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Abstract1

We generalize a classical result by Boris Delaunay that introduced Delaunay triangulations. In2

particular, we prove that for a locally finite and coarsely dense generic point set A in Rd, every generic3

point of Rd belongs to exactly
(

d+k
d

)
simplices whose vertices belong to A and whose circumspheres4

enclose exactly k points of A. We extend this result to the cases in which the points are weighted,5

and when A contains only finitely many points in Rd or in Sd. Furthermore, we use the result to6

give a new geometric proof for the fact that volumes of hypersimplices are Eulerian numbers.7
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1 Introduction8

In the seminal paper [4], Boris Delaunay (also spelled Delone) introduced the Delaunay9

triangulation of a finite point sets using simplices with empty circumspheres. His construction10

can be reformulated as follows: for a (finite and generic) point set, A ⊆ Rd, the simplices11

with vertices in A that contain no points of A inside their circumspheres cover the convex12

hull of A in one layer. In this paper, we generalize Delaunay’s construction and prove similar13

properties for simplices with circumspheres that enclose exactly k points of A, for some fixed14

non-negative integer k. We call these simplices the k-heavy simplices of A.15

We introduce the main concepts we will work with. A set A ⊆ Rd is locally finite if16

every closed ball contains at most a finite number of the points of A, and it is coarsely17

dense if every closed half-space contains at least one and therefore infinitely many of the18

points of A. If A has both properties, we call it a thin Delone set; compare with the more19

restrictive class of Delone sets, which are uniformly discrete and relatively dense, meaning20

the smallest inter-point distance is bounded away from 0, and the radius of the largest empty21

ball is bounded away from ∞. We call A generic if no d + 1 of its points lie on a common22

hyperplane, and no d + 2 of its points lie on a common (d − 1)-sphere. Any (d − 1)-sphere23

bounds a closed d-ball and thus partitions Rd into points inside the sphere (in the interior of24

the ball), points on the sphere, and points outside the sphere (in the complement of the ball).25

Assuming A is generic, there is a unique (d − 1)-sphere passing through any d + 1 points of26

A, which we call the circumscribed sphere of the d-simplex spanned by the points.27

▶ Main Definition. Let k be a non-negative integer and A ⊆ Rd a generic thin Delone set28

or a generic finite set. A d-simplex with vertices in A is k-heavy if exactly k points of A lie29

inside the circumsphere of the d-simplex.30
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For example, the 0-heavy simplices are the top-dimensional simplices in the Delaunay31

triangulation of A, and k-heavy simplices with k > 0 are related to the cells in higher-order32

Delaunay triangulations [2, 6]. Our main result is Theorem 2.2, which we restate here in less33

technical terms:34

▶ Main Theorem. Let k be a non-negative integer and A ⊆ Rd a generic thin Delone set.35

Then the k-heavy simplices of A cover Rd in exactly
(

d+k
d

)
layers.36

We also prove versions of this theorem for finitely many points, points on the d-dimensional37

sphere, and weighted points. In addition, we apply the covering multiplicities to get a new38

proof that the volumes of hypersimplices are Eulerian numbers, and to get new proofs for39

some bounds on k-sets.40

The paper is organized as follows. In Section 2, we introduce the main definitions, prove41

the main result for thin Delone sets (Theorem 2.2) and finite sets (Corollary 2.3), and42

formulate their local versions (Theorem 2.4). In Section 3, we apply the results to obtain a43

new proof for the fact that volumes of hypersimplices are Eulerian numbers and new proofs44

for old bounds on k-sets. In the concluding Section 4, we discuss extensions of the results to45

points in hyperbolic and spherical spaces and to points with real weights in Euclidean space.46

2 Heavy Simplices in Euclidean Space47

This section presents the main result of this paper, which is stated for infinite and finite48

point sets in Euclidean space. We begin with the main technical lemma before stating and49

proving the main theorem.50

2.1 Main Technical Lemma51

For technical reasons we first show that the k-heavy simplices of a thin Delone set A are52

“locally uniform” in size. Specifically, we prove an upper bound for the radii of spheres that53

enclose a fixed point, x ∈ Rd, as well as at most k points of A. To this end, we write B(x, R)54

for the closed ball with center x and radius R, and note that the number of points of A in55

this ball goes to infinity when R goes to infinity.56

▶ Lemma 2.1. Let A ⊆ Rd be coarsely dense, k a non-negative integer, and x ∈ Rd. Then57

there exists R = R(x, A, k) such that if x is inside a sphere that is not fully contained in58

B(x, R), then there are at least k + 1 point of A ∩ B(x, R) inside this sphere.59

Proof. Without loss of generality, assume x = 0. For every unit vector, u ∈ Sd−1, the open60

halfspace of points y that satisfy (y, u) > 0 contains infinitely many points of A. It follows61

that the function fu : (0, ∞) → Z that maps r > 0 to the number of points of A inside the62

sphere with center ru and radius r is non-decreasing and unbounded.63

We introduce g : Sd−1 → R defined by g(u) = inf{r > 0 | fu(r) ≥ k + 1} and claim that64

g is bounded. To derive a contradiction, suppose g is unbounded, and let u1, u2, . . . be a65

sequence of unit vectors with g(un) ≥ n. Since Sd−1 is compact, there is a subsequence66

that converges to a vector u0 ∈ Sd−1. Let S be the sphere with radius g(u0) + 1 and center67

(g(u0) + 1)u0. By construction, there are at least k + 1 points of A inside S. Since these68

points are (strictly) inside the sphere, there is a sufficiently small ε > 0 such that moving69

the center of the sphere by at most ε while adjusting its radius so the origin remains on70

the sphere, retains at least k + 1 point of A inside the sphere. But this contradicts the71

unboundedness of g as there are points ui in the subsequence that are within distance ε from72

u0 with g(ui) much larger than g(u0) + 1.73
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Since g is bounded, M = sup{g(u) | u ∈ Sd−1} is finite and, by construction of g, there74

are at least k + 1 points of A inside any sphere with center y and radius ∥y∥ as long as75

∥y∥ ≥ M . Setting R = 2M , every sphere with center y that encloses the origin and is not76

contained in B(0, R) has radius r > M . This sphere encloses the ball with center M y
∥y∥77

and radius M , so there are at least k + 1 points of A inside this sphere that all belong to78

B(0, R). ◀79

As an immediate consequence of Lemma 2.1, the circumsphere of any k-heavy simplex that80

encloses x is completely contained in B(x, R).81

2.2 Global Covering82

Our first goal is to generalize the classic result of Delaunay that the 0-heavy simplices of83

every thin Delone set cover Rd in one layer; that is: every point of Rd is contained in at84

least one 0-heavy simplex and almost every point of Rd is contained in exactly one 0-heavy85

simplex. Specifically, we show that for every generic thin Delone set, A ⊆ Rd, the family of86

k-heavy simplices covers Rd
(

d+k
d

)
times. We call

(
d+k

d

)
the k-th covering number and note87

that it depends on the dimension, d, and the parameter, k, but not on the set A. We call88

x /∈ A generic with respect to A if A ∪ {x} is generic. Almost every point x ∈ Rd is generic89

with respect to a generic thin Delone set, A. To see this, observe that by local finiteness of A90

there are only countably many hyperplanes spanned by d points each or spheres spanned by91

d + 1 points each, so the union of these hyperplanes and spheres has Lebesgue measure zero.92

▶ Theorem 2.2. Let k be a non-negative integer and A ⊆ Rd a generic thin Delone set.93

Then any point x ∈ Rd that is generic with respect to A belongs to exactly
(

d+k
d

)
k-heavy94

simplices of A.95

Proof. The case d = 1 is obvious since every k-heavy simplex of A is an interval with96

endpoints in A and exactly k points between the two endpoints. Every point that is generic97

with respect to A, i.e. in R \ A, is contained in exactly k + 1 such intervals. For d ≥ 2, the98

proof splits into three steps.99

Step 1. Letting k be a non-negative integer and A ⊆ Rd a generic thin Delone set, we100

prove that here is a constant c = c(k, A) such that any point that is generic with respect101

to A is contained in exactly c k-heavy simplices of A. Write coverk(x, A) for the number of102

k-heavy simplices of A that contain x. By Lemma 2.1, coverk(x, A) is finite. Indeed, every103

k-heavy simplex of A that contains x must select its vertices from the finitely many points104

inside the ball B(x, 2M). To show that coverk(x, A) is the same for all generic points, we105

move x continuously from one point to another. The only time coverk(x, A) can change is106

when x passes through the boundary of a k-heavy simplex. It suffices to show that for every107

(d − 1)-simplex, ∆, with vertices in A, the number of k-heavy simplices with facet ∆ is the108

same on both sides of ∆.109

Consider the line, L, that consists of all points equidistant to the vertices of ∆ and mark114

each point y ∈ L with the number of points of A inside the sphere with center y that passes115

through the vertices of ∆. This partitions L into labeled intervals, and since A is generic,116

the labels of two consecutive intervals differ by exactly one. Fix a left to right direction on117

L, move y in this direction, and observe that the portion of space inside the sphere centered118

at y that lies to the left of the hyperplane spanned by ∆ shrinks, while the portion to the119

right of this hyperplane grows. The transitions from an interval labeled k + 1 to another120

labeled k are in bijection with the k-heavy simplices with facet ∆ to the left of ∆. Indeed,121

as y makes the transition, there is a point of A that passes from inside to outside the sphere122
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centered at y, so this point is to the left of ∆. Similarly, the transitions from an interval123

labeled k to another labeled k + 1 are in bijection with the k-heavy simplices with facet ∆ to124

the right of ∆. There are equally many transitions of either kind because the labels go to125

infinity on both sides. This proves that coverk(x, A) does not depend on x.

kk + 1

∆
k k + 1

Figure 1: Two circles in the 1-parameter family of circles that pass through the endpoint of the edge
∆. Both are the circumcircles of k-heavy triangles, with k = 3 in the shown case. As we move the center
from left to right, every point that leaves the inside of the circle lies to the left of ∆, and every point that
enters the inside of the circle lies to the right of ∆.

110

111

112

113

126

Step 2. We strengthen by showing that the constant in Step 1 depends on d and k but not127

on A. Specifically, we prove that for every dimension d and non-negative integer k, there128

exists a number f(d, k) such that for any generic thin Delone set, A ⊆ Rd, and any point,129

x ∈ Rd, that is generic with respect to A, belongs to exactly f(d, k) k-heavy simplices of A.130

It suffices to show that for two thin Delone sets, A and A′, and two points, x, x′ ∈ Rd,133

that are generic with repect to both sets, coverk(x, A) = coverk(x′, A′). By Lemma 2.1,134

there exists R > 0 such that if a sphere encloses x and a point outside B(x, R), then there are135

at least k + 1 points of A ∩ B(x, R) inside this sphere. It follows that the circumspheres of all136

k-heavy simplices that enclose x are contained in B(x, R). Similarly, let R′ be the constant137

from Lemma 2.1 for x′ and A′. We construct a new thin Delone set, A′′: picking points y138

and y′ at distance larger than R + R′ from each other, we let A′′ ∩ B(y, R) be a translate of139

A∩B(x, R) and A′′∩B(y′, R′) a translate of A′∩B(x′, R′). We perturb the points if necessary140

to achieve genericity, and add more points outside B(y, R) and B(y′, R′) until A′′ is thin141

Delone. By choice of R and R′ we have coverk(x, A) = coverk(y, A′′), because every k-heavy142

simplex of A whose circumsphere encloses x translates into a k-heavy simplex of A′′ whose143

circumsphere encloses y, and vice versa. Similarly, we have coverk(x′, A′) = coverk(y′, A′′).144

Finally, coverk(x, A) = coverk(x′, A′) because coverk(y, A′′) = coverk(y′, A′′) as proved in145

Step 1.146

Step 3. We provide an explicit example of a generic thin Delone set, A ⊆ Rd, and a point,147

x ∈ Rd, with coverk(x, A) =
(

d+k
d

)
. Specifically, we prove that for every dimension d and148

non-negative integer k, there exists a generic thin Delone set A ⊆ Rd, and a point x generic149

with respect to A, such that coverk(x, A) =
(

d+k
d

)
.150

Let S be a regular d-simplex with vertices v0, v1, . . . , vd and barycenter 0 = 1
d+1

∑
i vi,151

and A the set of points of the form ivj , for integers i ≥ 1 and j = 0, 1, . . . , d. We call A152

a radial set and the points with fixed j a direction of A; see Figure 2. Set x = 0. Every153

k-heavy simplex of A that contains 0 has exactly one vertex from each direction. Let154

i0v0, i1v1, . . . , idvd be the vertices of such a simplex. The number of points of A inside its155

circumsphere is
∑

j(ij − 1), so
∑

j ij = k + d + 1. Enumerating these simplices is the same156

as writing d + k + 1 as an ordered sum of d + 1 positive integers, and there are exactly
(

d+k
d

)
157
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Figure 2: Before perturbation, the points of A lie on three half-lines emanating from the origin. We
show six 2-heavy triangles, and emphasize two of them by shading.

131

132

ways to do that. To complete the proof, we perturb A while making sure that d + 1 points158

span a simplex that contains 0 before the perturbation iff they span such a simplex after the159

perturbation. This completes the proof of our main result. ◀160

2.3 The Finite Case161

For a finite set, A ⊆ Rd, the covering multiplicity of Theorem 2.2 holds sufficiently deep162

inside the set but acts only as an upper bound near the fringes. To formalize these claims,163

we introduce a parametrized generalization of the convex hull: for each integer k ≥ 0, the164

k-hull of A, denoted Hk(A), is the common intersection of all closed half-spaces that miss165

at most k of the points in A. Clearly, H0(A) = conv A, and Hk(A) ⊇ Hk+1(A) for every k.166

By the Centerpoint Theorem of discrete geometry [5, Section 4.1], Hk(A) ̸= ∅ if k < n
d+1 , in167

which n = #A is the number of points in A.168

▶ Theorem 2.3. Let A ⊆ Rd be finite and generic, k ≥ 0 an integer, and x ∈ Rd generic169

with respect to A. Then x is covered by at most
(

d+k
d

)
k-heavy simplices of A, with equality170

iff x ∈ Hk(A).171

Proof. To prove the upper bound, we add points outside all circumspheres of d + 1 points172

in A to construct a thin Delaunay set A′ ⊆ Rd. This is possible because the union of balls173

bounded by such spheres is bounded. Hence, A ⊆ A′, and any k-heavy simplex of A is also a174

k-heavy simplex of A′. Assuming x is generic with respect to A′, Theorem 2.2 implies that175

exactly
(

d+k
d

)
k-heavy simplices of A′ cover x. If all of them are also k-heavy simplices of A,176

then x is covered by exactly
(

d+k
d

)
k-heavy simplices of A, but if not, then x is covered by177

fewer than
(

d+k
d

)
k-heavy simplices of A.178

“⇐=”. We prove x ∈ Hk(A) implies that every k-heavy simplex of A′ covering x is also a179

k-heavy simplex of A. Since A′ has exactly
(

d+k
d

)
k-heavy simplices that cover x, this will180

imply that A has the same number of such simplices. Consider such a k-heavy simplex of181

A′, and let B ⊆ A′ be the points inside its circumsphere. Since x ∈ Hk(A), every closed182

half-space that misses at most k points of A contains x. But #B = k, so x belongs to the183

convex hull of A \ B. The top-dimensional simplices of Del(A \ B) cover the convex hull184

once, hence there is a unique 0-heavy simplex of A \ B that covers x. All points of A′ \ A lie185

outside its circumsphere, which implies that the same simplex is the unique 0-heavy simplex186

of A′ \ B that covers x. Therefore B ⊆ A, so this is a k-heavy simplex of A.187
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“=⇒”. Assuming x ̸∈ Hk(A), we modify the construction of A′ to show that there is a set188

A′′ ⊇ A such that all k-heavy simplices of A are k-heavy simplices of A′′ but at least one189

k-heavy simplex of A′′ that covers x is not a k-heavy simplex of A. Since x ̸∈ Hk(A), there190

are d points in A such that the open half-space bounded by the hyperplane passing through191

these points that contains x contains at most k points of A. Let ∆ be the (d − 1)-simplex192

spanned by the d points, write ∆+ for the open half-space, and let B ⊆ A be the points193

in ∆+. By assumption, #B ≤ k. We get A′′ by adding 1 + k − #B points to A as follows.194

First, we add k − #B points in ∆+ but outside all circumspheres of d + 1 points in A. After195

that, we add a point y ∈ Rd so that the d-simplex that is the pyramid with apex y and base196

∆ covers x, and all other k points in ∆+ are inside the circumsphere of this d-simplex. We197

also require that y is outside all circumspheres of d + 1 points in A. It is clear that such a198

point y exists on a sufficiently large sphere that passes through all vertices of ∆. As proved199

above, there are at most
(

d+k
d

)
k-heavy simplices of A′′ that cover x. The pyramid with apex200

y and base ∆ is such a simplex, but it is not a k-heavy simplex of A. Hence, the number of201

k-heavy simplices of A that cover x is strictly less than
(

d+k
d

)
, as claimed. ◀202

2.4 Local Covering203

By Theorem 2.2, the k-heavy simplices of a thin Delaunay set cover Rd without gap an204

integer number of times. However, beyond one dimension, it is generally not possible to split205

such a cover into sub-covers (separate layers) that enjoy the same property. Such splits are206

however possible locally, even in neighborhoods of the vertices of the simplices.207

▶ Theorem 2.4. Let A ⊆ Rd be a generic thin Delone set and k a non-negative integer.208

Then the k-heavy simplices of A that share a vertex a ∈ A cover any sufficiently small209

neihgbourhood of a exactly
(

d+k−1
d−1

)
times.210

Proof. The case k = 0 is that of the Delaunay triangulation of A. Its top-dimensional211

simplices cover Rd exactly once, and thus also every neighborhood of a ∈ A exactly once. We212

therefore assume k > 0. Let A′ = A \ {a}. Observe that A′ is also a generic thin Delone set213

and a is generic with respect to A′. We can therefore apply Theorem 2.2 to the (k − 1)-heavy214

simplices of A′ that contain a ∈ Rd. There are only finitely many such simplices and each of215

them contains a small neighborhood of a.216

Let y be a point in a sufficiently small neighborhood of a that is inside the intersection of217

all (k − 1)-heavy simplices of A′ that contain a, and assume that y is generic with respect218

to A. By Theorem 2.2, there are exactly
(

d+k
d

)
k-heavy simplices of A that cover y. They219

split into simplices incident and not incident to a. The latter are the (k − 1)-heavy simplices220

of A′ that contain a. Indeed, since y is sufficiently close to a, a k-heavy simplex of A with221

vertices in A′ contains a in its interior iff it contains y in its interior. The circumsphere of222

each such simplex encloses exactly k − 1 points of A′ as we removed a from A to get A′. This223

implies that the number of k-heavy simplices of A that contain y and are not incident to a is224 (
d+k−1

d

)
. Thus, the number of k-heavy simplices of A that contain y and are incident to a is225 (

d + k

d

)
−

(
d + k − 1

d

)
=

(
d + k − 1

d − 1

)
, (1)226

as claimed. ◀227

Similar to Theorem 2.3, we establish an inequality for finite sets that follows from228

Theorem 2.4. We are satisfied with a less refined statement than formulated for the global229

case in Section 2.3.230
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▶ Corollary 2.5. Let A ⊆ Rd be finite and generic and k be a non-negative integer. Then231

every generic point in a small neighborhood of any point a ∈ A belongs to at most
(

d+k−1
d−1

)
232

k-heavy simplices of A incident to a.233

3 Applications234

We discuss two applications of Theorem 2.2: its relation to volumes of hypersimplices and235

Eulerian numbers in Section 3.1, and the connection to k-sets and k-facets in Section 3.2.236

3.1 Worpitzky’s Identity for Eulerian Numbers237

As an application of our covering results, we show how the multiplicities from Theorem 2.2238

are related to the volumes of hypersimplices and to Eulerian numbers. Specifically, we show239

that de Laplace’s relation for hypersimplices [7] implies Worpitzky’s identity for Eulerian240

numbers [13], and vice versa.241

We begin by introducing the three main concepts we need in this subsection. Letting d242

be a positive integer, the number of descents in a permutation j1, j2, . . . , jd of 1, 2, . . . , d is243

the number of indices 1 ≤ i ≤ d − 1 such that ji > ji+1. For 0 ≤ k ≤ d − 1, the Eulerian244

number for d and k is the number of permutations with exactly k descents. For example,245

A(d, 0) = A(d, d − 1) = 1, for every d, and
∑d−1

k=0 A(d, k) = d!. Less obvious is Worpitzky’s246

identity [13] between two polynomials from more than a century ago:247 ∑d−1

k=0
A(d, k)

(
x + k

d

)
= xd. (2)248

Next, let x0, x1, . . . , xd be d+1 affinely independent points and write ∆ = conv {x0, x1, . . . , xd}249

for the d-simplex they span. For each 1 ≤ p ≤ d, the convex hull of the p-fold sums of the250

points is a d-dimensional convex polytope referred to as a d-hypersimplex of order p, denoted251

∆(p)
d . Clearly, ∆(1)

d = ∆, and more generally, ∆(p)
d is a homothetic copy of the convex hull of252

the barycenters of all (p−1)-dimensional faces of ∆. Since the barycenter of a (p−1)-simplex253

is 1/p times the sum of its vertices, the volume of that polytope is 1/pd times the volume of the254

homothetic hypersimplex. Define the relative volume of ∆(p)
d as v(d, p) = vold(∆(p)

d )/vold(∆),255

and observe that it does not depend on the choice of ∆. Again more than a century ago, de256

Laplace [7] proved that these relative volumes are Eulerian numbers:257

v(d, k + 1) = A(d, k); (3)258

see also the combinatorial proof of the same equation by Stanley [10]. The third concept259

is the dual of the order-n Voronoi tessellation of a finite set A ⊆ Rd, introduced in 1990260

by Aurenhammer [2]. Referring to this dual as the order-n Delaunay mosaic of A, denoted261

Deln(A), it is defined by its d-cells, each the convex hull of a collection of averages of n points262

selected from A. Specifically, for each 1 ≤ p ≤ d and every (n − p)-heavy simplex, take all263

sets of cardinality n that contain all n − p points inside the circumsphere together with any264

p points on the circumsphere. E.g. for p = 1, we get d + 1 averages whose convex hull is a265

homothetic copy of the original d-simplex, and for p = 2, we get a homothetic copy of the266

convex hull of the midpoints of the edges of the d-simplex. Collecting these polytopes, we267

get Deln(A). For n = 1, we have Del1(A) = Del(A), and more generally Deln(A) has a d-cell268

for every (n − p)-heavy simplex in which p varies from 1 to d. Since the vertices are averages269

of n points, each d-cell in Deln(A) has volume 1/nd times the volume of the corresponding270

hypersimplex. It is now easy to prove the following relation for the relative volumes of the271

hypersimplices.272
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▶ Theorem 3.1. For integers d, n ≥ 1, the relative volumes of the hypersimplices satisfy273 ∑d

p=1
v(d, p)

(
n + d − p

n − p

)
= nd, (4)274

in which
(

n+d−p
n−p

)
= 0 whenever n − p < 0.275

Proof. Let A be any Delaunay set—and not just a thin Delaunay set—in Rd, so that every276

ball whose radius exceeds some given constant contains at least one point of A. Let R > 0 be277

sufficiently large and consider all d-cells in Deln(A) that are contained in [−R, R]d. Setting278

n′ = max{0, n − d}, there are n − n′ ≤ d different types of d-cells to be considered, namely279

homothetic copies of hypersimplices of orders 1 to n − n′ defined by (n − p)-heavy simplices280

for 1 ≤ p ≤ n − n′. The total volume of these d-cells is (2R)d + O
(
Rd−1)

, since we miss only281

a constant width neighborhood of each facet of the hypercube.282

Consider now an (n−p)-heavy simplex of A. Generically, its circumsphere passes through283

d + 1 points and encloses n − p of the points in A. By definition of Delaunay set, the radius284

of this circumsphere is bounded from above by a constant times n − p. Furthermore, the285

(n − p)-heavy simplex contains every d-cell in Deln(A) it may determine since the vertices286

of the latter are averages of the vertices of the (n − p)-heavy simplex. By Theorem 2.2,287

the (n − p)-heavy simplices that define d-cells of Deln(A) inside the hypercube therefore288

cover most of the hypercube exactly
(

n+d−p
n−p

)
times. It follows that the total volume of289

these p-heavy simplices is
(

n+d−p
n−p

)
(2R)d + O

(
Rd−1)

. By definition of relative volume, the290

total volume of the corresponding hypersimplices thus is v(d, p)
(

n+d−p
n−p

)
(2R)d/nd + O

(
Rd−1)

.291

Taking the sum for 1 ≤ p ≤ n − n′, dividing by (2R)d, and taking the limit as R goes to292

infinity, we get the claimed relation. ◀293

To see that Theorem 3.1 together with de Laplace’s relation implies Worpitzky’s identity294

and together with Worpitzky’s identity implies de Laplace’s relation, we change the summation295

index in (4) from p to k = d − p and apply
(

n+k
n−d+k

)
=

(
n+k

d

)
to get296 ∑d−1

k=0
v(d, d − k)

(
n + k

d

)
= nd. (5)297

Since this relation holds for every positive integer, n, it also holds if we treat
(

n+k
d

)
and nd

298

as polynomials of degree d in n. Substituting A(d, k) = A(d, d − k − 1) for v(d, d − k) using299

de Laplace’s relation (3), we get Worpitzky’s identity (2). To see the other direction, we300

observe that the polynomials given by the binomial coefficients are linearly independent, so301

there is only one way to write nd as their linear combination, and it is given by Worpitzky’s302

identity. Comparing (5) with (2), we get v(d, d − k) = A(d, k) = A(d, d − k − 1), which is (3).303

3.2 k-sets and k-facets304

In this section, we briefly discuss connections between the covering numbers studied in305

Section 2 and the k-sets and k-facets studied in discrete geometry; see e.g. [8, Chapter 11].306

Letting A be a generic set of n points in Rd, a k-set is a set of k points, B ⊆ A, such that307

B and A \ B can be separated by a hyperplane, and a k-facet is a set of d points, ∆ ⊆ A,308

such that the hyperplane passing through these points partitions A \ ∆ into k and n − d − k309

points on its two sides. We refer to [11, Section 2.2] for a discussion of the relation between310

these two concepts.311

We present alternative proofs of two well-established results, which we state in terms of312

k-facets. Both proofs make use of the inversion of A through the unit sphere centered at a313
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point x ∈ Rd \ A, which maps a point a ∈ Rd \ {x} to ιx(a) = x + (a − x)/∥a − x∥2. It is not314

difficult to see that the image under this inversion of a hyperplane that avoids x is a sphere315

that passes through x. Similarly, the image of the open half-space that does not contain x316

is the open ball bounded by this sphere. If the hyperplane passes through the points of a317

k-facet, ∆ ⊆ A, and separates x from the k-set on the other side, then the d-simplex spanned318

by x and the points in ιx(∆) is a k-heavy simplex of A′ = ιx(A) ∪ {x} incident to x.319

Write Fk(A) for the number of k-facets of A. We first reprove the following 2-dimensional320

result by Alon and Györi [1] for k smaller than a third of the number of points.321

▶ Proposition 3.2. Let A be a generic set of n points in R2 and k < n
3 a non-negative322

integer. Then
∑k

j=0 Fj(A) ≤ (k + 1)n.323

Proof. Recall that the k-hull of A is the intersection of all closed half-spaces that miss at324

most k points of A, denoted Hk(A). By the Centerpoint Theorem of discrete geometry, Hk(A)325

has a non-empty interior if k < n
3 ; see e.g. [5, Section 4.1]. Let x be a point in the interior of326

Hk(A) and set A′ = ιx(A) ∪ {x}. Let j ≤ k. As explained above, the inversion through the327

unit circle centered at x maps every j-facet of A to a j-heavy triangle of A′ incident to x. By328

Corollary 2.5, the j-heavy triangles incident to x cover a small neighborhood of x at most329

j + 1 times, so if we consider all j between 0 and k, we get the neighborhood of x covered at330

most 1 + 2 + . . . + (k + 1) =
(

k+2
2

)
times.331

To continue, we draw a half-line emanating from x through every point in ιx(A), thus332

splitting the neighborhood of x into n angles. Every heavy triangle incident to x covers a333

contiguous sequence of these angles, and for each i ≥ 1, there are at most n triangles that334

cover exactly i of these angles. Each angle is covered some integer number of times, and we335

take the sum of these numbers over all angles. If
∑k

j=0 Fj(A) > (k + 1)n, then this sum is336

strictly greater than n(1 + 2 + . . . + (k + 1)) = n
(

k+2
2

)
. This implies that one of the angles is337

covered more than
(

k+2
2

)
times, which contradicts Corollary 2.5. ◀338

We continue with Lovász Lemma—see [3] but also [8, Lemma 11.3.2]—which is a crucial339

ingredient in many arguments about k-sets; see e.g. [9]. This lemma gives an asymptotic340

upper bound on the number of (d − 1)-simplices spanned by the points of k-facets a line can341

intersect. We give a short proof of a more general version by Welzl [12]. To state the lemma,342

we say a directed line, L, enters a k-facet, ∆ ⊆ A, if L intersects the (d − 1)-simplex spanned343

by ∆ at an interior point and moves from the side with k points to the side with n − d − k344

points as it passes through the (d − 1)-simplex.345

▶ Proposition 3.3. Let A ⊆ Rd be a generic finite set, k a non-negative integer, and L a346

directed line. Then L enters at most
(

d+k−1
d−1

)
k-facets of A.347

Proof. We may assume that L passes through the convex hull of A and let x ∈ L be a point348

reached after passing through conv A. The inversion through the unit sphere centered at349

x maps every k-facet entered by L to a k-heavy simplex incident to x such that L passes350

through this simplex before it reaches x. By Corollary 2.5, there are at most
(

d+k−1
d−1

)
such351

k-heavy simplices. ◀352

Since a line can be directed in two different ways, the number of (d − 1)-simplices spanned by353

k-facets of the set A one orientation of this line or the other can enter is at most 2
(

d+k−1
d−1

)
.354
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4 Concluding Remarks355

The results on covering numbers presented in Section 2 extend to other settings of which we356

mention three:357

locally finite sets in hyperbolic space;358

finite sets on the sphere;359

weighted points in Euclicean space.360

A claim about global covering analogous to Theorem 2.2 holds in all three settings, while361

one about local covering analogous to Theorem 2.4 holds only for the first two. The first362

setting is most similar to the situation in Euclidean space studied in Section 2: the proofs363

are almost verbatim the same, with the main difference being a modified radial set since364

the design illustrated in Figure 2 is not thin Delone in hyperbolic space. For the second365

setting, there is an ambiguity in the definition of a k-heavy simplex since any (d − 1)-sphere366

on the d-sphere bounds two complementary d-balls. We thus require that the finite set is367

k-balanced, by which we mean that every open hemisphere contains at least k + 1 points.368

With this assumption, only the smaller of the two open d-balls has a chance to contain k of369

the points, so we consider it the inside of the (d − 1)-sphere. The proofs of the extensions of370

Theorems 2.2 and 2.4 to k-balanced sets on the sphere are similar to those for thin Delone371

sets in Euclidean space. Alternatively, we may use stereographic projection to reduce the372

spherical to the Euclidean setting.373

The generalization to points with real weights is aking to the generalization of Voronoi to374

power tessellations or diagrams; see e.g. [5, Chapter 13]. We interpret a point with weight375

w ∈ R as a sphere with squared radius w (which may be negative), and we generalize the376

circumsphere of a d-simplex to the orthosphere, which in the generic case is the unique sphere377

orthogonal to the d + 1 spheres that are the vertices of the d-simplex. The orthosphere378

encloses a weighted point if the two centers are strictly closer than required for the two379

spheres to be orthogonal to each other, and the d-simplex is k-heavy if it encloses exactly380

k of the weighted points. With these adaptations of the definitions, a claim analogous to381

Theorem 2.2 holds also in the weighted case, but Theorem 2.4 fails to extend. Indeed, the382

k-heavy simplices incident to a weighted point cover the neighborhood of the point some383

integer number of times, but depending on the point and its surrounding, this integer varies384

between 0 and
(

d+k−1
d−1

)
.385
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