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The local angle property of the (order-1) Delaunay triangu-
lations of a generic set in R2 asserts that the sum of two 
angles opposite a common edge is less than π. This paper ex-
tends this property to higher order and uses it to generalize 
two classic properties from order-1 to order-2: (1) among the 
complete level-2 hypertriangulations of a generic point set in 
R2, the order-2 Delaunay triangulation lexicographically max-
imizes the sorted angle vector; (2) among the maximal level-2
hypertriangulations of a generic point set in R2, the order-2
Delaunay triangulation is the only one that has the local an-
gle property. We also use our method of establishing (2) to 
give a new short proof of the angle vector optimality for the 
(order-1) Delaunay triangulation. For order-1, both properties 
have been instrumental in numerous applications of Delaunay 
triangulations, and we expect that their generalization will 
make order-2 Delaunay triangulations more attractive to ap-
plications as well.
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1. Introduction

This paper is motivated by the desire to generalize optimal properties from order-1 to 
higher-order Delaunay triangulations. The classic (order-1) Delaunay triangulation (also 
called Delaunay mosaic) of a finite point set was introduced in 1934 by Boris Delaunay 
(also Delone). It is the edge-to-edge tiling whose polygons satisfy the empty circle crite-
rion [5]: each polygon is inscribed in a circle and all other points lie strictly outside this 
circle. In the henceforth considered generic case, all polygons are triangles. The criterion 
implies that for an edge shared by two triangles, the sum of the two angles opposite to 
the edge is less than π. If a triangulation satisfies this criterion for every edge shared 
by two triangles, then we say the triangulation has the local angle property. Recognizing 
the potential of this type of triangulation for applications, Lawson in 1977 turned the 
empty circle criterion into an iterative algorithm that converts any triangulation of a 
given set of n points in R2 into the Delaunay triangulation using at most O(n2) edge-
flips [13]. The correctness of this algorithm implies that the Delaunay triangulation is 
the only triangulation of the given set that has the local angle property. Using Lawson’s 
algorithm as a proof technique, Sibson proved in 1978 that among all triangulations of 
a finite generic point set in R2, the Delaunay triangulation lexicographically maximizes 
the vector whose components are the angles inside the triangles sorted in non-decreasing 
order [21]. We call this the sorted angle vector of the triangulation.

The dual approach to the same topic predates the invention of the Delaunay trian-
gulation. In 1908, Georgy Voronoi published seminal papers on what today is called 
the Voronoi tessellation [22]. Given a finite set in R2, this tessellation contains a (con-
vex) region for each point in the set, such that the points in the region are at least as 
close to the generating point as to any other point in the set. The Delaunay triangula-
tion and the Voronoi tessellation of the same points are dual to each other: there is an 
incidence-preserving dimension-reversing bijection between the regions, edges, vertices 
of the tessellation and the vertices, edges, polygons of the triangulation.

In the mid 1970s, Shamos and Hoey [20] and Fejes Tóth [9] independently general-
ized this concept to the order-k Voronoi tessellation, which contains a (possibly empty) 
region for each subset of size k, such that the points in the region are at least as close to 
each one of the k defining points as to any of the n − k other points. In 1982, Lee [14]
gave an incremental algorithm for computing these tessellations, and in 1990, Aurenham-
mer [1] showed that there is a natural dual, which we refer to as the order-k Delaunay 
triangulation: each vertex is the average of a collection of k points with non-empty re-
gion, and the triangles are formed by connecting two vertices with a straight edge if the 
corresponding two regions share an edge in the order-k Voronoi tessellation. The special 
case in which k = n −1 is closely related to the farthest-point Delaunay triangulation: its 
vertices are the extreme points of the set (the convex hull vertices), and two vertices are 
connected by a straight edge if the regions in the order-(n − 1) Voronoi tessellation that 
correspond to the complementary n − 1 points of the two vertices share a common edge. 
In 1992, Eppstein [8] proved an extension of Sibson’s result: among all triangulations 
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of the convex hull vertices, the farthest-point Delaunay triangulation lexicographically 
minimizes the sorted angle vector.

With the exception of Eppstein’s result—which is specific to the farthest-point De-
launay triangulation—there is a paucity of optimality properties known for higher-order 
Delaunay triangulations, which we end with three inter-related contributions:

I: we extend the local angle property from order-1 to order-k, for 1 ≤ k ≤ n − 1, and 
show that the order-k Delaunay triangulation has this property;

II: we prove that among all complete level-2 hypertriangulations of a finite generic set 
in R2, the order-2 Delaunay triangulation lexicographically maximizes the sorted 
angle vector;

III: we show that among all maximal level-2 hypertriangulations of a finite generic set 
in R2, the order-2 Delaunay triangulation is the only one that has the local angle 
property.

For ordinary triangulations, the proofs of the properties analogous to II and III follow 
from the existence of a sequence of edge-flips that connects any initial (complete) trian-
gulation to the (order-1) Delaunay triangulation, such that every flip lexicographically 
increases the sorted angle vector. While the level-2 hypertriangulations are connected 
by flips introduced in [7], there are cases in which every connecting sequence contains 
flips that lexicographically decrease the sorted angle vector; see Section 6. Without this 
tool at hand, the relation between the local angle property and the sorted angle vectors 
is unclear, and the proofs of Properties II and III fall back to an exhaustive analysis of 
elementary geometric cases.

This paper is organized as follows. Section 2 provides information on the main back-
ground, including level-k hypertriangulations (maximal, complete, and otherwise) and 
the aging function. Section 3 introduces our extension of the local angle property to order 
k and, in Theorem 3.3, shows that the order-k Delaunay triangulation has this property. 
Section 4 proves Property II in Theorem 4.5 and, in Theorem 4.4, gives a new short proof 
of Sibson’s theorem on angle vector optimality for the order-1 Delaunay triangulation 
[21]. It also discusses possible extensions to the class of maximal level-2 hypertriangula-
tions and to levels beyond 2. Section 5 proves Property III in Theorem 5.4, which extends 
it to order-3 for points in convex position in Theorem 5.5. Finally, Section 6 concludes 
the paper with discussions of open questions and conjectures related to the geometry 
and combinatorics of Delaunay and more general hypertriangulations.

2. Background

We follow the standard approach to points in general position used in the literature: 
a finite set, A ⊆ R2, is generic if no three points are colinear and no four points are 
cocircular.
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2.1. Triangulations and hypertriangulations

We first define the families of all triangulations and hypertriangulations of A, which 
include the order-1 and order-k Delaunay triangulations discussed in Section 3. We write 
convA for the convex hull of the set A.

Definition 2.1 (Triangulations). A triangulation, P , of a finite A ⊆ R2 is an edge-to-edge 
subdivision of convA into triangles whose vertices are points in A. It is usually identified 
with the set of its triangles, so we write P = {t1, t2, . . . , tm}. The triangulation is complete
if every point of A is a vertex of at least one triangle, partial if it is not complete, and 
maximal if there is no other triangulation of the same points that subdivides it.

It is easy to see that a triangulation is maximal iff it is complete. We nevertheless 
introduce both concepts because they generalize to different notions for hypertriangula-
tions, which we introduce next. For a set of k points, I, we write [I] = 1

k

∑
x∈I x for the 

average of the points and, assuming a �∈ I and J ∩ I = ∅, we write [Ia] and [IJ ] for the 
averages of I ∪ {a} and I ∪ J , respectively. While [I] is a point, we sometimes think of 
it as the set I, in which case we call it a label.

Definition 2.2 (Hypertriangulations [7]). Let A ⊆ R2 be generic, n = #A, k an integer 
between 1 and n − 1, and A(k) = {[I] | I ⊆ A, #I = k} the set of k-fold averages of the 
points in A. A level-k hypertriangulation of A is a possibly partial triangulation of A(k)

such that every edge with endpoints [I] and [J ] satisfies #(I ∩ J) = k − 1.

See Fig. 1 for two level-2 hypertriangulations of five points. Observe that every trian-
gulation of A is a level-1 hypertriangulation of A, and vice versa, but for k > 1, only a 
subset of the triangulations of A(k) are level-k hypertriangulations of A. Note also that it 
is possible that a point can be written as the average of more than one subset of k points 
in A: for example, the center of a square is the 2-fold average of two pairs of diagonally 
opposite vertices. If a level-k hypertriangulation uses such a point as a vertex, then it 
can use only one of the possible labels.

An alternative approach to these concepts is via induced subdivisions; see [23, Chapter 
9] for details, including the definitions of induced subdivisions and tight subdivisions. 
According to this approach, a triangulation of A = {a1, a2, . . . , an} is a tight subdivision 
of convA induced by the projection π : Δn → R2, in which Δn = conv {e1, e2, . . . , en} ⊆
Rn is the standard (n − 1)-simplex, and π(ei) = ai, for i = 1, 2, . . . , n. To generalize, 
Olarte and Santos [16] use the level-k hypersimplex, Δ(k)

n , which is the convex hull of the 
k-fold averages of the ei in Rn, and define a level-k hypertriangulation of A as a tight 
subdivision of A(k) induced by the same projection π restricted to Δ(k)

n . In this setting, 
the constraint to use only one label for each vertex is implicit.
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2.2. The aging function

A triangle in a level-k hypertriangulation can be classified into two types. Letting 
[I], [J ], [K] be its vertices, each the average of k points, we say the triangle is

• black, if #(I ∩ J ∩K) = k − 2;
• white, if #(I ∩ J ∩K) = k − 1.

In other words, vertices of black triangles are labeled [Xab], [Xac], [Xbc], for some X of 
size k − 2, and vertices of white triangles are labeled [Ya], [Yb], [Yc], for some Y of size 
k − 1. Our next definition allows for transformations from white to black triangles.

Definition 2.3 (Aging Function). Letting t be a white triangle with vertices [Ya], [Yb], [Yc], 
the aging function maps t to the black triangle, F (t), with vertices [Yab], [Yac], [Ybc].

For example, the black triangles in the level-2 hypertriangulations in Fig. 1 are ob-
tained by aging the triangles in a complete triangulation on the left and a partial 
triangulation on the right. The aging function increases the level of the triangle by 
one, hence the name. Correspondingly, the inverse aging function maps a black triangle 
to a white triangle one level lower.

To extend this definition to hypertriangulations, we say a level-k hypertriangulation, 
Pk, ages to a level-(k+1) hypertriangulation, Pk+1, denoted Pk+1 = F (Pk), if the aging 
function defines a bijection between the white triangles in Pk and the black triangles 
in Pk+1. Note however that the aging of Pk is not unique as it says nothing about 
the white triangles of Pk+1. This notion is useful to obtain structural results for the 
family of all level-k hypertriangulations. For example, [7] has shown that every level-2
hypertriangulation is an aging of a level-1 hypertriangulation. For the special case in 
which the points are in convex position, [10] has extended this result to all levels, k. 
However, for points in possibly non-convex position, there are obstacles to applying the 
aging function. An example of a level-2 hypertriangulation, P2, for which F (P2) does 
not exist is given in [7,16].

For later reference, we compile several results about the relation between level-1 and 
level-2 hypertriangulations obtained in [7]. Given a vertex, x, in a triangulation, P , we 
define the star of x as the union of triangles that share x, denoted st(P, x), and shrinking 
the star by a factor two toward x, we get [st(P, x), x] = 1

2 (st(P, x) + x), which is the set 
of midpoints between x and any point y ∈ st(P, x). Observe that the shrunken star is 
contained in convA(2) iff x is an interior vertex of P . Indeed, x necessarily belongs to 
the shrunken star, but if x is a convex hull vertex, then x lies outside convA(2). The 
first two statements of the following lemma are Lemmas 4.1 and 4.3 in [7], while the last 
statement is a reformulation of Lemma 4.2 in [7]. We refer to [7, Section 4] for proofs 
and additional details.
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Fig. 1. Two level-2 hypertriangulations (drawn with solid segments) obtained by aging the triangulations 
(drawn with dotted segments) of the five white points, a, b, c, d, e, with four triangles on the left and two 
triangles on the right. Black triangles are shaded and white triangles are just white. The total number of 
triangles is the same in both hypertriangulations.

Lemma 2.4 (Aging Function for Triangulations). Let A ⊆ R2 be finite and generic, and 
recall that every level-1 hypertriangulation is a triangulation.

• For every level-1 hypertriangulation, P , of A, there exists a level-2 hypertriangula-
tion, P2, such that P2 = F (P ).

• For every level-2 hypertriangulation, P2, of A, there exists unique level-1 hypertrian-
gulation, P , such that P2 = F (P ).

• If P2 = F (P ) and x ∈ A is a vertex of P , then the union of white triangles in P2
that have x in all their vertex labels is [st(P, x), x] ∩ convA(2).

Since [st(P, x), x]∩convA(2) �= [st(P, x), x] iff x is a convex hull vertex, the third claim 
implies that for each interior vertex, x, scaled versions of the mentioned white triangles 
in P2 tile the star of x in P .

2.3. Maximal and complete hypertriangulations

The Delaunay triangulation of a finite set is optimal among all complete triangula-
tions, but not necessarily among the larger family of possibly partial triangulations of 
the set. In this section, we introduce two families of level-2 hypertriangulations to which 
we compare the order-2 Delaunay triangulation.

Definition 2.5 (Complete and Maximal Level-2 Hypertriangulations). Let A ⊆ R2 be 
finite and generic. A level-2 hypertriangulation of A is complete if its black triangles are 
the images under the aging function of the triangles in a complete triangulation of A, 
and it is maximal if no other level-2 hypertriangulation subdivides it.

For example, the level-2 hypertriangulations in Fig. 1 are both maximal, but only the 
one on the left is complete. The notion of maximality extends to level-k hypertriangu-
lations for any relevant k. The situation with completeness is more subtle as it relies 
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on the existence of compatible triangulations to which we can apply the aging function, 
and there are counterexamples to the existence from level 2 to level 3; see Figure 8 
in [7]—which is based on Example 5.1 in [16]—for a level-2 hypertriangulation with 
overlapping black triangles in level 3.

For k = 1, a triangulation of a finite and generic set is complete iff it is maximal. An 
easy way to see this is by counting the triangles in a possibly partial triangulation of 
A ⊆ R2. Write H ⊆ A for the vertices of the convex hull of A, and set n = #A and 
h = #H. The vertex set of a partial triangulation can be any subset of A that contains 
all points in H. Let m be the number of extra points, so the triangulation has m + h

vertices. We can add h − 3 (curved) edges to turn the triangulation into a maximally 
connected planar graph, which has 3(m +h) − 6 edges and 2(m +h) − 4 faces, including 
the outside. Hence, the triangulation has 3(m + h) − 6 − (h − 3) = 3m + 2h − 3 edges 
and 2(m + h) − 4 − (h − 2) = 2m + h − 2 triangles. For a complete triangulation, we 
have m = n −h and therefore 2n −h − 2 triangles. If a triangulation has fewer than this 
number, then its vertex set misses at least one point, which we can add by subdivision. 
Hence, the triangulation is complete iff it is maximal. The situation is slightly more 
complicated for level-2 hypertriangulations.

Lemma 2.6 (Complete Implies Maximal). Let A ⊆ R2 be finite and generic. Then any 
two maximal level-2 hypertriangulations have the same number of triangles, and every 
complete level-2 hypertriangulation is maximal.

Proof. As before, let H ⊆ A be the vertices of the convex hull of A. To prove the first 
claim, let n = #A, h = #H, and consider a level-2 hypertriangulation, P2, aged from a 
possibly partial triangulation, P , with m + h ≤ n vertices. Note that P has 2m + h − 2
triangles, so P2 has the same number of black triangles.

To count the white triangles in P2, we recall that each white region corresponds to 
the star of a vertex of P . If a is a vertex in the interior of convA, then the white region 
is the shrunken star, [st(P, a), a]. We modify P2 so this is also true for each vertex, b, of 
convA. To this end, we consider all boundary edges of P2 that connect vertices a′ = [ba]
and c′ = [bc], and add the triangle a′bc′ to P2. The number of thus added triangles 
depends on the convex hull of the midpoints of pairs but not on how this convex hull is 
decomposed into triangles. The benefit of this modification is that we now have exactly 
m + h white regions, each a star-convex polygon, and each edge of P contributes a 
vertex to exactly two of the white regions. Not forgetting the h vertices added during 
the modification, this implies that the total number of edges of the m +h white regions is 
2(3m +2h −3) +h = 6m +5h −6. Every triangulation of a j-gon has j−2 triangles, so the 
total number of triangles in the white regions is (6m +5h −6) −2(m +h) = 4m +3h −6.

We now turn our attention to the n − h −m points of A that are not vertices of P . 
Let x be such a point and abc the triangle in P that contains x in its interior. Hence, 
[xa] lies in the interior of [st(P, a), a], and similarly for b and c. To maximally subdivide 
P2, we thus add 3(n −h −m) points in the interiors of the white regions, which increases 
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the number of white triangles to (4m + 3h − 6) + 6(n − h − m) = 6n − 2m − 3h − 6. 
Adding to this the 2m + h − 2 black triangles, we get a total of 6n − 2h − 8 triangles. 
To get the number of triangles in this maximal triangulation, we still need to correct 
for the triangles added during the initial modification of P2. But their number does 
not depend on m, so neither does the final triangle count. Hence, all maximal level-2
hypertriangulations of A have the same number of triangles.

To get the second claim, observe that we have m = 0 whenever P2 is complete. Hence, 
we get the same number of triangles as just calculated, but without subdivision. It follows 
that P2 is maximal. �
3. The local angle property

In this section, we define order-k Delaunay triangulations as special level-k hypertri-
angulations, introduce the local angle property for level-k hypertriangulations, and show 
that the order-k Delaunay triangulations have the local angle property. This property 
specializes to the standard local angle property that characterizes (order-1) Delaunay 
triangulations as well as their constrained versions.

3.1. Higher order Delaunay triangulations

We introduce the order-k Delaunay triangulation of a finite set as a special level-k
hypertriangulation of this set; but see [1] for a more geometric definition.

Definition 3.1 (Order-k Delaunay Triangulation). Let A ⊆ R2 be finite and generic, and 
k an integer between 1 and #A−1. We construct a particular level-k hypertriangulation 
of A:

• a black triangle with vertices [Xab], [Xac], [Xbc] belongs to this hypertriangulation 
if X ⊆ A is the set of points inside the circumcircle of abc, and #X = k − 2;

• a white triangle with vertices [Y a], [Y b], [Y c] belongs to this hypertriangulation if 
Y ⊆ A is the set of points inside the circumcircle of abc, and #Y = k − 1.

This hypertriangulation is called the order-k Delaunay triangulation of A and denoted 
Delk(A).

While it may not be obvious that the above triangles form a triangulation of A(k), it 
can be seen, for example, by lifting the points of A onto a paraboloid in R3, and then 
considering the lower surface of the convex hull of the k-fold averages, which project to 
the points in A(k). Another way to construct Delk(A) is from the dual order-k Voronoi 
tessellation, as illustrated for k = 2 in Fig. 2.

Note that for k = 1, we get precisely the Delaunay triangulation of A, as all triangles 
are white and satisfy the empty circle criterion. For k = #A − 1, we get the (scaled 
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Fig. 2. The (blue) order-2 Delaunay triangulation drawn on top of the (black) order-2 Voronoi tessellation 
of the set A = {a, b, . . . , h}. Not all parts of the order-2 Voronoi tessellation are visible in the rectangular 
window. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

and centrally inverted copy of) the farthest-point Delaunay triangulation [8]. Each of its 
triangles is black, and every point of A is either a vertex or inside the circumcircle of the 
triangle. Moreover, the aging function applies, and we have Delk+1(A) = F (Delk(A)) for 
every 1 ≤ k < #A− 1.

3.2. Angles of black and white triangles

We now generalize the local angle property from order-1 to order-k. For 2 ≤ k ≤
#A− 2, we have black as well as white triangles. Hence, there are three types of interior 
edges: those shared by two white triangles, two black triangles, and a white and a black 
triangle. We have a different condition for each type.

Definition 3.2 (Local Angle Property). Let A ⊆ R2 be finite and generic. A level-k hy-
pertriangulation of A has the local angle property if

• (ww) for every edge shared by two white triangles, the sum of the two angles opposite 
the edge is at most π;

• (bb) for every edge shared by two black triangles, the sum of the two angles opposite 
the edge is at least π;

• (bw) for every edge shared by a black triangle and a white triangle, the angle opposite 
the edge in the black triangle is bigger than the angle opposite the edge in the white 
triangle.

For k = 1, there are no black triangles, so (bb) and (bw) are void. Delaunay [5] proved 
that the local angle property characterizes the (closest-point) Delaunay triangulation 
among all (complete) triangulations of a finite point set, and this was used by Lawson [13]
to construct the triangulation by repeated edge flipping. Symmetrically, for k = #A−1, 
there are no white triangles, so (ww) and (bw) are void. Eppstein [8] proved the local 
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Fig. 3. From left to right: an edge shared by two white triangles, two black triangles, a black triangle and 
a white triangle. Top row: the adjacent triangles in the order-k Delaunay triangulation. The vertex labels 
encode the locations of the vertices as averages of the listed points. Bottom row: the corresponding triangles 
spanned by the original points.

angle property for the (farthest-point) Delaunay triangulation, and the convergence of 
the flip-algorithm implies that it is the only (not necessarily complete) triangulation of 
the points that has this property. The goal of this section is to extend these results to 
level-k hypertriangulations.

3.3. All Delaunay triangulations have the local angle property

We prove that the Delaunay triangulations of any order have the local angle property. 
This extends the results from k = 1, #A− 1 to any order between these limits.

Theorem 3.3 (Order-k Delaunay Triangulations have Local Angle Property). Let A ⊆ R2

be finite and generic. Then for every integer 1 ≤ k ≤ #A − 1, the order-k Delaunay 
triangulation of A has the local angle property.

Proof. Recall that white triangles of the order-k Delaunay triangulation of A have ver-
tices [Ya], [Yb], [Yc], in which Y ⊆ A with #Y = k − 1, such that all points of Y are 
inside and all other points of A are outside the circumcircle of abc. Similarly, its black 
triangles have vertices labeled [Xab], [Xac], [Xbc], in which X ⊆ A with #X = k − 2, 
such that all points of X are inside and all other points of A are outside this circumcircle. 
We establish each of the three conditions separately.

(ww): Let [Ya], [Yb], [Yc] and [Yb], [Yc], [Yd] be the vertices of two adjacent white 
triangles in the order-k Delaunay triangulation of A, and note that the points of Y lie 
inside and d lies outside the circumcircle of abc; see the left panel of Fig. 3. The triangles 
abc and bcd are homothetic copies of these two white triangles, which implies that a
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and d lie on opposite sides of bc. Hence, �bac + �bdc < π, because d is outside the 
circumcircle. (ww) follows.

(bb): Let [Zabc], [Zabd], [Zacd] and [Zabd], [Zacd], [Zbcd] be the vertices of adjacent 
black triangles in the order-k Delaunay triangulation of A, and note that the points of Z
and d lie inside the circumcircle of abc; see the middle panel of Fig. 3. The triangles bcd
and abc are homothetic copies of these two black triangles, which implies that a and d
are on opposite sides of bc. Hence, �bac +�bdc > π, because d is inside the circumcircle.
(bb) follows.

(bw): Let [Xab], [Xac], [Xbc] and [Xab], [Xac], [Xad] be the vertices of a black triangle 
and an adjacent white triangle in the order-k Delaunay triangulation of A, and note that 
the points of X lie inside while d lies outside the circumcircle of abc; see the right panel of 
Fig. 3. The triangles abc and bcd are homothetic copies of the black and white triangles, 
with negative and positive homothety coefficients, respectively, which implies that a and 
d lie on the same side of bc. Thus, �bac > �bdc, because d is outside the circumcircle.
(bw) follows. �

We conjecture that among all level-k hypertriangulations that satisfy the local angle 
property, the order-k Delaunay triangulation is the only one that maximizes the number 
of triangles. For later reference, we refer to this as the Local Angle Conjecture for hyper-
triangulations. We discuss partial results for it in Section 5 and rigorously formulate it 
as Conjecture B in Section 6.

3.4. Constrained Delaunay triangulations

Given a bounded polygonal region, R, it is always possible to find a triangulation, P , 
of its vertices (the endpoints of its edges) that contains all edges of the region. Hence, 
every triangle of P lies either completely inside or completely outside the region. The 
restriction of P to R consists of the triangles inside R, and we call this restriction a 
triangulation of R. For some choices of P , the restriction to R looks locally like the 
Delaunay triangulation, namely when every edge that passes through the interior of R
satisfies (ww). It is not difficult to see that such choices of triangulations exist and 
that their restriction to R is generically unique: run Lawson’s algorithm on an initial 
triangulation of R, flipping an interior edge whenever the sum of the two opposite angles 
exceeds π. This is the constrained Delaunay triangulation of R, as introduced in 1989 by 
Paul Chew [3], but see also [2,12]. A triangle uvw belongs to this specific triangulation iff 
it is contained in R and its circumcircle does not enclose any vertex that is visible from 
all points inside the triangle. Here, a point x is visible from a point y, if the segment xy
lies inside R. We state a weaker necessary condition for later reference.

Lemma 3.4 (Triangles and Edges in Constrained Delaunay Triangulation). Let R be a 
bounded polygonal region in R2, assume its vertex set is generic, and let u, v, w be vertices 
of R. If the triangle uvw is contained in R, and its circumcircle does not enclose any 
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vertex of R, then uvw is a triangle in the constrained Delaunay triangulation of R. 
Similarly, if the segment uv is contained in R but is not an edge of R, and it has a 
circumcircle that does not enclose any vertex of R, then uv is an edge of the constrained 
Delaunay triangulation of R.

We use constrained Delaunay triangulations to decompose white regions in aged 
hypertriangulations. To explain, let P be a complete triangulation of a finite and 
generic set, A ⊆ R2, let x ∈ A be a vertex of this triangulation, call wh(P, x) =
st(P, x) ∩ conv (A \ {x}) the white region of x in P , and let P (x) be a triangulation of 
wh(P, x). Note that wh(P, x) = st(P, x) if x is an interior vertex, and wh(P, x) ⊊ st(P, x)
if x is a convex hull vertex. In the special case in which P is the order-1 Delaunay trian-
gulation and P (x) is the constrained Delaunay triangulation of wh(P, x), for each x ∈ A, 
these sets contain all white triangles in the order-2 Delaunay triangulation, albeit the lat-
ter are only half the size. This can be seen from the following observation. If we consider 
the (order-1) Delaunay triangulation of A \ {x}, then it contains old triangles from P
not incident to x and new triangles that retriangulate st(P, x)∩ conv (A \ {x}). The cir-
cumcircle of each new triangle encloses x. Thus, the new triangles are the white triangles 
from Definition 3.1 and also the triangles from the constrained Delaunay triangulation 
of st(P, x) ∩ conv (A \ {x}).

More generally, we use the constrained Delaunay triangulations of the white regions 
to disambiguate the aging function. This is done extensively in the proofs of our main 
results in Section 4, where they are useful because constrained Delone triangulations 
optimize angle vectors, and in Section 5, where they are useful because they satisfy the 
local angle property.

4. Optimality of the sorted angle vector

In this section, we prove the first main result of this paper in an exhaustive case 
analysis. With the exception of Section 4.4, we work only with complete level-2 hyper-
triangulations. To aid the discussion, we begin by introducing convenient terminology 
and stating a few elementary lemmas.

4.1. Triangulations and angle vectors

Let A ⊆ R2 be a finite set of points, and let P be a complete triangulation of A, and 
write P2 = F (P ) for the (complete) level-2 hypertriangulation whose white regions are 
decomposed by constrained Delaunay triangulations. We prefer to work with the original 
points of A, rather than the midpoints of its pairs. We therefore write Φ2 = f(P ) for 
the collection of triangles in P , together with the triangles in the constrained Delaunay 
triangulations of the wh(P, x), with x ∈ A. Consistent with the earlier convention, we 
call the triangles of Φ2 in P black and the other triangles of Φ2 white. Accordingly, we 
write Black(Φ2) for the black triangles in Φ2, and White(Φ2, x) for the white triangles 
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in Φ2 that triangulate wh(P, x). There is a bijection between Φ2 and P2 such that the 
corresponding triangles are similar (scaled by a factor 1

2 and possibly inverted), so the 
triangles in Φ2 and P2 define the same angles. Letting m be the number of triangles, we 
write Vector(P2) = Vector(Φ2) = (ϕ1, ϕ2, . . . , ϕ3m) for the vector of angles, which we 
order such that ϕi ≤ ϕi+1 for 1 ≤ i ≤ 3m − 1.

Repeating the construction with another (maximal) triangulation Q of A, we get 
another (complete) level-2 hypertriangulation of m black and white triangles, Q2, and 
another increasing angle vector, Vector(Q2) = Vector(Ψ2) = (ψ1, ψ2, . . . , ψ3m), in which 
Ψ2 = f(Q). It is lexicographically larger than the vector of Φ2, denoted Vector(Φ2) ≺
Vector(Ψ2), if there exists an index 1 ≤ p ≤ m such that ϕi = ψi, for 1 ≤ i ≤ p − 1, and 
ϕp < ψp. We write Vector(Φ2) � Vector(Ψ2) to allow for the possibility of equal angle 
vectors. This notation is useful because it is possible that two different triangulations, 
P �= Q, have the same angle vector. For example, if A has only 4 points and they are 
in convex position, then there are only two different triangulations of A, and the black 
triangles in the level-2 hypertriangulation of one are the white triangles in the level-2
hypertriangulations of the other, and vice versa.

According to Lemma 2.6, all maximal level-2 hypertriangulations have the same 
number of triangles. We can therefore compare their angle vectors lexicographically as 
described.

4.2. Elementary lemmas

If uvw is a triangle in White(Φ2, x), then it is not possible that u lies inside xvw. This 
is true independent of how we triangulate wh(P, x):

Lemma 4.1 (Star-convex Triangulation). Let uvw be a triangle in White(Φ2, x). Then 
either x is inside uvw or x, u, v, w are the vertices of a convex quadrangle.

Proof. Assume first that x is an interior vertex, so conv (A \ {x}) = convA. Since 
wh(P, x) is star-convex, with x in its kernel, every half-line emanating from x inter-
sects the boundary of wh(P, x) in exactly one point. Now suppose u lies inside the 
triangle xvw, and consider the half-line emanating from x that passes through u. Since 
x lies in the interior of wh(P, x), the half-line goes from inside to outside the region as 
it passes through u. But it also enters the triangle uvw, which lies inside wh(P, x). This 
is a contradiction because entering and leaving st(P, x) at the same time is impossible.

Assume second that x is a vertex of convA, so conv (A \ {x}) �= convA. Since uvw
is a triangle in wh(P, x), it is also a triangle in st(P, x). Furthermore, u, v, w are points 
on the boundary of st(P, x), and every half-line emanating from x that has a non-empty 
intersection with the interior of convA intersects this boundary in exactly one point. 
Assuming u lies inside xvw, we can now repeat the argument of the first case and get 
a contradiction because the half-line passing through u both enters and leaves st(P, x)
when it passes through u. �
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Every point x ∈ A belongs to at least two edges in P . However, if x belongs to only 
two edges, then every line that crosses both edges necessarily separates x from all points 
in A \ {x}. We state and prove a generalization of this observation.

Lemma 4.2 (Splitting a Triangulation). Let P be a triangulation of a finite set A ⊆ R2, 
let L be a line, and let Q be the vertices and edges of P that are disjoint of L. Then Q
consists of at most two connected components, one on each side of L.

Proof. Assume without loss of generality that L is horizontal, and let A′ ⊆ A contain 
all points strictly above L. The boundary of convA is a closed convex curve, γ, and we 
write γ′ ⊆ γ for the vertices and edges strictly above L. Every point a ∈ A′ is either 
a vertex of γ′, or there is an edge ab in P , with b above L and farther from L than a. 
Hence, ab ∈ Q. We can therefore trace a path from a that eventually reaches a vertex of 
γ′ in Q, which implies that the part of Q strictly above L is either empty or connected. 
Symmetrically, the part of Q strictly below L is either empty or connected, which implies 
the claim. �

By construction, the interior points of a black triangle, abc ∈ P , belong to st(P, a), 
st(P, b), st(P, c) but not to the stars of any other vertices. Hence, only the white triangles 
used in the triangulation of these three stars can possibly share interior points with abc. 
If a white triangle shares one or two of the vertices with abc, then this further restricts 
the stars this white triangle may help triangulate.

Lemma 4.3 (Shared Interior Points). Let P be a triangulation of a finite set A ⊆ R2, let 
abc be a black triangle and uvw a white triangle in Φ2 = f(P ), and suppose that abc and 
uvw share interior points.

(1) If u = a and v = b, then uvw ∈ White(Φ2, c).
(2) If v = b is the only shared vertex between abc and uvw, then uw cannot cross both 

ab and bc.
(3) If v = b and uw crosses bc, then uvw ∈ White(Φ2, c).
(4) uvw ∈ White(Φ2, x) for only one point x ∈ A.

Proof. (1) is immediate because c is the only vertex of abc that is not also a vertex of 
uvw.

To see (2), assume that uw crosses ab and also bc. Then uvw shares interior points with 
three black triangles in Φ2, namely abc and the neighboring triangles that share ab and bc
with abc. The only common vertex of the three black triangles is b, so uvw ∈ White(Φ2, b), 
but this is impossible because b = v.

To see (3), note that uvw shares interior points with two black triangles: bac and the 
black triangle on the other side of bc. Hence, uvw is contained in st(P, b) or st(P, c). 
Since b = v, the only remaining choice is uvw ∈ White(Φ2, c).
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To see (4), consider first the case that uvw shares interior points with only two black 
triangles, abc and bcd. Then one of its edges, say uv crosses bc, so u = a and w = d. But 
v cannot lie in the interior of the two black triangles or its edges, so v = b. Then c is the 
only remaining point such that uvw ∈ White(Φ2, c). If uvw shares interior points with 
three or more black triangles, then the black triangles share only one common vertex, x, 
hence uvw ∈ White(Φ2, x). �
4.3. Global optimality

The first main result of this paper asserts that Sibson’s theorem on increasing an-
gle vectors extends from order-1 to order-2 Delaunay triangulations. We first illustrate 
our approach by giving a new proof of Sibson’s angle vector optimality for the order-1 
Delaunay triangulation. Note that we establish the non-strict optimality while Sibson’s 
theorem gives the strict one in the generic case.

Theorem 4.4 (Sibson’s Theorem [21]). Let A ⊆ R2 be finite and generic, P a complete 
triangulation of A, and D = Del(A). Then Vector(P ) � Vector(D).

Proof. The genericity of A implies �xay �= �xby whenever points a, b ∈ A lie on the 
same side of the line that passes through x, y ∈ A. However, there may be two or more 
triplets of points in A that define the same angle. It will be convenient to have distinct 
angles, so we first apply a perturbation that preserves the order of unequal angles while 
making equal angles different. The relation for the perturbed points implies the same 
but possibly non-strict relation for the original points, since undoing the perturbation 
does not change the order of any two angles. So assume that the angles defined by the 
points in A are distinct, and to derive a contradiction, assume Vector(D) ≺ Vector(P ). 
More specifically, we write α1 < α2 < . . . < α3m and ϕ1 < ϕ2 < . . . < ϕ3m for the angles 
of D and P , respectively, and we assume αi = ϕi, for 1 ≤ i ≤ p − 1, and αp < ϕp, for 
some 1 ≤ p ≤ 3m. In other words, p is the first index at which the two angle vectors 
differ, and the p-th angle of D is smaller than the p-th angle of P . Write α = αp and let 
bac ∈ D be the triangle with α = �bac. By the assumption of distinct angles, bac �∈ P . 
To simplify the discussion, we assume that the line, L, that passes through b and c is 
horizontal and that a lies above L. Since P is a complete triangulation of A, every point 
of A is a vertex of P . We consider two cases for the triangles of P that cover the upper 
side of bc.1

If there is only one such triangle, bdc, then d �= a as P does not contain the triangle 
bac. Since D is the Delaunay triangulation of A, d lies outside the circumcircle of bac and 
therefore �bdc < α. This implies that bdc must be a triangle of D as the angle vectors 

1 We use the phrase “to cover the upper side of bc” informally, in the sense that we consider triangles that 
intersect or contain bc and some parts of an open neighborhood of bc above bc. A more formal explanation 
is given in the proof of Theorem 4.5.
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of D and P coincide at angles less than α. This is a contradiction as both bac and bdc
cannot belong to D.

If there are at least two triangles of P covering the upper side of bc, then we consider 
the triangle bxy that shares b with bac. Here x is above L and y is below L. Since c is a 
vertex of P , xy intersects bc and �bxy < �bxc < α. As in the first case, this implies that 
bxy is a triangle in D, which leads to a contradiction as the interiors of the triangles bxy
and bac overlap. �

We now use a similar approach to establish the angle vector optimality for the order-2 
Delaunay triangulation.

Theorem 4.5 (Angle Vector Optimality). Let A ⊆ R2 be finite and generic, P2 any 
complete level-2 hypertriangulation of A, and Δ2 = f(Del(A)). Then Vector(P2) �
Vector(Δ2).

Proof. Let P be the complete triangulation of A such that P2 = F (P ). Note, however, 
that we do not assume that the white triangles of P2 define constrained Delaunay trian-
gulations of the white regions. Let Φ2 = F (P ) be the designated aging of P so Φ2 shares 
its black triangles with P2, and the white triangles of Φ2 form constrained Delaunay tri-
angulation of the white regions. For each white region of P2 and Φ2, we apply Lawson’s 
edge-flip algorithm to turn the white triangles of P2 into the white triangles of Φ2; see [2, 
Section 2.10.3] for more details about this algorithm. Since every flip lexicographically 
improves the angle vector, we get Vector(P2) � Vector(Φ2), so it remains to show that 
Vector(Φ2) � Vector(Δ2).

Write D = Del(A), so Δ2 = f(D). The genericity of A implies that D and Δ2 are 
unique, but there may be two or more triplets of points that define the same angle. 
As in the proof of Theorem 4.4, it will be convenient to have distinct angles, so we 
apply a perturbation and assume that the angles defined by the points in A are distinct. 
To derive a contradiction, assume Vector(Δ2) ≺ Vector(Φ2). More specifically, we write 
α1 < α2 < . . . < α3m and ϕ1 < ϕ2 < . . . < ϕ3m for the angles of Δ2 and Φ2, respectively, 
and we assume αi = ϕi, for 1 ≤ i ≤ p − 1, and αp < ϕp, for some 1 ≤ p ≤ 3m. In other 
words, p is the first index at which the two angle vectors differ, and the p-th angle of Δ2

is smaller than the p-th angle of Φ2. Write α = αp and let bac ∈ Δ2 be the triangle with 
α = �bac. By the assumption of distinct angles, bac �∈ Φ2. To simplify the discussion of 
the various cases, we assume without loss of generality that

• the line, L, that passes through b and c is horizontal;
• the triangle bac, and therefore the vertex a, lie above L;

see Figs. 4 and 5. We first consider the case in which bac is a black triangle. There are 
three subcases, and in each we get a contradiction by constructing two triangles that 
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Fig. 4. Edges of black and white triangles are bold and fine, respectively, and edges of triangles in Δ2 and 
Φ2 are pink and green, respectively. Left: two overlapping triangles in White(Δ2, a) constructed in Case 
1.1. Middle: two crossing edges of black triangles in Φ2 constructed in Case 1.2.1. Right: two overlapping 
triangles in White(Δ2, c) constructed in Case 1.2.2.

share interior points. Note that two white triangles may share interior points, but not if 
they triangulate the same star.

Case 1: bac is a black triangle in Δ2. By definition of D = Del(A), bac does not contain 
a point of A in its interior, and if x ∈ A \{a} lies above L, then the angle �bxc is strictly 
smaller than α. We say a collection of triangles covers the upper side of the edge bc if 
every interior point of bc has an open neighborhood whose intersection with the closed 
half-plane above L is contained in the union of these triangles. The black triangles in Φ2
cover the entire convex hull of A and therefore also the upper side of bc. It is possible 
that a single black triangle in Φ2 suffices for this purpose, and this is our first subcase.

Case 1.1: the upper side of bc is covered by a single triangle, bxc ∈ Black(Φ2), as in 
Fig. 4 on the left. Since �bxc < α, bxc must be a white triangle in Δ2. Specifically, 
since a and x are both above L, and a lies inside the circumcircle of bxc, we have 
bxc ∈ White(Δ2, a).

To get a contradiction, we construct a second such white triangle. Since there are at 
least two points of A above L, Lemma 4.2 implies that P contains an edge connecting 
x to another point, x′ �= x, above L. Hence, wh(P, x) has a non-empty overlap with the 
open half-plane above L. Since bc belongs to the boundary of wh(P, x), there is a triangle 
bx′c in White(Φ2, x). We have x′ �= x by construction, and x′ �= a because this would 
imply that �bx′c = α is an angle in Vector(Φ2), which we assumed it is not. Since x′ lies 
outside the circumcircle of bac, we have �bx′c < α, so bx′c ∈ White(Δ2, a). But bxc and 
bx′c share interior points, which is a contradiction.

Case 1.2: to cover the upper side of bc requires two or more triangles in Black(Φ2), 
as in Fig. 4 in the middle and on the right. Among these triangles, let bxy and cx′y′ be 
the ones that share the vertices b and c with bac. Assuming x, x′ lie above L and y, y′

lie below L, we have �bxy < α and �cx′y′ < α, which implies bxy, cx′y′ ∈ Δ2. The two 
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triangles share interior points with bac, so they cannot be black and are therefore white 
in Δ2.

Case 1.2.1: at least one of x, x′ differs from a. Assume x �= a. Since xy crosses bc, 
it must cross another edge of bac, which by Lemma 4.3 (2) can only be ac. If x′ = a, 
then x′c = ac, and if x′ �= a, then x′y′ crosses ab and bc, again by Lemma 4.3 (2). 
In either case, bxy and cx′y′ share interior points inside triangle abc, which contradicts 
bxy, cx′y′ ∈ Black(Φ2).

Case 1.2.2: both x and x′ are equal to a. Then bay, cay′ ∈ Black(Φ2). Since �bay < α

and �cay′ < α, both are white triangles in Δ2. By Lemma 4.3 (1), bay ∈ White(Δ2, c)
and cay′ ∈ White(Δ2, b), which implies that cy and by′ are edges in Del(A). If y �= y′, 
then there are three possible choices for the points b, c, y, y′. First, they form a convex 
quadrangle, byy′c, with the points ordered as they are seen from a. The vertices of the 
quadrangle must be ordered that way as both triangles, bay and cay′, cover parts of the 
upper side of bc and cannot overlap since they both belong to Black(Φ2). But then by′

and cy cross, which contradicts that they both belong to Del(A). Second, y lies inside 
bcy′. Since cay′ ∈ White(Δ2, b), the circumcircle of cay′ encloses b and therefore y, which 
is one point too many for a white triangle in Δ2. Third, y′ lies inside bcy, but this is 
symmetric to the second choice. Since we get a contradiction for all three choices, we 
conclude that y = y′.

To get a contradiction, we use Lemma 4.2 to construct yet another triangle baz ∈
White(Δ2, c). Specifically, we let L be the line that passes through a and b, and rotate 
the picture so L is horizontal and c, y lie above L. Hence, there is a point z above L
such that yz is an edge in P and baz ∈ White(Φ2, y). We have z �= y by construction, 
and z �= c by assumption on angle α. Since ba and ac are both edges in the boundary 
of st(P, y), za crosses bc, so �baz < α, which implies that baz is a white triangle in Δ2, 
and by Lemma 4.3 (1), baz ∈ White(Δ2, c). But bay and baz share interior points, which 
is a contradiction. This concludes the proof of the first case.

Case 2: bac is a white triangle in Δ2. Let d be the point such that bac ∈ White(Δ2, d). 
Then da, db, dc are edges of black triangles in Δ2. We distinguish between the cases in 
which d lies below and above L.

Case 2.1: d lies below L; see the left and middle panels of Fig. 5. Then �bxc < �bac
for all x ∈ A above L, and �byc < �bdc for all y ∈ A below L. Indeed, since bac ∈
White(Δ2, d), the circumcircle of bac contains only d inside, because only such white 
triangles are included in the order-2 Delaunay triangulation Δ2; see Definition 3.1. This 
implies the inequality for every x ∈ A above bc. For every y ∈ A below bc, we have 
�bac +�byc < π, since y is outside the circumcircle abc, while �bac +�bdc > π, since d
is inside the circumcircle abc. This implies �byc < �bdc.
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Fig. 5. As before, we draw edges of black and white triangles bold and fine, respectively. To simplify, we show 
only edges of triangles in Δ2. Left: two overlapping triangles in White(Δ2, a) constructed in Case 2.1.1. 
Middle: similar two overlapping triangles in White(Δ2, a) constructed in a chain of deductions in Case 2.1.2. 
Right: a white triangle whose circumcircle encloses two points constructed in Case 2.2.

Similar to Case 1.1, we distinguish between the upper side of bc being covered by one 
or requiring two or more black triangles in Φ2. In both cases, we derive a contradiction 
by constructing triangles in White(Δ2, a) that share interior points.

Case 2.1.1: the upper side of bc is covered by a single triangle, bxc ∈ Black(Φ2); see 
the left panel of Fig. 5. Then �bxc < α, so bxc is a triangle in Δ2, and since a lies inside 
its circumcircle, we have bxc ∈ White(Δ2, a). Using Lemma 4.2, we find a point x′ above 
L such that xx′ is an edge in P and bx′c is a triangle in White(Φ2, x). We have x′ �= x

by construction, and x′ �= a, else �bx′c = α would be an angle in Vector(Φ2). Again 
�bx′c < α, so bx′c ∈ White(Δ2, a). This is a contradiction because bxc and bx′c share 
interior points.

Case 2.1.2: to cover the upper side of bc requires at least two triangles in Black(Φ2). 
Among these triangles, let bxy and cx′y′ be the ones that share b and c with bac, re-
spectively, and assume that x, x′ are above L and y, y′ are below L. We first prove that 
d is connected to b and c by edges of black triangles in Φ2, and thereafter derive a 
contradiction by constructing two triangles in White(Δ2, a) that share interior points.

Claim. bd and cd are edges of triangles in Black(Φ2).

Proof. To derive a contradiction, assume the claim is false and bd is not edge of any 
black triangle in Φ2. Hence y �= d. Since �bxy < α, bxy is also in Δ2. It shares interior 
points with the star of d without having d as a vertex, which implies that bxy must be 
white in Δ2.

Consider bdc, which is not necessarily a triangle in Δ2 or Φ2. However, since d is 
the only point inside the circumcircle of bac, there is no point of A inside bdc. Since 
xy crosses bc, it must cross either bd or cd. Assuming xy crosses bd, bxy shares interior 
points with the two black triangles with common edge bd in Δ2, so bxy ∈ White(Δ2, d)
by Lemma 4.3 (3). This is not possible since bxy and bac share interior points. Thus, 



20 H. Edelsbrunner et al. / Advances in Mathematics 461 (2025) 110055
xy crosses cd. Since bxy ∈ Black(Φ2), this implies that cd cannot be edge of any black 
triangle in Φ2. Hence y′ �= d, so we can use the symmetric argument to conclude that 
x′y′ crosses bd. But this is a contradiction since in this case bxy and cx′y′ share interior 
points inside the triangle bcd; see the middle panel of Fig. 4 where the situation is similar. 
This completes the proof of the claim.

Since bd and cd are edges of triangles in Black(Φ2), we have y = y′ = d. Consider 
st(P, d), which contains b and c on its boundary. The black triangles in Φ2 that cover the 
upper side of bc all share d as a vertex, which implies that bc lies inside this star. Indeed, 
by Lemma 3.4, it is an edge of a triangle in White(Φ2, d). Indeed, among the points of 
A, the circumcircle of bac contains only d inside, but d is not a vertex of the polygonal 
region wh(Φ2, d). Thus, there exists a triangle bzc ∈ White(Φ2, d) with z above L. We 
have z �= a by assumption on α, so �bzc < α, which implies that bzc is also a white 
triangle in Δ2, and since its circumcircle encloses a, bzc ∈ White(Δ2, a).

To construct a second such white triangle, note that this implies that ab and ac
are edges of triangles in Black(Δ2). As illustrated in the middle panel of Fig. 5, all of 
ab, ac, ad, bd, cd are edges of black triangles in Δ2, so bad, cad ∈ Black(Δ2). Hence, bd
and cd are edges in the boundary of st(D, a), and since bzc ∈ White(Δ2, a), we also have 
bdc ∈ White(Δ2, a). The angle at b satisfies �dbc < �dac < α because a lies inside the 
circumcircle of dbc, and since dbc is a triangle in Δ2, it must therefore also be a triangle 
in Φ2. It cannot be in Black(Φ2) because the upper side of bc requires at least two black 
triangles of Φ2 to be covered, by assumption. Hence, dbc is white in Φ2. It shares interior 
points with the two black triangles with common edge dz in Φ2, so dbc ∈ White(Φ2, z), 
by Lemma 4.3 (3).

Finally consider White(Φ2, z). It contains bdc and, by Lemma 4.2, it covers the upper 
side of bc. Hence, there is a triangle bz′c ∈ White(Φ2, z) with z′ above L. We have z′ �= z

by construction, and z′ �= a by assumption on α. Again, �bz′c < α, so bz′c ∈ Δ2, and 
since its circumcircle encloses a, we have bz′c ∈ White(Δ2, a). But this is a contradiction 
because bzc and bz′c share interior points.

Case 2.2: d lies above L; see the right panel of Fig. 5. Similar to Case 2.1.2, we begin 
by proving that d is connected to b and c by edges of black triangles in Φ2.

Claim. bd and cd are edges of triangles in Black(Φ2).

Proof. To derive a contradiction, assume the claim is false and bd is not edge of any 
black triangle in Φ2. Among the one or more black triangles needed to cover the upper 
side of bc, let bxy ∈ Black(Φ2) be the triangle that shares b with bac. Letting x be the 
vertex above L, we have x �= d by assumption. If bxy covers the upper side of bc by itself, 
then y = c, and otherwise, y lies below L. In either case, �bxy < α, so bxy is also a 
triangle in Δ2. It cannot be black because it shares interior points with st(D, d) without 
having d as a vertex, so bxy is a white triangle in Δ2. But this implies y �= c. Indeed, if 
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Fig. 6. From left to right: the order-1, order-2, and order-3 Delaunay triangulations of four points, interleaved 
with the two possible triangulations of these points.

y = c, then either bxy = bac, which contradicts the assumption on α, or the circumcircle 
of bxy encloses a as well as d, which is one point too many for a white triangle in Δ2.

So y is below L. Note that the circumcircle of bac encloses d and therefore bdc, and 
since x lies on or outside this circle, it cannot lie inside bdc. Since xy crosses bc, it thus 
must cross another edge of this triangle, either bd or cd. Assuming xy crosses bd, which 
is common to two black triangles in Δ2, we get bxy ∈ White(Δ2, d) from Lemma 4.3 (3). 
But bxy and bac ∈ White(Δ2, d) share interior points, which is a contradiction. Hence, 
xy crosses bc and cd, so cd cannot be an edge of a black triangle in Φ2.

Let now cx′y′ be among the triangles in Black(Φ2) needed to cover the upper side of 
bc that shares c with bac. By a symmetric argument, we conclude that x′y′ crosses bc
and bd. But this is a contradiction because bxy and cx′y′ share interior points inside the 
triangle bcd; see again the middle panel of Fig. 4 but substitute d for a. This completes 
the proof of the claim.

Hence, bd and cd are edges of black triangles in Φ2. This implies that b and c are 
points in the boundary of st(P, d). As argued above, there are no points of A inside bdc, 
so st(P, d) covers the upper side of bc. There is a circle that passes through b and c and 
encloses d but no other points of A, so by Lemma 3.4, bc is an edge of a triangle in 
White(Φ2, d). Let z be the point above L such that bzc ∈ White(Φ2, d). We have z �= d

by construction, and z �= a by assumption on α. Hence, �bzc < α, which implies that 
bzc is also a triangle in Δ2. However, the circumcircle of bzc encloses a and d, which 
is one too many for a white triangle in Δ2. This furnishes the final contradiction and 
completes the proof of the theorem. �
4.4. Counterexamples

Can Theorem 4.5 be extended or strengthened? In this subsection, we present exam-
ples that contradict the extension to order beyond 2 and the strengthening to order-2
hypertriangulations obtained from possibly incomplete triangulations.

Order beyond 2. Four points in convex position permit only two triangulations: D =
Del(A), and P , which consists of the other two triangles spanned by the four points. 
As illustrated in Fig. 6, Del2(A) consists of shrunken and possibly inverted copies of all 
four triangles, and Del3(A) consists of shrunken and inverted copies of the two trian-
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Fig. 7. The minimum angle in the displayed level-2 hypertriangulation is larger than the minimum angle of 
the order-2 Delaunay triangulation of the same points. Indeed, the smallest angle in the hypertriangulation 
of about 9 degrees is defined by the vertices [eh], [dh], [gh]. For comparison, the circle in the picture proves 
that the angle of about 6.4 degrees defined by the vertices [bc], [cd], [ac] belongs to the order-2 Delaunay 
triangulation (not shown).

gles in P . Assuming A is generic, Sibson’s theorem implies Vector(P ) ≺ Vector(D). 
There are two level-3 hypertriangulations: the order-3 Delaunay triangulation, with 
Vector(Del3(A)) = Vector(P ), and another, with Vector(P3) = Vector(D). Hence, 
Vector(Del3(A)) ≺ Vector(P3). In words, the vector inequality asserted in Theorem 4.5
for order-2 Delaunay triangulations does not even extend to order 3.

Compare this with Eppstein’s theorem [8], which asserts that for n points in convex 
position in R2, the order-(n − 1) Delaunay triangulation lexicographically minimizes the 
increasing angle vector. For n = 4 and points in convex position, the above conclusion 
is a consequence of this theorem.

Incomplete hypertriangulations. Theorem 4.5 compares the order-2 Delaunay triangula-
tion with all complete level-2 hypertriangulations, each aged from a triangulation that 
contains each point in A as a vertex. Enlarging this collection to possibly incomplete 
level-2 hypertriangulations is problematic since they do not necessarily have the same 
number of angles as Del2(A). We can still compare the smallest angles, but there are 
counterexamples. Indeed, Fig. 7 shows a set of nine points whose order-2 Delaunay trian-
gulation does not maximize the minimum angle if incomplete level-2 hypertriangulations 
participate in the competition. We note that for these particular nine points, the angle 
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vectors of Del2(A) and the displayed level-2 hypertriangulation have the same length. 
This implies that the requirement of completeness cannot be weakened to maximality, 
which is equivalent to having the same number of triangles.

4.5. Corollary for MaxMin angle

Theorem 4.5 implies that among all complete level-2 hypertriangulation, the order-2
Delaunay triangulation is distinguished by maximizing the minimum angle. Using Sib-
son’s result for level-1 hypertriangulations [21], there is a short proof of this corollary. No 
such similarly short proof is known for the angle vector optimality of order-2 Delaunay 
triangulations.

Corollary 4.6 (MaxMin Angle Optimality). Let A ⊆ R2 be finite and generic, and P a 
complete triangulation of A. Then the minimum angle of the triangles in Φ2 = f(P ) is 
smaller than or equal to the minimum angle of the triangles in Δ2 = f(Del(A)).

Proof. Write D = Del(A), for each x ∈ A, write D(x) = Del(A \ {x}), and let P (x) be 
the triangulation of A \ {x} obtained by removing the triangles that share x from P and 
adding the triangles in the constrained Delaunay triangulation of wh(P, x). By Sibson’s 
theorem, the smallest angle in P is smaller than or equal to the smallest angle in D, 
and for each x ∈ A, the smallest angle in P (x) is smaller than or equal to the smallest 
angle in D(x). The smallest angle in Δ2 is the minimum angle in D and all D(x), and 
the smallest angle in Φ2 is the minimum angle in P and all P (x), for x ∈ A. Hence, the 
smallest angle in Φ2 is smaller than or equal to the smallest angle in Δ2. �
5. Uniqueness of local angle property

In this section, we prove the second main result of this paper, which supports the 
Local Angle Conjecture formulated at the end of Section 3.3 by proving it for the case 
k = 2. We begin with three basic lemmas on hypertriangulations that satisfy some or all 
of the conditions in Definition 3.2.

5.1. Useful lemmas

To streamline the discussion, we call a union of black triangles a black region if its 
interior is connected and it is not contained in a larger black region of the same triangu-
lation. Similarly, we define white regions. Furthermore, we refer to black or white angles
when we talk about the angles inside a black or white triangle.

Lemma 5.1 (Black Regions are Convex). Let A ⊆ R2 be finite and generic, and let Pk

be a level-k hypertriangulation of A that satisfies (bb). Then every black region of Pk is 
convex, and all vertices of the restriction of Pk to the black region lie on the boundary 
of that region.
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Proof. Let a be a boundary vertex of a black region, with edges ab0, ab1, . . . , abp+1
bounding the p + 1 incident black triangles in the region. (bb) implies �abi−1bi +
�abi+1bi > π for 1 ≤ i ≤ p, so the sum of the 2(p + 1) angles is larger than pπ. 
Hence, the sum of the remaining p + 1 angles at a is less than π, as required for the 
black region to be convex at a. The same calculation shows that a ring of black triangles 
around a vertex in the interior of the black region is not possible. �
Lemma 5.2 (Total Black Angles). Let A ⊆ R2 be finite and generic, and let Pk be a 
level-k hypertriangulation of A that has the local angle property. Then the sum of black 
angles at any vertex of Pk is less than π.

Proof. Let a be a vertex of Pk. If a is a boundary vertex, then the claim is trivial. If a is 
an interior vertex and incident to at most one black region, then the claim follows from 
Lemma 5.1. So assume that a is interior and incident to p ≥ 2 black and therefore the 
same number of white regions. Let ab1, ab2, . . . , ab2p be the edges separating the black 
and white regions around a, with the region between ab1 and ab2 being black. We also 
assume that the angle between any two consecutive edges is less than π, else the claim 
is obvious.

We look at the edge ab2 and claim that �ab1b2 > �ab3b2. The black region between ab1
and ab2 satisfies (bb), so its triangulation is the farthest-point Delaunay triangulation. 
In it, every triangle that shares an edge with the boundary of the region has the property 
that the angle opposite to the boundary edge is minimal over all choices of third vertex 
[8]. Therefore, �ab1b2 is greater than or equal to the angle opposite to ab2 inside the 
black triangle.

Similarly, the triangulation of the white region between ab2 and ab3 satisfies (ww), so 
its triangulation is the constrained Delaunay triangulation of the region. Thus, �ab3b2
is smaller than or equal to the angle opposite to ab2 inside the white triangle. Applying
(bw) to ab2, we get the claimed inequality.

We repeat the same argument for all other edges separating black from white regions 
around a, and compare the sum of black and white angles opposite these edges:

∑p

i=0
(�ab2i+1b2i+2 + �ab2i+2b2i+1) >

∑p

i=0
(�ab2ib2i+1 + �ab2i+1b2i) , (1)

in which the indices are modulo 2p. The sum of black angles at a is pπ minus the first 
sum in (1), and the sum of white angles at a is pπ minus the second sum in (1). Therefore 
the sum of black angles at a is less than the sum of white angles at a. �
Lemma 5.3 (Local Angle Property and Aging Function). Let A ⊆ R2 be finite and generic, 
Pk a level-k hypertriangulation of A, and Pk−1 = F−1(Black(Pk)) a level-(k− 1) hyper-
triangulation of A. If Pk has the local angle property, then Pk−1 satisfies (ww).

Proof. We consider two adjacent white triangles with vertices [Xa], [Xb], [Xc] and [Xb], 
[Xc], [Xd] in Pk−1. Applying the aging function, we get two black triangles of Pk with 



H. Edelsbrunner et al. / Advances in Mathematics 461 (2025) 110055 25
vertices [Xab], [Xac], [Xbc] and [Xbc], [Xbd], [Xcd]. They share [Xbc], which implies that 
the sum of their angles at this vertex is less than π by Lemma 5.2. The two black triangles 
are homothetic copies of abc and bcd, and so are the corresponding two white triangles 
in Pk−1, so (ww) follows. �
5.2. Level-2 hypertriangulations

We are now ready to confirm the Local Angle Conjecture for level-2 hypertriangula-
tions.

Theorem 5.4 (Local Angle Conjecture for Level 2). Let A ⊆ R2 be finite and generic, and 
let P2 be a maximal level-2 hypertriangulation of A. Then P2 has the local angle property 
iff it is the order-2 Delaunay triangulation of A.

Proof. No two black triangles in P2 share an edge, which implies that (bb) is void. On the 
other hand, there are pairs of adjacent white triangles that belong to the triangulation 
of white regions in P2. In complete level-2 hypertriangulations, each such region is a 
polygon without points (vertices) inside, but in the more general case of maximal level-2
hypertriangulations considered here, there may be such points or vertices. In either case,
(ww) implies that the restriction of P2 to each white region is the constrained Delaunay 
triangulation of this region.

Let P be the underlying (order-1) triangulation of A, which consists of the images 
of the black triangles in P2 under the inverse aging function. We begin by establishing 
that P is maximal and therefore P2 is complete. Suppose x ∈ A is not a vertex of P , 
and let abc be the triangle in P that contains x in its interior. Consider the triangle 
with vertices c′ = [ab], b′ = [ac], and a′ = [bc] in Black(P2). The edge connecting b′

and c′ is shared with [wh(P2, a)], and this white region contains x′ = [ax]. Since P2
is maximal, by assumption, x′ is a vertex of the restriction of P2 to this white region. 
Let d′ be the vertex of P2 such that b′d′c′ is a triangle of White(P2, a). This triangle 
belongs to the constrained Delaunay triangulation of the white region, because this is the 
only triangulation that satisfies the (ww) property for all interior edges. Recall that the 
triangle b′yc′ in the constrained Delaunay triangulation has the property that the angle 
at y is maximal over all possible choices of y ∈ A in the region visible from b′ and c′. 
Hence, �b′d′c′ ≥ �b′x′c′, as x′ is visible from b′ and c′, because the whole triangle b′x′c′

lies in the white region, but also �b′x′c′ = �bxc > �bac = �b′a′c′, because x is inside 
abc. This implies �b′d′c′ > �b′a′c′, which contradicts (bw) for P2, so P is necessarily 
maximal.

Applying Lemma 5.3 to P2, we conclude that P satisfies (ww). Since P is maximal, 
the only choice left is that P is the Delaunay triangulation of A. The black triangles 
in P2 thus coincide with the black triangles in the order-2 Delaunay triangulation of A, 
and P2 restricted to each of its white regions is the constrained Delaunay triangulation 
of this region. Hence, P2 is the order-2 Delaunay triangulation of A. �
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5.3. Level-3 hypertriangulations

We say A ⊆ R2 is in convex position if all its points are vertices of convA. For such 
sets, we can extend Theorem 5.4 to level-3 hypertriangulations. The main differences 
to general finite sets are that all triangulations have the same number of triangles, and 
the aging function exists, as established by Galashin in [10] but see also [7]. We use this 
function together with the characterization of the order-2 Delaunay triangulation as the 
only level-2 hypertriangulation that has the local angle property.

Theorem 5.5 (Local Angle Conjecture for Level 3). Let A ⊆ R2 be finite, generic, and 
in convex position, and let P3 be a hypertriangulation of A. Then P3 has the local angle 
property iff it is the order-3 Delaunay triangulation of A.

Proof. By Theorem 3.3, the order-3 Delaunay triangulation has the local angle property. 
Let P3 be a possibly different level-3 hypertriangulation that also has the local angle 
property, and let P2 = F−1(Black(P3)), which exists because A is in convex position [10]. 
By Lemma 5.3, P2 satisfies (ww). Recall that (bb) is void for level-2 hypertriangulations, 
so if in addition to (ww), P2 also satisfies (bw), then it has the local angle property. 
By Theorem 5.4, this implies that P2 is the order-2 Delaunay triangulation of A. Its 
white triangles are in bijection with the triplets of points whose circumcircles enclose 
exactly one point of A, and since Black(P3) = F (White(P2)), so are the black triangles 
of P3. Thus, P3 has the same black triangles as the order-3 Delaunay triangulation of 
A. Furthermore, the white regions of P3 coincide with the white regions of the order-3
Delaunay triangulation, and because the restriction of either triangulation to a white 
region is the constrained Delaunay triangulation of that region, we conclude that P3 is
the order-3 Delaunay triangulation of A.

It remains to show that P2 indeed satisfies (bw). To derive a contradiction, we assume 
it does not. Let [ab], [ac], [bc] and [ab], [ac], [ad] be the vertices of a black triangle and 
an adjacent white triangle that violate (bw), so �bac < �bdc. Let P = F−1(Black(P2)), 
and consider the star of a in P . All vertices are in convex position, including a, b, c, d, 
so we may assume that ac crosses bd, as in Fig. 8 on the left. Let ax1 = ab, ax2 =
ac, . . . , axp = ad be the sequence of edges in the star of a that intersect bd. We consider 
the polygon with vertices a, x1, x2, . . . , xp. Since A is in convex position, the polygon is 
convex, which implies that its constrained Delaunay triangulation is also the Delaunay 
triangulation of the p + 1 points. Denote this Delaunay triangulation by Δ, and note 
that it includes bcd = x1x2xp: a is outside the circumcircle of bcd, because abc and 
bcd violate (bw), and so is every xi with 3 ≤ i ≤ p − 1, because bcd is a triangle in 
White(P2, a). The rest of Δ consists of abd = ax1xp and the triangles of White(P2, a)
on the other side of x2xp. An ear of Δ is a triangle that has two of its edges in the 
boundary of the polygon. For example, ax1xp is an ear, but since every triangulation 
of a polygon with at least four vertices has at least two ears, there is another one, and 
we write uvw = xi−1xixi+1 for a second ear of Δ. The corresponding triangle in P2 has 
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Fig. 8. The superposition of three levels. Left: part of the star of a in P on level 1, the (white) triangles 
in this star aging to black triangles in P2 on level 2, and the only two white triangles in the star of [av]
aging to two black triangles in P3 on level 3. One is similar to uvw and the other to auw, which is assumed 
to be unique. Right: compared to the configuration on the left, there are two extra white triangles, which 
increase the star of [av] in P2 from two to four triangles. Accordingly, we see a white quadrangle on level 3.

vertices [au], [av], [aw] and is adjacent to black triangles with vertices [au], [av], [uv]
and [av], [aw], [vw]. Both pairs violate (bw) because a lies outside the circumcircle of 
uvw. Looking closely at this configuration, we note that [av] is shared by the two black 
triangles and also belongs to [wh(P2, a)] and [wh(P2, v)]; see again Fig. 8 on the left. We 
distinguish between two cases: when [av] belongs to only one triangle in the triangulation 
of the latter white region, and when it belongs to two or more such triangles.

Assuming the first case, we apply the aging function to the two white triangles sharing 
[av], which gives two black triangles with vertices [auv], [auw], [awv] and [auv], [awv], 
[uwv] in P3. They share an edge, and since a lies outside the circumcircle of uvw, they 
violate (bb), which is the desired contradiction.

There is still the second case, when [av] belongs to two or more triangles in the 
triangulation of [wh(P2, v)]. Let [uv] = [y1v], [y2v], . . . , [yqv] = [wv] be the vertices of 
[wh(P2, v)] connected to [av]; see Fig. 8 on the right. These q edges bound q − 1 white 
triangles in P2. Consider their images under the aging function, which are q − 1 black 
triangles in P3. Together with the black triangle with vertices [auv], [auw], [awv], these 
black triangles surround a convex q-gon with vertices [auv] = [ay1v], [ay2v], . . . , [ayqv] =
[awv]; see again Fig. 8 on the right. The q-gon is convex because A is in convex position, 
and we claim it is a white region in P3. If there is any black triangle, T , inside this q-gon, 
then we consider any generic segment connecting T to the boundary of the q-gon, and 
the closest part of that segment to the boundary colored black in P3. By construction, 
the triangle T ′ containing this part has two vertices labeled [avz1] and [avz2], for some 
z1 and z2. Hence, F−1(T ′) is a white triangle of P2 incident to [av], which is impossible, 
as all white triangles in P2 incident to [av] age to black triangles surrounding the q-gon. 
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Recall that P3 satisfies (ww), so the restriction of P3 to the q-gon is the (constrained) 
Delaunay triangulation of the q-gon.

Consider the edge connecting [auv] = [ay1v] and [awv] = [ayqv] of the q-gon, and let 
[ayiv] be the third vertex of the incident white triangle. Because this triangle is part of the 
(constrained) Delaunay triangulation, we have �uyjw < �uyiw for all j �= i, and because 
P3 satisfies (bw), we have �uyiw < �uvw. Recall that a lies outside the circumcircle of 
uvw, so �uvw + �uaw < π. This implies �uyiw + �uaw < π. Hence, the circumcircle 
of the triangle with vertices [uv], [yiv], [wv] does not enclose any of the other vertices. It 
follows that the triangle belongs to the constrained Delaunay triangulation of the polygon 
with vertices [uv] = [y1v], [y2v], . . . , [yqv] = [wv], but it does not because this polygon is 
triangulated with edges that all share [av]. This gives the final contradiction. �
6. Concluding remarks

In this last section, we discuss open questions about hypertriangulations. The obvious 
one is whether optimality properties other than angles can be generalized from level 1 to 
higher levels: for example the smallest circumcircle [4], the smallest enclosing circle [18], 
roughness [19], and other functionals [6, Chapter 3] and [15], which are all optimized by 
the order-1 Delaunay triangulation. In addition, we list a small number of more specific 
questions and conjectures directly related to the discussions in the technical sections of 
this paper.

Flipping as a proof technique. Sibson’s original proof for the angle vector optimality 
of the Delaunay triangulation [21] uses the sequence of edge-flips provided by Lawson’s 
algorithm [13]. There is such a sequence for every complete triangulation, and each 
flip lexicographically increases the vector. The authors of this paper pursued a similar 
approach to prove Theorem 4.5 using the flips of Types I to IV developed in [7]; see 
Fig. 9 on the right. While these flips connect all level-2 hypertriangulations of a finite 
generic set (Theorem 4.4 in [7]), they do not necessarily lexicographically increase the 
angle vector.

Indeed, there is a level-2 hypertriangulation of six points, Q2, different from the 
order-2 Delaunay triangulation, such that every applicable flip lexicographically de-
creases the sorted angle vector. The six points in this example are a, b, c, g, h, i in 
Fig. 9, and we obtain Q2 from the shown hypertriangulation by removing the vertices 
[ad], [dg], [be], [eh], [cf ], [fi]. In Q2, there are only three possible flips, all of Type I, and 
all three lexicographically decrease the sorted angle vector. Incidentally, six is the small-
est number of points for which such a counterexample to using flips as a proof technique 
for level-2 hypertriangulations exists.

Let P2 be the level-2 hypertriangulation in Fig. 9 (without removing points d, e, f). 
It provides a counterexample to using a local retriangulation operation more powerful 
than a flip as a proof technique. To explain, let P and P ′ be two complete level-1 hy-
pertriangulations of the same set. Let P2 = F (P ) and P ′

2 = F (P ′) be the aged level-2
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Fig. 9. Right: the four types of flips that connect the level-2 hypertriangulations of a given set. Left: a 
complete level-2 hypertriangulation such that every applicable compound flip decreases the sorted angle 
vector. The dashed edges appear after removing vertices [ad], [dg], [be], [eh], [cf ], [fi].

hypertriangulations such that the restriction to any white region is the constrained De-
launay triangulation of that region. Equivalently, P2 and P ′

2 satisfy (ww). If P and P ′ are 
connected by a single flip of Type I, we say that P2 and P ′

2 are connected by a compound 
flip. It consists of a sequence of Type I flips affecting white regions in P2, followed by a 
Type III flip, followed by a sequence of Type I flips affecting white regions in P ′

2. Such a 
compound flip may increase the sorted angle vector even if some of its elementary flips 
do not. Nevertheless, all compound flips applicable to P2 in Fig. 9 decrease the sorted 
angle vector, thus spoiling the hope for an elegant proof of Theorem 4.5 using compound 
flips. This motivates the following question.

Question A. Does there exist a flip-like approach to proving Theorem 4.5 on the angle 
vector optimality for complete level-2 hypertriangulations?

Angle vector optimality and local angle property. Recall that Theorem 4.5 proves the 
optimality of the Delaunay triangulation only for order-2 and among all complete level-2
hypertriangulations. Indeed, Section 4.4 shows counterexamples for order-3 and for relax-
ing to maximal level-2 hypertriangulations. This motivates the following two questions:

• Is there a sense in which the order-k Delaunay triangulations optimize angles for all 
k?

• Among all maximal level-2 hypertriangulations, which one lexicographically maxi-
mizes the sorted angle vector?
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Recall also that Theorem 5.4 proves that the local angle property characterizes the 
order-2 Delaunay triangulation among all maximal level-2 hypertriangulations, leaving 
the case of higher orders open. We venture the following conjecture, while keeping in 
mind that some condition on the family of competing hypertriangulations is needed to 
avoid Delaunay triangulations of proper subsets of the given points.

Conjecture B (Local Angle Conjecture). Let A ⊆ R2 be finite and generic, and for every 
1 ≤ k ≤ #A − 1 let Fk be the family of level-k hypertriangulations that have the local 
angle property. Then Pk ∈ Fk has the maximum number of triangles iff Pk is the order-k
Delaunay triangulation of A.

In the formulation of this conjecture, we maximize the number of triangles over all 
members of Fk, and not over all level-k hypertriangulations of A, because the latter may 
not contain any that have the local angle property. To see this, let A be any finite set 
that is not in convex position. For k = #A−1, all triangles are black, and by Lemma 5.1, 
condition (bb) of the local angle property implies that no point in the interior of convA
is a vertex of the triangulation. Thus every hypertriangulation on this level that has the 
local angle property does not have the maximum number of triangles. Also note that 
Theorem 5.5 shows that the conjecture holds for the case k = 3 and points in convex 
position. More generally, for such points all level-k hypertriangulations have the same 
number of triangles; see [7] for interpretation of results from [10,17].

Maximal and maximum hypertriangulations. Recall that a hypertriangulation is maximal
if no other hypertriangulation of the same level subdivides it. We say a hypertriangulation 
is maximum if no other hypertriangulation of the same level has more triangles. In an 
attempt to generalize Lemma 2.6 to levels beyond 2, we conjecture that the number of 
triangles in a maximal hypertriangulation depends on the given points but not on how 
these points are triangulated.

Conjecture C. Let A ⊆ R2 be finite and generic. Then any two maximal level-k hyper-
triangulations of A have the same and therefore maximum number of triangles. In other 
words, every maximal level-k hypertriangulation is maximum.

The conjecture holds for points in convex position [10,17], and we have verified it for 
a few small configurations in non-convex position. If true, this might have combinatorial 
meaning as the vertices of maximal hypertriangulations would then encode data from 
the matroid defined by the point set. We refer to [11] for an extensive discussion of this 
topic in connection to zonotopal tilings and collections of separated subsets, in particular 
for points in convex position.
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /
10 .1016 /j .aim .2024 .110055.
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