they cancel in pairs, which again preserves the parity of the number. ◀98

We are interested in situations when γ and γ′ = γ|x∼y are homologous, which motivates99

us to introduce a (p + 1)-chain that will be helpful in proving they are. Denote by γ|x∼y
100

the (p+ 1)-chain that is swept out by the p-simplices in Stγ(x) ∪ Stγ(y) as we move x and101
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y on straight lines to the new vertex, z. In the configuration displayed in Figure 1, this102

would be the 3-chain whose boundary consists of the 10 and 6 triangles in the left and right103

drawings, respectively. More formally, γ|x∼y = z · [Stγ(x) ∪ Stγ(y)], in which multiplication104

means taking the cone over the p-simplices in the union of two stars or, in the combinatorial105

notation, adding z to the sets of p+1 vertices each. It is not difficult to see that the boundary106

of this (p+ 1)-chain is the sum of the two p-cycles.107

▶ Lemma 2.4. Let γ be a p-cycle, x ̸= y two vertices of γ, γ′ = γ|x∼y, and Γ = γ|x∼y. Then108

∂Γ = γ + γ′.109

Proof. The p-simplices in γ that neither belong to Stγ(x) nor to Stγ(y) also belong to γ′.110

Indeed, they exhaust γ′ \ Stγ′(z), which implies γ + γ′ = Stγ(x) ∪ Stγ(y) ∪ Stγ′(z). By111

construction of Γ = γ|x∼y, and the assumption that γ is a p-cycle, the right-hand side of this112

equation is the boundary of Γ. ◀113

3 Snap Complex114

For values 0 ≤ s ≤ t, we write Čs = Čs(A) for the Čech complex, βp(Čs) for the rank of its115

p-th (reduced) homology group, Hp(Čs), and βp(Čs, Čt) for the rank of the image of Hp(Čs)116

in Hp(Čt) induced by the inclusion Čs ⊆ Čt.117

▶ Definition 3.1. Let Ψ be a partition of Rd into cells, and call the supremum diameter118

of the sets in Ψ the mesh of the partition, denoted by mesh(Ψ). Let q : A → Ψ be defined119

by inclusion, and call Qs = q(Čs) the snap complex of the Čech complex Čs along Ψ. In120

other words, the vertices of Qs are the cells that contain at least one point of A, and a set121

{ψ0, ψ1, . . . , ψp} ⊆ Ψ of distinct cells is a p-simplex in Qs iff there exist vertices xi ∈ ψi, for122

0 ≤ i ≤ p, such that {x0, x1, . . . , xp} ∈ Čs.123

Note that q applied to Č1 is a surjective simplicial map to Q1. Letting γ be a p-cycle in Č1,124

we call α = q(γ) its image, and γ a preimage p-cycle of α. Given two preimage p-cycles of α,125

they may or may not be homologous in Č1. The next lemma, however, guarantees that they126

are homologous in Č1+mesh(Ψ).127

▶ Lemma 3.2. Let ε = mesh(Ψ), α a p-cycle in Q1, and γ, γ3 two preimage p-cycles of α in128

Č1. Then γ ∼ γ3 in Č1+ε.129

Proof. We construct a sequence of homologous p-cycles that interpolates between γ and γ3130

in Č1+ε. There is an initial sequence interpolating between γ and γ1, a middle sequence131

interpolating between γ1 and γ2, and a terminal sequence interpolating between γ2 and γ3.132

The initial sequence reduces the number of vertices until the preimage p-cycle contains133

at most one vertex per cell in Ψ. Indeed, if γ has vertices x ≠ y in the same cell, then we134

can glue x and y, as described in Section 3, which produces a new p-chain, γ′ = γ|x∼y. This135

operation introduces a new vertex, z. We are free to choose its location, and to facilitate the136

repetition of this argument, we choose it where y used to be. By Lemma 2.3, γ′ is a p-cycle137

with one fewer vertices than γ. Let Γ = γ|x∼y be the (p+ 1)-chain from Lemma 2.4. If all138

simplices in Γ belong to Č1+ε, then γ and γ′ are homologous in Č1+ε, so assume that at139

least one simplex υ ∈ Γ does not belong to Č1+ε. Then r(υ) > 1 + ε. By construction of Γ,140

and the choice of z’s location in the cell that also contains x and y, there is a p-simplex τ in141

γ that has a vertex in every cell that contains a vertex of υ. Since the points in the same142

cell have distance at most ε from each other, Lemma 2.1 implies r(τ) > r(υ) − ε > 1. But143

then τ is not in Č1 and neither is γ, which contradicts the assumptions. This implies γ ∼ γ′
144
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in Č1+ε. By repeating the argument, all p-cycles in the initial sequence are homologous in145

Č1+ε and, in particular, γ ∼ γ1 in Č1+ε.146

The terminal sequence of p-cycles reduces the number of vertices of γ3 if read from the147

end forward. Appealing again to Lemmas 2.1, 2.3, and 2.4, all p-cycles in the terminal148

sequence are homologous in Č1+ε and, in particular, γ2 ∼ γ3 in Č1+ε.149

Since γ and γ3 are preimage p-cycles of the same p-cycle, α, their vertices lie in the same150

cells of Ψ, and so do the vertices of γ1 and γ2. The middle sequence interpolates between the151

latter two p-cycles by changing one vertex at a time to a possibly different point in the same152

cell. Appealing to Lemmas 2.1, 2.3, and 2.4, the p-cycles in the middle sequence are again153

homologous in Č1+ε and, in particular, γ1 ∼ γ2 in Č1+ε. But now we have γ ∼ γ1 ∼ γ2 ∼ γ3154

in Č1+ε and therefore γ ∼ γ3 in Č1+ε, as claimed. ◀155

Remark on Vietoris–Rips complexes. Lemma 3.2 generalizes to Vietoris–Rips complexes.156

Indeed, its proof generalizes provided we adapt Lemma 2.1, which in its current formulation157

is specific to Čech complexes. For the Vietoris–Rips complexes, we read the radius r(B) as158

half of the maximum distance between any two vertices in B. Then it is still true that the159

difference in radii is bounded from above by the Hausdorff distance between the two sets of160

vertices. In other words, Lemma 2.1 also applies to Vietoris–Rips complexes.161

By Lemma 3.2, any two preimage cycles of a cycle in Q1 that already exist in Č1 are162

homologous in Č1+ε. We can therefore bound the persistent Betti numbers by the Betti163

number of the snap complex.164

▶ Corollary 3.3. With ε = mesh(Ψ), we have βp(Č1, Č1+ε) ≤ βp(Q1) for every p.165

Proof. Recall that βp(Č1, Č1+ε) is the rank of the persistent homology group that captures166

all p-cycles in Č1+ε that already exist in Č1. It suffices to prove that the images of non-167

trivial p-cycles in Č1+ε that already exist in Č1 are non-trivial p-cycles in Q1. To derive a168

contradiction, let γ be a p-cycle in Č1 that is non-trivial in Č1+ε, and assume that α = q(γ)169

is trivial in Q1. Hence, there exists a (p+ 1)-chain, A, in Q1 with ∂A = α, and because q170

is surjective, there also exists a (p + 1)-chain Γ in Č1 with q(Γ) = A. Noting that γ and171

∂Γ are both p-cycles in Č1 whose images under q are equal to α, we obtain γ ∼ ∂Γ ∼ 0 in172

Č1+ε by Lemma 3.2. This contradicts that γ is non-trivial in Č1+ε and implies the claimed173

inequality. ◀174

Remark about the right-hand side of the inequality. It is easy to see that the bound in175

Corollary 3.3 is not tight. Take for example three points equally spaced on a circle of radius176

strictly between 1 and 1 + ε. Then Č1 has a 1-cycle of three edges, while in Č1+ε this cycle177

is filled by the triangle. Hence, β1(Č1, Č1+ε) = 0, which is strictly smaller than β1(Q1) = 1.178

Note also that we cannot replace the upper bound βp(Q1) in Corollary 3.3 with βp(Q1+ε) in179

general. The reason is that the image of a homologically non-trivial cycle in Č1+ε may be180

homologically trivial in Q1+ε, even if it already exists in Č1; see Figure 2 for an example.181

Indeed, we have 1 = β1(Č1, Č1+ε) > β1(Q1+ε) = 0 in this example.182

Remark on Vietoris–Rips complexes. As mentioned earlier, Lemma 3.2 generalizes to Vietoris–183

Rips complexes. With this, the proof of Corollary 3.3 generalizes to Vietoris–Rips complexes.184

4 The Upper Bound185

We use a packing argument together with Corollary 3.3 to prove that for every ε > 0, the186

number of homology classes born before or at 1 and dying after 1 + ε in the Čech filtration187
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Figure 2: Left: the Čech complex for six points inside four cells in the partition of the plane. Assuming
the two triangles are isosceles, right-angled, and have smallest enclosing circles of radius 1 + ε, the narrow
rectangle between the two triangles has a smallest enclosing circle with radius strictly larger than 1 + ε.
Hence, the boundary of the convex hexagon that passes through the six points is a non-trivial 1-cycle in
Č1+ε, and for ε ≤

√
2 − 1, it already exists in Č1. Right: the image of the hexagon is a quadrangle in the

snap complex. Its boundary is a trivial 1-cycle in Q1+ε because the rectangle collapses to a single edge
shared by the images of the two triangles.

of n points in Rd is bounded from above by a constant times n. This constant depends on ε188

and d but not on n.189

▶ Theorem 4.1. For every ε > 0, there exists c = c(ε, d) such that βp(Č1, Č1+ε) ≤ c · n.190

Proof. We partition Rd into translates of [0, ε/
√

d)d. The diameter of every cell is ε, so we191

call this partition Ψ and apply Corollary 3.3. Fixing ψ0 = [0, ε/
√

d)d ∈ Ψ, the cells that are192

connected to ψ0 by an edge in Q1 must contain a point at distance at most 2 from a point193

in ψ0. Therefore, such cells lie inside the hypercube [−2 − ε/
√

d, 2 + 2ε/
√

d)d. Its volume is194

(4 + 3ε/
√

d)d. Comparing this with the volume of a single cell, which is (ε/
√

d)d, the number195

of such cells is at most196

C(ε, d) = (4 + 3ε/
√
d)d

(ε/
√
d)d

=
(

3 + 4
√
d

ε

)d

. (4)197

To span a p-simplex in Q1, we pick the fixed cell and add p from the at most C = C(ε, d)198

cells within the mentioned distance. We thus have at most
(

C
p

)
n p-simplices in Q1, where n199

is the number of ways we can fix the first cell. The number of p-simplices is an upper bound200

on the p-th Betti number. By Corollary 3.3, the same upper bound applies to the number of201

p-cycles born before or at 1 and dying after 1 + ε. We have non-zero persistent Betti numbers202

only for p < d, so c =
(

C
p

)
< 2C is a constant for which the claimed inequality holds. ◀203

Remark on Vietoris–Rips complexes. Since Corollary 3.3 generalizes to Vietoris–Rips204

complexes, so does Theorem 4.1.205

5 Discussion206

The main result of this paper is a linear upper bound on the number of holes in the Čech207

complex of n points in Rd that persist from radius r = 1 to r = 1 + ε, in which ε is a fixed208

constant strictly larger than 0. The upper bound generalizes to the Alpha complex and the209

Vietoris–Rips complex and thus holds for three of the classic types of complexes used in210

topological data analysis [1, 3]. The work reported in this short note raises a number of211

questions, and we mention two.212
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The first natural question is how small we can make ε > 0 in our linear upper bound on213

the persistent Betti numbers when we think of ε as a function of n that tends to 0, rather214

than a fixed positive constant. The construction in [4] shows that the maximum p-th Betti215

number of a Čech complex with n vertices in Rd is Θ(nm), with m = min{p+ 1, ⌈d/2⌉}. A216

detailed look at the analysis shows that for even d, the persistence of the counted cycles217

is proportional to 1/n2, and for odd d, it is proportional to 1/n4, in which we simplify by218

assuming that d is a constant. In other words, the lower bound extends to the persistent Betti219

numbers, βp(Č1, Č1+ε), provided ε = o(1/n2) and ε = o(1/n4) for even and odd d, respectively.220

The upper bound for the constant of proportionality in Theorem 4.1 depends on ε and221

d in a way that suggests it grossly over-estimates the number of holes that persist. Can222

this upper bound be improved to showing that the polynomially many holes in the lower223

bound construction of Edelsbrunner and Pach [4] are asymptotically as persistent as possible?224

Alternatively, can this lower bound construction be improved to increase the persistence of225

the holes, which currently is Θ(1/n2) in even and Θ(1/n4) in odd dimensions?226

The second question is motivated by the third author’s quest to prove the large deviation227

principle for persistent Betti numbers and persistence diagrams of random Čech filtrations228

(cf. [7, 8]). Let A be a finite set of points in a large d-dimensional cube, partitioned into229

points L and R to the left and right of a vertical hyperplane, respectively. Our goal is to230

approximate the persistent Betti numbers of the Čech filtration of A by the sum of those for231

the Čech filtrations of L and R. More specifically, we desire a bound on the absolute difference232

between βp(Č1(A), Č1+ε(A)) and βp(Č1(L), Č1+ε(L))+βp(Č1(R), Č1+ε(R)). Letting M ⊆ A233

contain the points at distance at most 2(1 + ε) from the hyperplane, the vertices of every234

simplex in Č1+ε(A) \ (Č1+ε(L) ∪ Č1+ε(R)) must belong to M , so it is natural to estimate235

the absolute difference in terms of M : assuming ε > 0 is a fixed constant and 0 ≤ p ≤ d, is it236

true that there exists a constant such that237

|βp(Č1(A), Č1+ε(A)) − βp(Č1(L), Č1+ε(L)) − βp(Č1(R), Č1+ε(R))| ≤ const · cardM? (5)238

In other words, is the absolute difference between these persistent Betti numbers bounded239

from above by a constant times the number of points in the narrow strip next to the240

hyperplane? The absolute difference is of course bounded by the number of simplices spanned241

by these points (see, e.g., [6, Lemma 2.11] and [8, Proposition 16]), but this only implies that242

the left-hand side of (5) is bounded from above by fp(Č1(M)) + fp+1(Č1+ε(M)), and thus243

by 2(cardM)p+2. Therefore, the significance of the inequality (5) lies in the linear bound244

with respect to the number of points in the narrow strip.245
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