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Abstract

In numerous fields, dynamic time series data require continuous updates, neces-
sitating efficient data processing techniques for accurate analysis. This paper ex-
amines the banana tree data structure, specifically designed to efficiently main-
tain persistent homology—a multi-scale topological descriptor—for dynamically
changing time series data. We implement this data structure and conduct an ex-
perimental study to assess its properties and runtime for update operations. Our
findings indicate that banana trees are highly effective with unbiased random data,
outperforming state-of-the-art static algorithms in these scenarios. Additionally,
our results show that real-world time series share structural properties with unbi-
ased random walks, suggesting potential practical utility for our implementation.

1 Introduction

Time series are pervasive across numerous disciplines, ranging from economics and finance to envi-
ronmental science and healthcare. Often, time series data is dynamic, not static; for example, wear-
able devices continuously monitor health metrics such as heart rate or blood sugar levels, requiring
robust techniques for instant analysis and decision-making. Effective synthesis of the underlying
trends in such dynamic data is crucial for predictive modeling and strategic interventions.

Within the field of topological data analysis, persistent homology [4, 11] is recognized as a powerful
framework for capturing multi-scale features in complex datasets. Researchers have long consid-
ered the challenge of dynamic persistence, and the vineyard algorithm [6] was the first developed
to address updates in persistence diagrams (defined in Section 2.1) as the input data evolves; see
[15] for an implementation. This algorithm, while capable of handling data more general than just
time series, requires time linear in the size of the input complex per update, which is restricted to
swapping the order of two values. This prompts us to question whether faster processing could be
achieved for one-dimensional data. To address this challenge, we implement the banana tree data
structure [8], recently introduced and tailored specifically for the persistent homology of dynamic
time series. Their theoretical analysis promises the processing of each update in time logarithmic
in the number of items plus linear in the number of changes in the persistent diagram; compare
this with the linear time require to recompute the diagram [12]. This paper investigates what these
results mean in practice. We highlight some of the specific contributions:
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• Efficiency at scale: we demonstrate that for large datasets, such as those containing over
106 items, performing a local or topological update on an unbiased random walk using
banana trees is at least 100 times faster than recomputing persistence with Gudhi [16], the
state of the art static algorithm (see Figure 3).

• Structure and performance: we explore how the structure of banana trees, characterized
by parameters such as the number of critical items, the nesting depth of bananas, and the
lengths of trails, directly impacts the running time of our algorithms. This analysis identi-
fies the types of data best suited for efficient processing (see Figure 2).

• Worst-case scenarios: we construct specific examples that challenge our algorithms, and
show empirically that these scenarios are rare and highly unstable, reinforcing the robust-
ness of our approach (see Table 2).

• Real-world data: through analysis of three specific datasets, we illustrate that real-world
data can exhibit structural properties similar to those of unbiased random walks. Prelim-
inary evidence suggests potential for the broad applicability of banana trees in practical
scenarios (see Table 3).

In software for topological data analysis, tools like the Gudhi library [16], Dionysus [17], and
Ripser [2] are established for static datasets but require complete recomputation for updates, making
them less suited for dynamic contexts. We aim for our implementation to set a new standard in the
topological processing of dynamic time series.

Outline. Section 2 introduces persistent homology tailored to time series data and gives an
overview of the banana trees data structure. Section 3 evaluates the performance of banana trees
through experiments involving time series generated from random walks, with and without a bias.
Section 4 explores three distinct types of input time series to assess the performance of banana trees:
worst-case scenarios, quasi-periodic signals, and real-world data. Section 5 concludes the paper
with a summary of our findings and their implications.

2 Banana Trees for Time Series

We start by introducing persistent homology, a method to discern features of data across multiple
scales [10]. Forfeiting the generality of this theory, we focus on time series data. We also explain
what banana trees are and how they relate to persistent homology; see [8] for details on this data
structure and its algorithms.

2.1 Persistent Homology of Time Series

By a time series we mean a linear list of real numbers, c0, c2, . . . , cn−1, which we view as a piece-
wise linear map, f : [0, n − 1] → R, with f(i) = ci for 0 ≤ i ≤ n − 1. We refer to i as an item
and ci its value. A critical item is a local minimum or a local maximum of this map, and all other
items are non-critical, e.g. item i if f(i − 1) < f(i) < f(i + 1). To simplify the discussion, we
assume that the map is generic, by which we mean that its items have distinct values. In this case,
the endpoints (items 0 and n− 1) are necessarily critical.

The sublevel set of f at t ∈ R, denoted ft = f−1(−∞, t], are the points x ∈ [0, n − 1] that
satisfy f(x) ≤ t. When t passes the value of a minimum from below, then the number of connected
components of ft increases by 1, and if t passes the value of a maximum from below, the number of
connected components decreases by 1, unless the maximum is a endpoint, in which case the number
does not change. Symmetrically, we call f t = f−1[t,∞) the superlevel set of f at t. Observe that f t

is the sublevel set of −f at −t, and that the minima and maxima of −f are the maxima and minima
of f . Persistent homology tracks the evolution of the connected components while the sublevel
set of f grows, and formally defines when a component is born and when it dies. Complementing
this with the same information for the superlevel sets of f , we get what is formally referred to as
extended persistent homology; see [7] for details. It is best constructed in two phases:

• In Phase One, we track the connected components of the sublevel set, ft, as t increases
from −∞ to ∞. A component is born at the smallest value of t at which a point of the
component belongs to ft, which is necessarily a minimum. The component dies when it
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merges with another component that was born earlier, which is necessarily at a maximum
in the interior of [0, n − 1]. The ordinary subdiagram of f records the birth and death of
every component with a point in the plane whose abscissa and ordinate are those values of
t at which the component is born and dies, respectively; see Figure 1.

• In Phase Two, we track the connected components of the superlevel set, f t, as t decreases
from ∞ to −∞. Birth and death are defined accordingly, and the components are recorded
in the relative subdiagram.

By construction, the points in the ordinary subdiagram lie above and those of the relative subdiagram
lie below the diagonal. The component born at the global minimum of f is special because it does not
die during Phase One. Instead, it dies at the global minimum of −f , which is the global maximum
of f . In topological terms, this happens because the one connected component still alive at the
beginning of Phase Two dies in relative homology when its first point enters the superlevel set. This
class is represented by the sole point in the essential subdiagram. The extended persistence diagram
is the disjoint union of the three subdiagrams. Hence, the diagram is a multi-set of points in R2,
and so are the three subdiagrams, unless the map is generic, in which case the diagram is a set. See
the left panel in Figure 1 for an example but note that it only shows a small number of points in the
ordinary subdiagram. An important property of persistence diagrams is their stability with respect
to small perturbation of the input data, which was first proved in [5].

The points in the persistence diagram can be characterized using the concept of a window introduced
in [3]: start with a rectangular frame spanned by a minimum and a maximum in the graph of f such
that the minimum lies on the lower edge, and extend the frame horizontally as long as the graph
does not intersect the upper edge in its interior. Call the initial frame the mid-panel, its extension
the in-panel, and the symmetric extension for −f the out-panel. As proved in [3], the min-max
pair defines a point in the persistence diagram iff the graph of f reaches the lower edge in the out-
panel. In this case, we call the twice extended frame a triple-panel window. The corresponding
double-panel window consists of the mid-panel and the in-panel but not the out-panel. Any two
double-panel windows of f are either disjoint or nested, a property not shared by the triple-panel
windows. We use this property to augment the persistence diagram by drawing an arrow from a point
to another, if the double-panel windows of the first point is nested inside the double-panel window
of the other point, without any other window being nested between them. See Figure 1, which shows
four double-panel windows and the corresponding points and arrows in the augmented persistence
diagram. The displayed frames are indeed windows because each has an out-panel—next to the
mid-panel and thus opposite to the in-panel—which extends as far as the horizontal projection of
the minimum (a maximum of −f ) to the graph of the function.

2.2 Banana Trees

We sketch the banana trees while referring to [8] for the details. Suffice to say that they are based
on the Cartesian tree introduced by Vuillemin [22], which stores a list of items in order such that
each path from a leaf to the root is ordered by value. This tree has a unique decomposition into
paths that correspond to double-panel windows, and the banana tree splits each path into two trails
representing the windows nested inside the in-panel and the mid-panel of the corresponding window.
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Figure 1: Middle: a piece of the graph of f with four double-panel windows of which three are nested inside
the fourth. Left: the corresponding points in the persistence diagram and the arrows that reflect the nesting
relation among the windows. Right: the four corresponding bananas in the up-tree of f .
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A time series represented by a piecewise linear function, f , is stored in two banana trees together
with a linked list and two standard dictionaries. We call the first banana tree the up-tree of f because
it corresponds to Phase One of the persistence diagram construction. The second banana tree is the
down-tree of f , which is the up-tree of −f . Because of this symmetry, it suffices to describe the
up-tree of f . Its leaves are the minima of f , and its internal nodes are the maxima of f , with the
exception of endpoint maxima, if they exist, since they are not critical in Phase One. Each point
in the ordinary persistence diagram is a min-max pair, (a, b), and it is represented by a banana
that connects the leaf a to the internal node b with two parallel trails. The mid-trail is a doubly-
linked list connecting a to b with the maxima that span windows nested in the mid-panel of the
window of a, b, and the in-trail is symmetrically defined; see the right panel in Figure 1. The tree
structure arises because the maxima belong to the similarly defined bananas of the nested windows.
Each trail is sorted in the order of value but also in the order of location along the time series. For
example, the mid-trail of the big banana in Figure 1 stores a, s, q, b, which montonically increases in
value and monotonically decreases in location. Compare this with the in-trail storing a, v, b, which
monotonically increases in value and in location after we discard b. Indeed, we think of b as part of
the min-trail while only connecting the in-trail to the rest of the tree without properly belonging to
it. The global minimum of f (not shown in Figure 1) is special because it is not paired in Phase One.
Indeed, it is the extra leaf whose path upward does not end at an internal node. We therefore add a
special root as the parent of the root, connected to the global minimum by the root banana. While
there is only one root banana, there are possibly many leaf bananas, which are the bananas with
two empty trails (beside the minimum and maximum they connect). Indeed, we call the number of
nodes between the minimum and maximum the length of the trail, which for trails of leaf bananas is
necessarily zero. Another important concept is the nesting depth of a banana, which is the number
of windows that contain the corresponding window. The root banana has nesting depth zero, and all
other bananas have positive nesting depth.

Each update to a time series stored in a banana tree reduce to a sequence of elementary operations,
which we name by their impact on the function, f . An interchange happens when two maxima
or two minima swap the order of their values. Unless their locations are near each other, there is
a good chance that an interchange does not have any effect on the banana tree. Otherwise, it is
akin a rotation in a binary search tree, if the interchange is between two maxima, and akin a local
rearrangement of the path decomposition, if the interchange is between two minima. A cancellation
removes a min-max pair or, equivalently, the corresponding leaf banana, an anti-cancellation is the
inverse of a cancellation, and a slide swaps the status of a critical item with that of a neighboring
non-critical item. The latter three operations appear only a constant number of times whenever
we adjust a value. Nevertheless, anti-cancellations present challenges to fast implementation as we
have to find out where it is to happen, and this search is not supported by any special purpose data
structure. On the other hand, interchanges may happen in sequence, so it is important to charge each
to a change in the persistence diagram. We refer to [8] for details.

3 Experimental Results for Random Walks

This section studies the structural properties of banana trees for random walks, both biased and
unbiased. In addition, it compares the running times of local and topological operations with the
static algorithm in Gudhi [16]. We do not compare it with vineyards [6], which lack optimized
software for the one-dimensional case.

3.1 The Experimental Set-up

We write γ ∼ N (µ, σ) for a normally distributed random variable with mean µ and standard devia-
tion σ. Given µ, σ, a random walk of length n is a real-valued function r = rµ,σ defined by

r(0) = 0 and r(i) = r(i− 1) + γi for 1 ≤ i < n, (1)

in which the γi ∼ N (µ, σ) are independent. The random walk is unbiased if µ = 0 and biased if
µ ̸= 0. We assume σ = 1 unless stated otherwise.

To evaluate the performance of local updates, we change the value of a single item, and since it
depends on the amount, we fix parameters ∆ ∈ R and k ∈ N and change the value of the i-th item
from r(i) to r(i) + δj , with δj = j

k∆ for −k ≤ j ≤ k. For the experiments, we pick ∆ = 5.0 or
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50.0 and k = 10, while doing the update on a random walk of length between 102 and 106 generated
for µ ∈ [−1.1] and σ = 1. Each experiment is repeated one hundred times and averages as well
as deviations from the average are reported. For each experiment, we also measure the time to run
Gudhi on the walk after the value change. This provides the appropriate reference time, since Gudhi
needs to recompute the persistence diagram from scratch after each update.

To evaluate the performance of topological updates (split or glue), we pick a fraction, c ∈ (0, 1),
generate a random walk of length n, and then cut it into a left walk of length ⌊cn⌋ and a right walk
of length ⌈(1− c)n⌉. To split, we first construct the banana tree of the entire random walk, which
we then cut into two banana trees, one for the left and the other for the right walk. To glue, we first
construct the banana trees of the left and right walks, which we then combine to a single banana
tree for the walk of length n. Doing this for fractions c ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, we compare the
time to split with the time used by Gudhi to construct the persistence diagrams of the left and right
walks, and the time to glue with the time used by Gudhi to construct the persistence diagram of the
entire random walk.

3.2 Structural Properties

We focus on three structural properties of banana trees, which have direct implications for the run-
ning time of our algorithms: the number of critical items, the nesting depth of bananas, and the
lengths of trails. Since a banana tree does not store non-critical items, its number of nodes is the
number of critical items. In an unbiased random walk, the expected number of critical items is 50%
of all items. This fraction decreases when the bias increases, with about 27% for µ = ±1; see the
left panel in Figure 2 for more detailed information.
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Figure 2: Left: the average fraction of items that are critical as a function of the bias. Middle: the average
nesting depth of leaf bananas in banana trees of unbiased random walks with n items. The ribbon extends from
the minimum to the maximum observed value for each n; the dots mark the mean. The red line is the graph
of a constant times logn obtained by linear regression. Right: the average length of in-trails (orange dots) and
mid-trails (blue triangles) in banana trees of random walks with bias µ, averaged over all input sizes.

The middle panel of Figure 2 shows the average nesting depth of a leaf banana for an unbiased
random walk, which appears to scale like the logarithm of the number of items. In the unbiased
case, even the maximum nesting depth seems to be small (about 13 on average for a random walk of
length 2 ·106), and scale logarithmically in the number of items. With increasing bias, the maximum
nesting depth decreases, to about 4 at µ = ±1. This is because in the biased case, there are fewer
critical items but also the bananas tend to arrange in parallel rather than inside each other. We
observe that the nesting depth is about the same on average in up-trees and down-trees, both for
biased and unbiased random walks, so our results hold for both trees.

Regarding trails, we observe that the length of the in-trails in the up-tree and the mid-trails in the
down-tree are equal on average. By symmetry, the same holds for the mid-trails in the up-tree and
the in-trails in the down-tree. Let us therefore focus on the up-tree. The right panel in Figure 2
shows how the average length of in- and mid-trails depends on the bias. In the unbiased case, both
types of trails have the same length on average. For positive µ, the mid-trails tend to be longer than
the in-trails, while the reverse happens for negative µ. The main cause for this trend is the longest
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trail, which starts to dominate the others in length as the bias increases. Assuming µ > 0, the global
minimum and maximum tend to lie to the left and right of the middle, respectively, with the majority
of the items between them. By convention, the connecting in-trail and mid-trail contain the items to
the left and right of the global minimum, respectively. This explains why the mid-trail dominates in
this case, and why the in-trail dominates when µ < 0. Indeed, for µ = ±1, we observe about 95%
of the internal nodes (the local maxima) on the longest trail.

3.3 Local Maintenance

We evaluate the performance of banana trees when the value of a single item changes by δ. Note
that the corresponding update is a combination of some number of interchanges and at most one
cancellation, at most one anti-cancellation, and at most two slides [8]. Not surprisingly, the time
increases with the amount of change. For example, there is no effect at all on the persistence diagram
for about 70% of the updates with δ = ±0.26, for about 36% of the updates with δ = ±0.79, but
only about 1% for updates with δ = ±3.4. Taking this into account, it is not surprising that banana
trees are faster than Gudhi when δ = ±0.26 for all lengths of random walks we tried.
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Figure 3: Comparing the maintenance of banana trees with reconstructing the persistence diagram with Gudhi,
in which the baseline of no speedup (100 = 1) is marked with a horizontal gray line. Left: the speedup for
updating a value with δ = ±5.0 depending on the length of the random walk, n. The ribbon spans the minimum
and maximum observed speedup, with the black curve tracing the median speedup. Middle: the speedup for
using banana trees to cut a random walk with bias µ in half. The type and color of the curve encodes the amount
of bias, and each curve shows the median speedup over a hundred repeats for each n. Right: the speedup for
using banana trees to concatenate two equally long random walks with bias µ.

The left panel in Figure 3 focuses on the case δ = ±5.0. As indicated by the vertical dashed and
dotted lines, banana trees are faster than Gudhi for all random walks of length n ≥ 1059, and faster
in the median for all n ≥ 144. Not shown in the panel is that the speedup decreases with increasing
bias. In particular, for n = 106, the speedup of 612 at µ = 0 decreases to 258 at µ = 1, and for
n = 1059, the speedup of 6.0 at µ = 0 decreases to 2.9 at µ = 1. This can be explained by recalling
that for large bias the majority of the internal nodes belong to the longest trail, which connects the
global minimum to the global maximum. Hence, items with similar values are likely to be near each
other and thus require interchanges when an update is performed. However, even for a large change,
such as for δ = ±50.0, maintaining the banana tree is still faster than reconstructing the persistence
diagram with Gudhi. For example, the median speedup for n = 104 exceeds 10 and for n = 106 it
exceeds 100.

3.4 Topological Maintenance

We call the operations of cutting a list into two, and concatenating two lists to one topological
because they change the number of lists in the overall organization of the data. We begin with
evaluating the performance of cutting a random walk. The middle panel in Figure 3 shows the
speedup over Gudhi when we cut a biased or unbiased random walk in half. In the unbiased case,
the speedup increases with the length of the walk. Recalling the discussion of structural properties,
this can be rationalized by noticing that the maximum nesting depth bounds the number of bananas
that need to be split, and the trail length bounds the time to reorganize bananas. The maximum
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nesting depth scales like log n and the average trail length is only 0.5, so we anticipate logarithmic
time for splitting, which we indeed observe in our experiments. Altering the position of the cut
increases the speedup, namely by about 2% for c = 0.5± 0.2 and by about 7% for c = 0.5± 0.4.

The advantage of the banana tree over Gudhi diminishes when the random walks get progressively
more biased. The reason is again that the larger the bias, the larger the fraction of internals nodes
in the longest trail of the banana tree. Splitting the corresponding banana requires the resetting of
many pointers stored in nodes along this trail, which in some cases costs time proportional to the
number of critical items, which we indeed observe in our experiments. Unfortunately, this more
than compensates for the low nesting depth, which guarantees that only a small number of bananas
need to be split. The upper half of Table 1 shows the running time and the speedup over Gudhi for
cutting a random walk in half.

Table 1: Upper half : the average time for cutting a random walk of length n = 106 in half, and the speedup
over Gudhi. Lower half ; the average time for concatenating two random walks of length n = 106/2 each, and
the speedup over Gudhi. All times are measured in micro-seconds.

µ = 0 µ = 0.04 µ = 0.08 µ = 0.2 µ = 1

Cut time 93 1417 2807 5350 1683
speedup 105.00 7.24 3.54 1.68 2.15

Concatenate time 90 1809 3041 5138 1228
speedup 105.00 5.31 3.12 1.74 3.22

We finally address the reverse operation, that of concatenating two random walks or, correspond-
ingly, of gluing two banana trees. The curves in the right panel of Figure 3 are similar to those in the
middle panel, which suggests that the performance is similar to that of cutting, which is confirmed
by the numbers in Table 1. For n ≤ 104, gluing appears to be slightly fast than splitting, but the
difference is less clear already for n = 106.

4 Special Time Series

This section considers three types of time series: worst-case examples to expose when banana trees
underperform, quasi-periodic data to illustrate how banana trees reflect periodicity, and real-world
data to demonstrate that banana trees are not just theory. While banana trees struggle for data of the
first type, they mirror the performance observed in unbiased random walks for the latter two types.

4.1 Worst-case Examples

The size of the augmented persistence diagram (number of points and arrows) is proportional to
the number of critical items. There are configurations in which a single update changes almost the
entire diagram and thus takes time at least linear in the number of such items. We construct such
worst-case inputs and study the performance of banana trees when confronted with such data.
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Figure 4: Worst-case examples for local and topological maintenance. Left: to increase the value of the marked
item triggers a linear number of interchanges. Right: to cut the list at the dashed line affects every persistent
pair. Both operations take time linear in the number of critical items, which for the two time series are all or
almost all items.

7



Consider first the operation that increases the value of the marked item in the left panel of Figure 4.
When its value passes that of its left neighbor, an anti-cancellation adds the banana they span to the
banana tree. As we increase the value further, the marked item interchanges with the maxima to its
right, each time moving up one level within the sequence of windows within which its window is
nested. When the marked item finally becomes the global maximum, it will have interchanged with
all other maxima, which takes Θ(n) time. For n = 102 and n = 106, we measured 3.4µs and 4.7ms
on average, respectively. This corresponds to a median speedup of 0.05 and 0.02 if compared with
Gudhi, which is really a slowdown by a factor of 20 and 50, respectively.

Table 2: Performance of splitting and gluing banana trees for the example time series in the right panel of
Figure 4, showing the median slowdown/speedup if compared to Gudhi. The parameter interpolates between
these time series at λ = 0 and unbiased random walks at λ = 1.

split glue
λ = 0 10−4 10−2 100 λ = 0 10−4 10−2 100

n = 102 0.04 0.04 0.04 0.30 0.07 0.07 0.09 0.55
n = 104 0.02 0.02 4.60 10.00 0.05 0.06 7.80 18.00
n = 106 0.04 3.60 41.00 100.00 0.05 3.70 55.00 102.00

Consider second the operation that cuts the time series in the right panel of Figure 4 in the middle,
which is marked by the vertical dashed line. We observe an average running time between 14µs at
n = 102 and 98ms at n = 106. Compare this with an average running time of 10µs at n = 102 and
80ms at n = 106 for concatenating the two lists back to the original length. This comparison agrees
with the earlier observation that gluing banana trees is slightly faster than splitting them. Table 2
lists the speedup if compared to Gudhi, which for a number less than 1 is really a slowdown. To
create a more informative experiment, we interpolate between these time series and unbiased walks,
with drastic improvements even for small λ > 0; see Table 2. Indeed, the noise quickly flattens the
banana tree by decreasing the length of trails, which explains the improvement.

4.2 Quasi-periodic Data

Random walks are not periodic, but real-world time series often exhibit some amount of periodicity,
at least approximately. To study banana trees under these conditions, we construct what we call
quasi-periodic inputs. This term does not have a mathematical definition, and for our experiments
just means a periodic signal that is randomly perturbed. Specifically, we generate such input by
modifying the iterative construction in (1):

r(0) = 0 and r(i) = r(i− 1) + ηi for 1 ≤ i < n, (2)

in which the ηi ∼ N (µi, σ) are independent and normally distributed, with the mean changing
periodically, ηi = sin(2πωi), as governed by the frequency parameter 0 ≤ ω < 1, which we fix
to ω = 5/n. It will be useful to compare the influence of the standard deviation, so we no longer
assume σ = 1.

For large σ, the banana trees of the time series show the features we have seen for unbiased random
walks, while for small σ, they locally behave like biased random walks. For example, for σ = 1, we
observe about 37% of the items to be critical, while for σ = 0.5 and σ = 0.02 only about 21% and
1% of the items are critical, on average. Like the number of critical items, also the maximum nesting
depth for quasi-periodic signals is similar to that of random walks: it scales like log n for large σ
and decreases as σ goes to 0. In constrast, the average nesting depth is independent of n, ranging
from 2 to 4.7 with mean 2.4. The behavior of the trail length is illustrated in Figure 5. As shown in
the left panel, the average trail length is about 0.5, with consistently shorter in-trails than mid-trails,
on average. This difference is more pronounced for small σ, when the quasi-periodic signal behaves
more like a biased rather than unbiased random walk. The middle and right panels show how the
fraction of internal nodes on the longest trail increases as σ goes to 0.

We conclude that banana trees on quasi-periodic signals with large standard deviation resemble
unbiased random walks in terms of their structural parameters, and drift toward biased random
walks as the standard deviation goes to 0.
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Figure 5: Measuring trail lengths. The in-trails and mid-trails are marked with orange dots and blue triangles,
respectively, and the ribbons extend from the minimum to the maximum observed values. Left: the average
length of in-trails and mid-trails depending on the standard deviation and averaged over all input sizes. Middle
and right: the fraction of nodes on the longest in-trail and mid-trail, again depending on the standard deviation
but now averaged over inputs of size 104 and 2 · 106, respectively.

4.3 Real World Examples

We analyze structural properties of banana trees constructed on three types of real-world time series:

• electrocardiography (ECG) data from PhysioNet [13, 18, 20]; limiting ourselves to record-
ings of length at least 105, each separated into up to 12 leads, gives 32443 time series in
total;

• audio data from EasyCom [9], of which we use 1336 audio files;

• physical activity data from PAMAP2 [19] (temperature, heart rate along with recordings
from accelerometers, gyroscopes, and magnetometers), of which we use 560 time series.

We preprocess the data by adding uniformly distributed noise to ensure all values are distinct, mak-
ing sure the noise is small enough so it breaks ties but does not otherwise alter the ordering,

Table 3: Structural properties of the banana trees constructed for time series from three databases. The max-
imum nesting depth is measured relative to the depth we observe for unbiased random walks with the same
fraction of critical items.

fraction of max nesting depth average length
critical items avg min max in-trail mid-trail

PhysioNet 0.24 1.2 0.8 6.3 0.48 0.52
EasyCom 0.22 2.7 1.6 4.9 0.48 0.52
PAMAP2 0.48 1.9 1.2 3.2 0.49 0.51

We observe that the average max nesting depth for the three data sets is only a small factor larger
than for unbiased random walks; see the middle three columns in Table 3. The largest maximum
nesting depth for PhysioNet data is a bit higher, by a factor 6.3, but 99% of the time series from this
data have maximum nesting depth at most 1.68 times that for unbiased random walks. The average
trail lengths are again similar to those of unbiased random walks—see the last two columns, with
standard deviation about 0.05 throughout—and so are the fractions of items in the longest trails,
whose geometric means are 0.8%, 0.008%, 0.1% for the in-trails and 0.8%, 0.008%, 0.2% for the
mid-trails in the three data sets, compared with about 0.3% and 0.4% in unbiased random walks.

5 Discussion

We provide an implementation of the banana tree data structure and supply experimental evidence
demonstrating its efficiency. The work reported in this paper confirms the theoretical advantages
of banana trees over static alternatives and opens up avenues for further theoretical inquiries and
practical applications. One intriguing question that arises in the context of quasi-periodic data is

9



whether we can determine the (possibly varying) period of the data without prior knowledge, or
provide meaningful quantification of the extent to which a signal deviates from being periodic.

The potential applications of banana trees extend beyond academic research into practical, real-
world scenarios. Comparisons with other methods and identifying impactful use cases represents a
promising next step to provide valuable insights in fields such as healthcare, where real-time analysis
of patient data is crucial, or finance, where the swift analysis of market data is essential.
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