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Abstract1

Motivated by questions about simplification and topology optimization, we take a discrete approach2

toward the dependency of topology simplifying operations and the reachability of perfect Morse3

functions. Representing the function by a filter on a Lefschetz complex, and its (non-essential)4

topological features by the pairing of its cells via persistence, we simplify using combinatorially5

defined cancellations. The main new concept is the depth poset on these pairs, whose linear extensions6

are schedules of cancellations that trim the Lefschetz complex to its essential homology. One such7

linear extensions is the cancellation of the pairs in the order of their persistence. An algorithm that8

constructs the depth poset in two passes of standard matrix reduction is given and proven correct.9
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1 Introduction10

The primary aim of this paper is to shed light on the general question of simplification11

while preserving topology or, more specifically, on the dependencies between the operations12

that locally simplify. Examples are cancellations of critical point pairs in a Morse function,13

and collapses of simplex pairs in a simplicial complex. Depending on the sequence, these14

operations may or may not succeed in producing a perfect Morse function or a single vertex15

complex. Another source of motivation is the optimization of topology. To relate the two16

problems, we may think of ‘simplifying’ a function on a domain, while ‘optimizing’ the17

topology of a sublevel set of that function. The target of the optimization may address18

topology directly (such as minimizing the Betti numbers under some constraints) or indirectly19

(such as maximizing the strength-to-weight ratio of a shape). Optimizing shapes for everyday20

use is important, so there is a discipline within engineering dedicated to this subject [5].21

The approach to these problems taken in this paper1 is discrete and based on Lefschetz27

complexes [14] to represent shapes or spaces, which are abstractions of the more geometric28

cellular complexes. In this context, a continuous function is replaced by a filter, which maps29

cells to real numbers satisfying the mild requirement that the faces of a cell receive values30

1 A subset of the results appeared in an earlier version of this paper [10]. The connection to concepts in
discrete Morse theory [12], and extensions to combinatorial dynamics [17] will be reported elsewhere.
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smaller than the cell. The operations are cancellations of cell in pairs, and preferably in31

shallow pairs—which were introduced under the name apparent pairs in [2]—as they preserve32

the rest of the topological structure to the extent this is possible.2 The dependence between33

cancellations arises because pairs may or may not become shallow depending on which34

shallow pairs are canceled in which sequence. These dependencies are captured by the depth35

poset, which we construct using customized matrix reduction algorithms, and which may be36

used to annotate the persistence diagram of the filter. Figure 1 shows an example in the37

simplistic setting of a function on a circle: three rounds of cancellations of shallow min-max38

pairs suffice to produce a function with a single min-max pair, and the poset at the lower39

right presents all linear schedules of shallow cancellations.

A B C D E F G Hd hb aa c f ge HA D g aa c

HA g aa

g,H

d,C f,F e,E h,G

c,D

b,B

Figure 1: Upper left: a generic smooth function with 8 minima and 8 maxima on a circle. Upper right:
simplified version of the function after canceling all 5 shallow min-max pairs, which are indicated by red
arrows. The 5 cancellations turn a former non-shallow min-max pair shallow, whose cancellation leads to
the further simplified version of the function at the lower left. The cancellation of the last birth-death pair,
which is now shallow, produces a function with a single minimum and a single maximum (not shown).
Lower right: the depth poset, whose relations express the dependencies between the cancellations: its
linear extensions are sequences such that each pair is shallow at the time it is canceled.

40

There is related prior work on simplifying piecewise linear functions using the persistence41

diagram to quantify distortion, which gives satisfying results for 2-manifolds but runs into42

topological obstacles for 3-manifolds [1, 4]. The prior work on topological optimization most43

directly related to this paper has focused on operations that move points in the persistence44

diagram, which include cancellations [11, 18]. The customized matrix reduction we use to45

construct the depth poset uses elements of the column and row reduction algorithms for46

persistent homology described in [3, 7].47

Outline. Section 2 explains Lefschetz complexes and cancellations. Section 3 introduces48

shallow pairs as special birth-death pairs defined in persistent homology. Importantly, it49

identifies two special total orders along which all cancellations are of shallow pairs. Section 450

2 In the case of a 1-dimensional function, a min-max pair is shallow iff the max is the lower of the two
neighboring maxima of the min, and the min is the higher of the two neighboring minima of the max.
The structure of these pairs was recently exploited in adaptive sorting of lists [19].
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defines the main new concept, the depth poset, proves some of its properties, and gives51

a matrix reduction algorithm to construct it. One of the off-shots of this construction is52

the insight that the order of the birth-death pairs by persistence also enjoys the property53

mentioned for the two special total orders. Finally, Section 5 concludes the paper.54

2 Cancellations in Lefschetz Complexes55

We are interested in the dependence of the topological features of a function on a space56

or, in the discrete setting studied in this paper, of a filter on a complex. To make this57

concrete, we need to specify what we mean by a feature, and what family of complexes58

and operations between them we consider. This section fixes the latter two variables to the59

Lefschetz complexes and cancellations between them, while it leaves the discussion of the60

features to the next section.61

2.1 Lefschetz Complexes62

We work with an abstraction of a geometric cellular complex, referred to as a Lefschetz63

complex. It keeps track of the dimension of each cell and its incidences with cells of one lower64

or higher dimension, but it does not worry about geometric details, such as how the cells are65

attached to each other. To simplify its exposition, we use modulo-2 arithmetic throughout66

this paper, which amounts to working with homology for coefficients in Z/2Z.67

▶ Definition 2.1 (Lefschetz Complex). A Lefschetz complex is a triplet (X,dim,∆), in which68

X is a finite set of elements called cells, dim: X → Z maps each cell to its dimension, and69

∆ : X ×X → {0, 1} is a map such that ∆(x, y) ̸= 0 only if dim y = dim x+ 1, and70 ∑
y∈X

∆(x, y) · ∆(y, z) = 0 (1)71

holds for all x, z ∈ X. If ∆(x, y) = 1, we call x a facet of y, we call y a cofacet of x, and72

we write x < y to denote this relation. The dimension of X is dimX = maxx∈X dim x.73

We will sometimes shorten the notation and refer to X as a Lefschetz complex. Using74

Equation (1), we associate with X a chain complex and homology, following the same75

standard scheme as for cellular complexes. Reusing the notation ∆ for the associated76

boundary matrix, we observe that ∆[x, y] = ∆(x, y). Whenever convenient, we split ∆ into77

the boundary matrices dedicated to individual dimensions, with ∆p recording the incidences78

between cells of dimension p and p− 1.79

The abstraction of a cellular complex to its Lefschetz complex is with controlled loss of80

information. Beyond the geometric details, we also lose information about the homotopy type.81

An example is the 3-sphere, which may be represented by the Lefschetz complex consisting82

of two isolated cells, one of dimension 0 and the other of dimension 3. The same Lefschetz83

complex represents the Poincaré homology 3-sphere, which has isomorphic homology groups84

but a different homotopy type than the 3-sphere [13].85

A simplicial complex and its barycentric subdivision have identical underlying spaces and86

therefore isomorphic homology groups. Abstractly, the barycentric subdivision corresponds to87

the order complex of the face poset of the simplicial complex. This observation generalizes to88

regular complexes, whose cells are topological balls attached to each other via homeomorphic89

gluing maps, but not necessarily to cellular complexes with more complicated gluing maps.90

Alternatively, we can consider the free chain complex defined by the Lefschetz complex and91

define its homology from the corresponding cycle and boundary groups. While the thus92
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obtained homology of a Lefschetz complex is generally different from the singular homology93

of the corresponding order complex, the two agree when the Lefschetz complex represents a94

regular complex. Indeed the following is a corollary of a theorem by McCord from 1966.95

▶ Theorem 2.2 (McCord [16]). If X is a regular complex, then the homology of the free96

chain complex defined by its Lefschetz complex is isomorphic to the singular homology of X.97

The following two subsections give the reasons we will work with the homology of the98

free chain complex, also for cases in which the Lefschetz complex does not correspond to a99

regular complex, such as the ones in Figure 3.100

2.2 Cancellations101

Intuitively, a cancellation in a complex is like a collapse, except that it can also happen102

inside and thus away from the boundary. Such an “interior collapse” has consequences, as103

it distorts cells and may turn a regular complex into one in which the gluing maps are no104

longer homeomorphic. We cope with these consequences by ignoring them on the account of105

the more abstract Lefschetz complex.106

▶ Definition 2.3 (Cancellation). Let (X,dim,∆) be a Lefschetz complex and s < t both in X.107

The cancellation of the pair removes both cells and updates the incidence relation accordingly.108

Specifically, it sets X ′ = X \ {s, t}, dim′ = dim|X′ , and ∆′ : X ′ ×X ′ → {0, 1} such that109

∆′(x, y) = ∆(x, y) + ∆(s, y) · ∆(x, t), (2)110

for all x, y ∈ X ′. We refer to (X ′,dim′,∆′) as the quotient after canceling s and t.111

xxs

t yy

y

s

x

1

t

Figure 2: The effect of canceling s < t on the Lefschetz complex on the left and the boundary matrix
on the right. If in addition x were also incident to y, then the cancellation would removed this incidence,
leaving y without child and x without parent (not shown).

Figure 2 illustrates the effect of canceling s < t. In particular, the cancellation adds column112

t to every other column y for which s < y or, alternatively, it adds row s to every other row113

x for which x < t. After either the column or the row operations, the cancellation removes114

rows s and t as well as columns s and t from the matrix. It is not difficult to see that the115

quotient is again a Lefschetz complex. More importantly, the cancellation preserves the116

homology of the complex, since it translates into row or column operations that preserve the117

ranks of the individual boundary matrices. We state this for later reference.118

▶ Proposition 2.4. A Lefschetz complex and its quotient after canceling a facet-cofacet pair119

have isomorphic homology groups.120

Example. To show that cancellations in a Lefschetz complex are more powerful than collapses,126

we illustrate how they remove a Dunce hat [21] attached to one end of a cylinder in Figure 3.127
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To get the ranks of the homology groups, we count the generators of the cycle and boundary128

groups; see Table 1. As predicted by Proposition 2.4, the cancellation does not affect the129

ranks of the homology groups.

urnhat cyl

BA

BB AB

B

A AA BB AB

A B B

A

Figure 3: Far left: a cylinder cut along the edge AB, which connects the points A and B on its two
boundary circles (represented by the edges AA and BB), and (an artistic sketch of) a Dunce hat attached
to AA three times. Far right: after canceling the Dunce hat and AA, we get an upside-down urn cut along
the edge connecting A (to which the Dunce hat contracted) to B. In the middle: the Lefschetz complexes
before and after the cancellation of the Dunce hat.

121 before after
122 Zp Bp βp Zp Bp βp

123 p = 0 A,B A+B 1 A,B A+B 1
124 p = 1 AA,BB AA,BB 0 BB BB 0
125 p = 2 ∅ ∅ 0 ∅ ∅ 0

Table 1: The generators of the cycle and boundary groups of the Lefschetz complexes in Figure 3.
Recall that these complexes differ by canceling the Dunce hat at the top of the space on the left.

130

3 Shallow and Other Birth-death Pairs131

In this section, we return to the notion of a topological feature, which for a filtered complex132

will be a birth-death pair of cells. We define them in a quick introduction to persistent133

homology and refer to [8] for more comprehensive background on this topic. Among the134

birth-death pairs, we will single out the simplest kind as shallow pairs, which we use to135

explore the dependence between all birth-death pairs of a given ordered complex.136

3.1 Persistent Homology137

By a filter of a Lefschetz complex, X, we mean an injective function f : X → R such that138

f(x) < f(y) whenever x < y. Write Xb = f−1(−∞, b] for the sublevel set at b ∈ R. By139

construction, every sublevel set of f is a Lefschetz complex, and we refer to the increasing140

sequence of distinct sublevel sets as the filtration induced by f . To describe how the homology141

changes as we move from one sublevel set to the next, we write [d]b for the homology class142

of a cycle d ∈ Z(Xb). Let a < b be consecutive values of f , so there are cells x, y ∈ X such143

that a = f(x), b = f(y), and Xb = Xa ∪ {y}. Since ∂y is a boundary in Xb, [∂y]b = 0, and144

if [∂y]a ̸= 0, then we say y gives death to a homology class. Otherwise, there is a chain145

c ∈ C(Xa) such that ∂c = ∂y. In this case, c + y is a cycle, and [c + y]b ̸= 0 because Xb146

contains no cofacet of y yet, so cy cannot be a boundary in Xb. We therefore say y gives birth147

to [c+ y]b. We write X◦ and X× for the cells in X that give birth and death respectively.148

Every cell does either, so X◦ ∩X× = ∅ and X◦ ∪X× = X.149
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We need additional notions to associate births with deaths. First note that the homology150

class [c+ y]b given birth to by y is generally not unique. To fix this inconvenience, we observe151

that there is a unique chain cy ∈ C(Xa) such that ∂cy = ∂y and cy ⊆ X×. Clearly, y gives152

birth to the homology class of dy = cy + y, and we call dy the canonical cycle associated with153

y. Following the original persistence algorithm in [9], we use an inductive argument to define154

the pairing and simultaneously a set Ya ⊆ Xa, which we will see contains all birth-giving cells155

that are not yet paired. Initially, both these sets are empty. For the inductive step, assume156

we have Ya ⊆ Xa, and let b be the next value, after a, and y the next cell, with f(y) = b. If157

y ∈ X◦, we set Yb = Ya ∪ {y}. Otherwise y ∈ X×, which implies [dy]b ̸= 0. There is a unique158

subset A ⊆ Ya such that d′ =
∑

x∈A dx satisfies [d′]a = [∂y]a. We let z be the last cell in A159

(the cell with maximum value), write bth(y) = z, and set Yb = Ya \ {bth(y)}. This defines160

an injective map, bth : X× → X◦, but note that it is not necessarily bijective since there161

may be cells in X◦ that never die. They represent the homology of X.162

▶ Definition 3.1 (Birth-death Pairs). Let f : X → R be a filter on a Lefschetz complex. Then163

(s, t) ∈ X ×X is a birth-death pair of f if s = bth(t).164

Example. Consider the function on the circle displayed in the upper left panel in Figure 1.165

Representing the function by a filter, we let each minimum be a vertex, whose filter value166

is the function value (height) of the minimum, and each maximum an edge, whose filter167

value is the height of the maximum. The birth-death pairs marked by arrows in the upper168

left panel are (b, B), (d, C), (e, E), (f, F), (h, G), and the remaining birth-death pairs marked169

by arrows in the upper right and the lower left panels are (c, D) and (g, H). As we will see170

shortly, the first five birth-death pairs are shallow, and the last two are not. The remaining171

two critical points, the minimum a and the maximum A, both give birth and are unpaired as172

they represent the homology of the circle (one component and one 1-cycle).173

3.2 Shallow Pairs174

A birth-death pair, (s, t) ∈ BD(f), can be cancelled if s is a facet of t in the Lefschetz175

complex. To avoid that this cancellation affects other birth-death pairs, we limit ourselves to176

canceling only special such pairs.177

▶ Definition 3.2 (Shallow Pairs). Let f : X → R be a filter on a Lefschetz complex. A pair178

(s, t) ∈ X ×X is shallow if s is the last facet of t and t is the first cofacet of s in the filter,179

and we write SH(f) for the set of shallow pairs of the filter.180

In other words, (s, t) ∈ SH(f) if f(x) ≤ f(s) for all x < t and f(y) ≥ f(t) for all y > s. We181

use the ordered boundary matrix—whose rows and columns are sorted by filter values—to182

recognize when s < t is a shallow pair, or just a birth-death pair. With reference to the left183

panel of Figure 4, we write r(s, t) for the rank of the lower left minor obtained by deleting all184

rows above row s and columns to the right of column t in the boundary matrix, and we let u185

be the row right after (below) row s and v the column right before (to the left of) column186

t. The following proposition is the Pairing Uniqueness Lemma in [6] restated for Lefschetz187

complexes:188

▶ Lemma 3.3 (Cohen-Steiner et al. 2006). Let f : X → R be a filter on a Lefschetz complex,189

and s, t ∈ X two of its cells. Then (s, t) ∈ BD(f) iff r(s, t) − r(s, v) − r(u, t) + r(u, v) > 0.190

Compare this with a shallow pair in which row s is zero to the left of column t, and column191

t is zero below row s; see the right panel of Figure 4. Assuming s < t is shallow, the ranks of192
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t

1s

u

v

0

t

0

s

Figure 4: Left: the s < t is a birth-death pair if the alternating sum of ranks of the four lower left
minors is positive. Right: the pair is shallow if furthermore row s and column t to the left and below the
common entry are zero.

the lower left minors satisfy r(u, v) = r(u, t) = r(s, v) = r(s, t) − 1, so Lemma 3.3 implies193

that s < t is also a birth-death pair; that is: SH(f) ⊆ BD(f).194

Another important property is that there are shallow pairs as long as there are birth-death195

pairs. More formally: SH(f) = ∅ =⇒ BD(f) = ∅. In particular, the first death-giving cell196

and its last facet define a shallow pair. By symmetry so does the last birth-giving cell and197

its first cofacet. The cancellation of a shallow pair has a rather benign effect on the filter.198

Specifically, the canceled pair is the only one to disappear from the shallow pairs as well199

as from the birth-death pairs. Note however, that the operation may remove obstacles for200

birth-death pairs that were non-shallow before and become shallow after the cancellation.201

▶ Theorem 3.4 (Canceling a Shallow Pair). Let f : X → R be a filter on a Lefschetz complex,202

(s, t) ∈ X ×X a shallow pair, and f ′ : X ′ → R the filter on the quotient after canceling (s, t).203

Then SH(f ′) ⊇ SH(f) \ {(s, t)} and BD(f ′) = BD(f) \ {(s, t)}.204

Proof. We consider the boundary matrix of X whose rows and columns are ordered by the205

filter values, and the effect of a cancellation on it, as illustrated in Figure 2. To see the claim206

about the shallow pairs, recall that row s and column t to the left and below ∆[s, t] are207

zero. If we cancel (s, t) with column operations, we add column t to column y iff ∆[s, y] = 1.208

But since (s, t) is shallow, this implies f(t) < f(y), and assuming (x, y) is another shallow209

pair, this implies f(s) < f(x). But then this column operation does not effect the portion of210

column y below ∆[x, y], so (x, y) remains shallow, as claimed.211

To see the claim about the birth-death pairs, we note that adding column t to a column212

y to its right does not change the rank of any lower left minor of ∆. Since (s, t) is shallow,213

all column operations implementing the cancellation of (s, t) are of this kind, so Lemma 3.3214

implies that all birth-death pairs remain, and no new ones get created. Thereafter (s, t)215

disappears when the rows and columns that correspond to s and t get removed. ◀216

3.3 Shallow Orders217

Theorem 3.4 motivates us to repeatedly cancel a shallow pair until there is none left. As218

mentioned in Section 3.2, there is a shallow pair as long as there are birth-death pairs. Since219

the cancellation does not change the other birth-death pairs, this implies that the iteration220

visits all birth-death pairs in an order such that each pair is shallow at the time of its221

cancellation. We use [n] as a short-form for {1, 2, . . . , n}.222
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▶ Definition 3.5 (Shallow Orders). Let f : X → R be a filter on a Lefschetz complex, and223

n = #BD(f) its number of birth-death pairs. A shallow order is a bijection Φ: [n] → BD(f)224

such that φi = Φ(i) is shallow after canceling φ1 to φi−1, for each 1 ≤ i ≤ n.225

Two particular shallow orders will be instrumental in the study of the dependencies between226

birth-death points, resp. their cancellations. To introduce them, we write φ◦
i and φ×

i for227

the birth-giving and death-giving cells of a birth-death pair φi. The first such special order228

prefers late births over early births, while the second prefers early deaths over late deaths:229

A: [n] → BD(f) such that f(α◦
i ) > f(α◦

i+1) for 1 ≤ i < n; (3)230

Ω: [n] → BD(f) such that f(ω×
i ) < f(ω×

i+1) for 1 ≤ i < n, (4)231

in which A and Ω are bijections, and we write αi = A(i) and ωi = Ω(i). Note that α◦
1 is the232

last birth-giving cell in the filter, and α×
1 is its first coface, which implies that α1 is shallow.233

After canceling α1, α2 is shallow, etc., so A is indeed a shallow order. Symmetrically, ω×
1 is234

the first death-giving cell, and ω◦
1 is its last facet, which again implies that ω1 is shallow. By235

canceling ω1 and iterating, we conclude that Ω is also a shallow order.236

Example. We continue the example from Section 3.1 considering the 16 minima and maxima237

of the function on the circle shown in Figure 1. They form 7 birth-death pairs, with one238

minimum and one maximum unpaired. Following the two special shallow orders, we get239

A([7]) = ((h, G), (e, E), (d, C), (f, F), (b, B), (c, D), (g, H)); (5)240

Ω([7]) = ((b, B), (d, C), (f, F), (e, E), (c, D), (h, G), (g, H)), (6)241

in which we write the elements of the images in sequence from 1 to 7. Note that both orders242

are linear extensions of the poset displayed in the lower right panel of Figure 1, a property243

we will explore next.244

4 The Depth Poset245

This section introduces the main new concept of this paper, the depth poset of a filter,246

which is a formalization of the dependencies between the birth-death pairs, respectively247

their cancellations. After defining the poset and proving some of its pertinent properties, we248

explain how to construct it, and finally establish the correctness of the algorithm.249

4.1 Partial Order on Birth-death Pairs250

A shallow order is a total order on the birth-death pairs or, equivalently, a complete graph251

with vertices BD(f) whose edges are directed in an acyclic manner. The intersection of two252

such graphs corresponds to a partial order such that both total orders are linear extensions253

of the poset. We apply this construction to the set of all shallow orders of a filter.254

▶ Definition 4.1 (Depth Poset). Letting f : X → R be a filter on a Lefschetz complex, the255

depth poset, denoted Depth(f), is the intersection of all shallow orders on BD(f).256

Its full name would be the depth poset of canceling shallow birth-death pairs in a Lefschetz257

complex. By definition, it is the largest partial order on BD(f) such that every shallow order258

is a linear extension. Note that f(φ◦) > f(ψ◦) if φ precedes ψ in A, and f(φ×) < f(ψ×) if259

φ precedes ψ in Ω. Since A and Ω are particular shallow orders, (φ,ψ) ∈ Depth(f) implies260

that φ precedes ψ in both, so the pairs are necessarily nested:261
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▶ Proposition 4.2. Let f : X → R be a filter on a Lefschetz complex, and φ,ψ two pairs in262

BD(f). Then f(ψ◦) < f(φ◦) < f(φ×) < f(ψ×) whenever (φ,ψ) ∈ Depth(f).263

Observe that this implies that an ordering of the birth-death pairs by the difference between264

birth and death is necessarily a linear extension of the poset. We thus introduce265

Π: [n] → BD(f) such that f(π×
i ) − f(π◦

i ) ≤ f(π×
i+1) − f(π◦

i+1) for 1 ≤ i < n, (7)266

in which Π is a bijection and we write πi = Π(i). Note that Π orders the birth-death pairs267

by persistence. Proposition 4.2 thus implies that the pairs can be canceled in this sequence268

without otherwise affecting the filter:269

▶ Corollary 4.3. Let f : X → R be a filter on a Lefschetz complex, and Π the ordering of the270

birth-death pairs by persistence. Then Π is a shallow order of f .271

Example. We note that the depth poset of the function on the circle in Figure 1 is consistent272

with the merge tree of the function; see e.g. [20]. There are however filtered graphs (1-273

dimensional Lefschetz complexes) with isomorphic merge trees for which the depth posets274

display different dependencies; see Figure 5. There are also examples of filtered graphs that275

have different merge trees but isomorphic depth posets (not shown).

B

C

D

e
d

a,b,c,d,e,A,B,C,D d,b,c,a,e,A,B,C,D

a,A e,B

c

d,A e,B

c,C b,D

b
a

c,C b,D

A
B

C

e

a d

bc

A

D

Figure 5: From left to right: a filtered graph, its merge tree (dendogram), its depth poset above the
nodes and arcs ordered according to the filter, and the depth poset after swapping nodes a and d in the
filter. The swap only causes nodes a and d to trade places in the dendogram, which does not affect the
structure of the merge tree. In contrast, it shrinks the depth poset from four to two relations.

276

4.2 Transposing and Canceling Shallow Pairs277

The conclusion that all linear extensions of the depth poset are shallow orders is not immediate278

since the definition of this poset is indirect. We therefore go slow and first establish some279

basic properties. Let Φ: [n] → BD(f) be a total order on the birth-death pairs of a filter. A280

transposition at positions 1 ≤ k, k + 1 ≤ n produces another total order in which Φ(k) and281

Φ(k + 1) are swapped. We are primarily interested in transpositions that swap shallow pairs.282

▶ Lemma 4.4. Let f : X → R be a filter on a Lefschetz complex, and Φ,Ψ: [n] → BD(f)283

total orders that differ by the transposition at positions 1 ≤ k, k + 1 ≤ n. If Φ is a shallow284

order, and after canceling the first k − 1 pairs, Φ(k + 1) is a shallow pair, then Ψ is also a285

shallow order, and the quotients after canceling the first i pairs of Φ and Ψ, respectively, are286

the same for all i ̸= k.287

Proof. The claim about the quotients is trivially true for i < k. For the next step, assume288

i = k + 1 and write φ = Φ(k) and ψ = Φ(k + 1). After canceling the first k − 1 pairs, φ is289

shallow because Φ is a shallow order, and ψ is shallow by assumption. We transpose the290
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ψ φ

ψφ

Figure 6: Two shallow pairs with possibly non-zero entries in the shaded portions of their rows and
columns. On the left, the two pairs have either disjoint or incomparable intervals: f(φ◦) < f(ψ◦) and
f(φ×) < f(ψ×), and on the right, their intervals are nested: f(ψ◦) < f(φ◦) < f(φ×) < f(ψ×).

two pairs and argue that the swap does not affect the boundary matrix or, equivalently, the291

quotient after the k + 1 cancellations. To see this, we write pvt(φ) for the entry common to292

row φ◦ and column φ×, and note that it suffices to look at the entries to the upper right293

of pvt(φ) and pvt(ψ): the cross-hatched regions in Figure 6. Let t be the column of such294

an entry. Setting ℓ = ∆k−1[φ◦, t] + ∆k−1[φ◦, ψ×] and m = ∆k−1[ψ◦, t] + ∆k−1[ψ◦, φ×], the295

effect of the two cancellations is adding ℓ times column φ× and m times column ψ× to296

column t. This is clear if the respective second terms are zero. The only other case is when297

∆k−1[φ◦, ψ×] = 1, which may happen in the configuration illustrated on the left in Figure 6.298

If we first cancel ψ, then this changes the parity of ∆k−1[φ◦, t], and if we first cancel φ,299

then we add column φ× to column ψ× before possibly adding it to column t. Either way,300

the effect is the same. Since ℓ and m are independent of the order in which φ and ψ are301

canceled, the quotients after canceling i = k + 1 pairs in Φ and Ψ agree. For trivial reasons,302

the quotients therefore also agree after canceling i > k + 1 pairs each, which implies that Ψ303

is also a shallow order, as claimed. ◀304

Given a finite poset, it is not difficult to impose an acyclic relation on its linear extensions,305

such that two related extensions differ by a single transposition, and there is only a single306

maximum. We prove a similar result for the shallow orders, where we face the difficulty that307

we do not yet have a poset whose linear extensions are exactly the shallow orders.308

▶ Lemma 4.5. Let f : X → R be a filter on a Lefschetz complex, and Φ,Ψ: [n] → BD(f)309

two shallow orders. Then there is a sequence of shallow orders, Φ = Φ0,Φ1, . . . ,Φm = Ψ310

such that Φk−1,Φk differ by a single transposition, for any 1 ≤ k ≤ m.311

Proof. We fix a shallow order, which we construct iteratively by canceling all shallow pairs.312

Indeed, which birth-death pairs are shallow depends solely on f0 = f . After canceling these313

shallow pairs, we get a filter f1 : X1 → R which, by Lemma 4.4, does not depend on the314

sequence in which we cancel these pairs. Next, we cancel the shallow pairs of f1 to get315

f2 : X2 → R, etc. Let Ξ: [n] → BD(f) be the sequence in which the pairs are canceled, and316

write ξi = Ξ(i) for the i-th pair. By construction, Ξ is a shallow order of f .317

Writing φi = Φ(i), we construct a sequence of transpositions that transform Φ into Ξ. In318

each iteration, we let ξi be the first pair in which Ξ differs from Φ, set φk = ξi, and move φk319

forward into i-th position using transpositions. By Lemma 4.4, each transposition produces320

a new shallow order, provided the two pairs are shallow prior to their transposition and321

after canceling all preceding pairs. But this is clear because the second of the two pairs is322

ξi, which is shallow after canceling the first i − 1 pairs in Ξ. By construction, these i − 1323

pairs are also the first i− 1 predecessors in Φ. We thus get a sequence of transpositions that324

transform Φ into Ξ, while each step preserves the property of the linear extension being325
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shallow. Similarly, we construct such a sequence for Ψ and Ξ, and append its reverse to get326

a sequence of transpositions that transforms Φ into Ψ, as required. ◀327

Call a terminal sequence of pairs in a shallow order a suffix, and the initial remainder the328

complementary prefix. We use the last two lemmas to show that the quotient after canceling329

all pairs in the prefix does not depend on the order in which the pairs are canceled.330

▶ Lemma 4.6. Let f : X → R be a filter on a Lefschetz complex, and Φ,Ψ: [n] → BD(f)331

two shallow orders that share a common suffix. Then X ′ = X ′′, in which f ′ : X ′ → R and332

f ′′ : X ′′ → R are the filters on the quotients after canceling the pairs in the complementary333

prefix of Φ and Ψ, respectively. Furthermore, the common depth poset of f ′ and f ′′ is the334

depth poset of f restricted to BD(f ′) = BD(f ′′).335

Proof. By Lemma 4.5, we can transform the prefix of Φ into the prefix of Ψ by a sequence336

of transpositions that leaves the common suffix untouched. By Lemma 4.4, each such337

transposition preserves the quotients after canceling the transposed pair and all their338

predecessors. This implies that the quotient after canceling all pairs in the prefix remains339

constant throughout the sequence of transpositions. The claim about the depth poset follows340

because the shallow orders of f ′ = f ′′ are exactly the suffixes of the shallow orders of f . ◀341

It will also be useful to have the following claim about the preservation of the row of the342

last birth-giving cell and the column of the first death-giving cell.343

▶ Lemma 4.7. Let f : X → R be a filter on a Lefschetz complex, α1 = A−1(1) and344

ω1 = Ω−1(1) the respective leading pairs of the two special shallow orders, ψ ̸= α1, ω1 a345

birth-death pair, and γ ̸= ψ a shallow such pair. Then the cancellation of γ preserves346

∆[α◦
1, ψ

×] and ∆[ψ◦, ω×
1 ], with γ ̸= α1 in the first case and γ ̸= ω1 in the second case.347

Proof. The two claims are symmetric, so it suffices to prove the first. To have an effect348

on the entries in row α◦
1, it is necessary that ∆[α◦

1, γ
×] = 1. But since α1 and γ are both349

shallow, this is only possible if f(α◦
1) < f(γ◦), which contradicts α1 = A−1(1). ◀350

4.3 Lazy Reduction with Clearing351

To construct the depth poset, we use variants of the standard matrix reduction algorithm370

for persistent homology; see e.g. [8, Chapter VII]. We begin with the variant of the column371

reduction algorithm, which differs from the classic algorithm in two ways. From [7] it borrows372

the idea that the columns can be reduced by taking the leftmost non-zero entries (pivots) in373

the rows from bottom to top. These pivots correspond to the birth-death pairs and their374

ordering prefers late over early births; compare with the first special shallow order, A, defined375

in (3). Note, however, that the birth-death pairs do not have to be known ahead of time376

as they are implicitly detected by the algorithm. From [3] it borrows the idea that rows377

and columns can be cleared after the corresponding pivot has been established. Indeed,378

after canceling two cells, we delete the corresponding rows and columns to get the boundary379

matrix of the quotient. At the same time, we collect the relations in an initially empty list;380

see Algorithm 1. By choice of the pivot, each pair (s, t) is shallow when it is visited, and the381

ensuing column operations effectively cancel s and t; see Definition 2.3 and Figure 2. By382

prioritizing late births, Algorithm 1 visits the pairs according to the first special shallow383

order and thus computes A. Letting ∆′
i be the matrix ∆′ after i iterations of Algorithm 1,384

this is therefore the boundary matrix of the quotient after canceling α1 through αi. There385

are shallow pairs as long as there are birth-death pairs, so ∆′
i ≠ 0, for all i < n, and ∆′

n = 0.386

Hence, Algorithm 1 halts after n = #BD(f) iterations.387
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Algorithm 1 Bottom to Top Column Reduction352

1: ∆′ = ∆; B′ = ∅; i = 0;353

2: while ∆′ ̸= 0 do i = i+ 1;354

3: let ∆′[s, t] be leftmost non-zero entry in last non-zero row; αi = (s, t);355

4: while ∃y > t such that ∆′[s, y] = 1 do356

5: add column t to column y in ∆′; append (t, y) to B′
357

6: end while;358

7: delete rows s and t and columns s and t from ∆′
359

8: end while.360

Algorithm 2 Left to Right Row Reduction361

1: ∆′′ = ∆; B′′ = ∅; j = 0;362

2: while ∆′′ ̸= 0 do j = j + 1;363

3: ∆′′[s, t] is lowest non-zero entry in first non-zero column; ωj = (s, t);364

4: while ∃x < s such that ∆′′[x, t] = 1 do365

5: add row s to row x in ∆′′; append (s, x) to B′′;366

6: end while;367

7: delete rows s and t and columns s and t from ∆′′
368

8: end while.369

Symmetrically, Algorithm 2 computes Ω while reducing the boundary matrix with row388

operations. Letting ∆′′
j be the matrix ∆′′ after j iterations of Algorithm 2, it is the boundary389

matrix of the quotient after canceling ω1 through ωj , and Algorithm 2 also halts after n390

iterations. We state this for later reference:391

▶ Lemma 4.8. Let f : X → R be a filter on a Lefschetz complex, and ∆′
i,∆′′

j as defined392

above. Then ∆′
i is the boundary matrix of the quotient after canceling α1, α2, . . . , αi, and ∆′′

j393

is the boundary matrix of the quotient after canceling ω1, ω2, . . . , ωj.394

4.4 Relations from Book-keeping395

The relations collected by the two algorithms do not contradict each other: if (φ×, ψ×) is in396

the transitive closure of B′, then f(ψ◦) < f(φ◦) < f(φ×) < f(ψ×), and if (ψ◦, φ◦) is in the397

transitive closure of B′′, then we get the reverse of these inequalities. This excludes their398

co-occurrence, so it makes sense to define the transitive closure of the union:399

R(f) = closure{(φ,ψ) | (φ×, ψ×) ∈ B′ or (φ◦, ψ◦) ∈ B′′}. (8)400

We claim that R(f) is in fact the depth poset of f . While this is plausible, it is not obvious401

and requires a proof.402

▶ Theorem 4.9. Let f : X → R be a filter on a Lefschetz complex. Then Depth(f) = R(f).403

Proof. We first prove R(f) ⊆ Depth(f). It suffices to argue the containment for the relations404

supplied by B′, with the argument for B′′ being symmetric. Let therefore (φ,ψ) ∈ R(f)405

and recall that (φ◦, ψ×) ∈ B′ iff ∆′
i[φ◦, ψ×] = 1; see Lines 4 and 5 of Algorithm 1. Set406

i + 1 = A−1(φ) and write f ′
i : X ′

i → R for the filter after canceling α1, α2, . . . , αi. By407

Lemma 4.6, (φ,ψ) ∈ Depth(f) iff (φ,ψ) ∈ Depth(f ′
i), so we can focus on the situation after408

canceling the first i pairs in A. The pivots are processed from bottom to top, which implies409

f(φ◦) > f(ψ◦); that is: pvt(φ) is below pvt(ψ), as in Figure 7 on the left. The question is410
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whether there is any sequence of pairs of f ′
i—excluding φ—whose cancellation makes ψ a411

shallow pair, so it can be canceled before φ. For such a sequence to exist, there must be a412

pair, γ, whose cancellation changes ∆′[φ◦, ψ×] from 1 to 0. However, since φ is the leading413

pair in the first special shallow order of f ′
i , this is prohibited by Lemma 4.7.

γk−1

γk

0

ψ0

φ

1

ψ

1φ

γ 1

Figure 7: The matrix on the left illustrates first part of the proof: to cancel γ, we would add its
column to the column of ψ, with the effect that ∆′[φ◦, ψ×] changes from 1 to 0. But such γ does not
exist after canceling all pairs below pvt(φ). The matrix on the right illustrates the second part of the
proof: after transposing γk−1 and γk, we are one step closer to a contradiction.

414

We second prove Depth(f) ⊆ R(f). It suffices to argue the containment for pairs415

(φ,ψ) ∈ Depth(f) that are not implied by transitivity. Set i+1 = A−1(φ) and j+1 = Ω−1(φ),416

write f ′
i : X ′

i → R and ∆′
i after canceling the prefix of length i in A, f ′′

j : X ′′
j → R and ∆′′

j417

after canceling the prefix of length j in Ω, and fij : Xij → R and ∆ij after canceling the418

pairs in both prefixes. By Lemmas 4.6 and 4.7, we have ∆ij [φ◦, ψ×] = ∆′
i[φ◦, ψ×] and419

∆ij [ψ◦, φ×] = ∆′′
j [ψ◦, φ×]. If either of these two entries is 1, then (φ,ψ) ∈ R(f) and we420

are done. Hence, assume ∆ij [φ◦, ψ×] = ∆ij [ψ◦, φ×] = 0, as in Figure 7 on the right.421

Set nij = #BD(fij), and let Φ: [nij ] → BD(fij) be a linear extension of Depth(fij) that422

minimizes m = Φ−1(ψ) − Φ−1(φ). We already established R(fij) ⊆ Depth(fij), so Φ is423

also a linear extension of R(fij). If m = 1, then we can transpose φ and ψ and thus424

contradict (φ,ψ) ∈ Depth(fij). So assume m ≥ 2 and write φ = γ0, γ1, . . . , γm = ψ for425

the relevant subsequence. Since (φ,ψ) is not implied by transitivity, there is no chain of426

two or more relations that connects φ to ψ in the depth poset. Hence, there is an index427

1 ≤ k ≤ m such that (γk−1, γk) ̸∈ Depth(fij), and since R(fij) ⊆ Depth(fij), we also have428

(γk−1, γk) ̸∈ R(fij). If (φ, γk−1) or (γk, ψ) is a relation in Depth(fij), then we transpose429

γk−1 and γk and get a new linear extension of Depth(fij) and R(fij). There is necessarily at430

least one pair to transpose, so if we iterate, the predecessors of ψ migrate to the left, and the431

successors of φ migrate to the right. Eventually, we get a transposition that involves φ = γ0432

or ψ = γm, and either way, we get a linear extension that contradicts our choice of Φ. ◀433

By definition of the depth poset, every shallow order of f is a linear extension of Depth(f).434

Using Theorem 4.9, it is not difficult to argue also the converse, which implies that the435

shallow orders and the linear extensions of the depth poset are indeed one and the same.436

Observe that Algorithm 1 adds a column t to another column y only if the two cells satisfy437

dim t = dim y. Similarly, Algorithm 2 adds a row s to another row x only if dim s = dim x.438

By Theorem 4.9, this implies that every relation in Depth(f) is between birth-death pairs439

of the same pair of dimensions. Hence, the depth poset is a disjoint union of one poset per440

pair of consecutive dimensions. This motivates us to define BDp(f) ⊆ BD(f) as the birth441

death-pairs φ = (φ◦, φ×) with dimφ◦ = dimφ× − 1 = p, and similarly restrict the depth442

poset by defining Depthp(f) = Depth(f) ∩ (BDp(f) × BDp(f)).443
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▶ Corollary 4.10. Let f : X → R be a filter on a Lefschetz complex of dimension d. Then444

Depth(f) = Depth0(f) ⊔ Depth1(f) ⊔ . . . ⊔ Depthd−1(f).445

This corollary is relevant if we annotate a persistence diagram with arcs that connect points446

representing birth-death pairs related to each other in the depth poset; see Figure 8 for the447

0-dimensional persistence diagram of a 1-dimensional function. By Corollary 4.10, each such448

arc belongs to a unique dimension.
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Figure 8: The function on the circle introduced in Figure 1 on the left, and its persistence diagram
overlayed with the depth poset on its birth-death pairs on the right.

449

5 Discussion450

The main contribution of this paper are the introduction of the depth poset—which records451

and organizes the dependencies between the cancellations of shallow birth-death pairs in a452

Lefschetz complex—and a proof that it can be constructed by a customized but otherwise453

straightforward matrix reduction algorithm. The novel structure raises a number of questions454

and opens opportunities for further work:455

It would be interesting to perform stochastic experiments to understand the statistical456

behavior of the depth poset. Are differences in the local structure of the relations helpful457

in detecting outliers or in the reduction of noise in sampled data?458

It would also be interesting to analyze the sensitivity of the depth poset to transpositions459

in the filter, as this may be correlated with the changing dynamics of the gradient flow;460

see [6, 15, 17] for related work in this direction.461
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