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Abstract
Given a locally finite set A ⊆ R

d and a coloring χ : A → {0, 1, . . . , s}, we introduce
the chromatic Delaunay mosaic of χ , which is a Delaunay mosaic in Rd+s that repre-
sents how points of different colors mingle. Our main results are bounds on the size of
the chromatic Delaunay mosaic, in which we assume that d and s are constants. For
example, if A is finite with n = #A, and the coloring is random, then the chromatic
Delaunay mosaic has O(n�d/2�) cells in expectation. In contrast, for Delone sets and
Poisson point processes in R

d , the expected number of cells within a closed ball is
only a constant times the number of points in this ball. Furthermore, inR2 all colorings
of a well spread set of n points have chromatic Delaunay mosaics of size O(n). This
encourages the use of chromatic Delaunay mosaics in applications.

Keywords Chromatic Delaunay mosaic · Chromatic point sets · Delaunay mosaic ·
Voronoi diagram · Combinatorial geometry · Stochastic geometry · Poisson point
process · Delone set

Mathematics Subject Classification 52C · 60D05 · 52C45 · 68U05

1 Introduction

Recent advances in technologies, including multiplexed imaging and spatial tran-
scriptomics, allow for the direct observation of both cellular location and cellular
phenotypes in native tissue microenvironment [23]. This provides new opportuni-
ties to understand the organizational principle in biological systems. It is particularly
relevant in cancer research,where recent studies show that the complex spatial arrange-
ment formed by cancer cells and a collection of immune cells can provide mechanistic
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insights into disease progression and unveil biomarkers of response to existing treat-
ments [24].

To formally model such a system, we use points with an extra label, a color, to
represent cells and their associated phenotypes. Methods from the field of topological
data analysis [3], which are particularly suited for point cloud data, suggest themselves
as a natural candidate to extract geometric features from such datasets. Specifically,
when points have no labels, an appropriate filtration of the Delaunay mosaic, called
the alpha filtration [10], can be used to quantitatively describe the spatial configuration
of the point set. We seek for an analogous concept amenable to the setting in which
points have an associated color. A solution for two colors was proposed by Reani and
Bobrowski [22], which we generalize to arbitrarily many colors and whose structural
and combinatorial properties we study. Given a locally finite set in Rd and a coloring
with s + 1 colors, this generalization places the points of different colors on s + 1
parallel copies of Rd , which intersect an orthogonal copy of Rs at the vertices of the
standard s-simplex. This is a locally finite set in R

d+s , and the chromatic Delaunay
mosaic of the colored set in R

d is, by definition, the Delaunay mosaic of the set in
R
d+s . A similar set-up was used in [4] for the purpose of geometric morphing between

s + 1 shapes, so our work also sheds light on that proposal to construct a shape space.
The structural results we wish to highlight are as follows: (1) the chromatic Delau-

nay mosaic contains the Delaunay mosaic of any subset of the s + 1 colors as a
subcomplex; in particular, it contains the Delaunay mosaic of each color individually
and of all colors as subcomplexes; (2) the d-dimensional section of the colorful cells
in the chromatic Delaunay mosaic (the cells that have at least one vertex of each color)
is dual to the overlay of the s + 1 mono-chromatic Voronoi tessellations.

Our combinatorial results help gauge the extent to which chromatic Delaunay
mosaics can be used in applications. By the size of a mosaic we mean the number
of cells, which we relate to the number of the points, denoted n. The dimension, d,
and the number of colors, s+1, are assumed to be constants. We also consider locally
finite but possibly infinite sets, namely Delone sets and Poisson point processes as
examples of packed sets and random sets in R

d , respectively. Here and later, we use
the term ‘packed’ as a vague notion for locally finite sets of points that are, in a sense,
d-dimensionally distributed. To facilitate the comparisonwith the results for finite sets,
we count the points and cells within a sufficiently large ball centered at the origin.

As shown in Table 1, we have upper bounds for all three types of point sets assuming
the colors are assigned at random. For any points and packed points, the bounds are
formally stated in Theorems 4.2 and 4.4, and they are asymptotically tight. For a
stationary Poisson point processwith finite intensity, the expected density exists,which
implies that within a sufficiently large ball, the expected number of cells is proportional
to the expected number of points. We explicitly state the expected density for any
number of colors and points in the plane (Theorem 5.1), and for two colors and points
in any number of dimensions (Theorem 5.2). To illustrate the results on Poisson point
processes, we present computational experiments with bi- and tri-colored Poisson
point processes in R

2 and R
3.

We have few results for the case of any colors (worst assignment of colors). The
bounds for any points are straightforward and again asymptotically tight. For packed
sets, we have a result in R

2, proving that the size is at most quadratic in the spread,
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Table 1 Asymptotic size bounds for chromatic Delaunay mosaics of n points in R
d with s + 1 colors

Chromatic Delaunay mosaic in R
d+s D. mosaic in Rd+s

Any points Packed points Random points (one color)

Any colors nmin{d,� d+s
2 �} min{m2, n2} in R

2 (∗) ? n� d+s
2 �

Section 4 Theorem 4.7 [5]

Random colors n�d/2� n n

Theorem 4.2 Theorem 4.4 Theorems 5.1, 5.2

Constant factors are not shown. For the case of a packed set and any colors, we have a result only in R
2

(∗), in which m is the spread (the diameter divided by the minimum interpoint distance), which is at least a
constant times

√
n. For comparison, we state the known maximum size of the (mono-chromatic) Delaunay

mosaic of n points in R
d+s in the last column on the right [5]

i.e. in O(m2), and thus in O(n) if m = O(
√
n); see Theorem 4.7. This O(m2) bound

is tight for all values of m between a constant times
√
n and n. We lack bounds for

packed points and any colors beyond two dimensions and for random points and any
colors beyond one dimension. Note the conspicuous absence of the number of colors
in most bounds given above, and this despite the fact that the chromatic Delaunay
mosaic is a (d + s)-dimensional complex.
Outline. Section 2 presents general background on Delaunay mosaics and Voronoi
tessellations. Section 3 introduces the chromatic Delaunay mosaic and proves some
of its structural properties. Section 4 proves combinatorial bounds for the size of
chromaticDelaunaymosaics. Section 5 studies the size of chromaticDelaunaymosaics
for Poisson point processes and presents related computational experiments. Section 6
concludes the paper.

2 Background

We need basic facts about Voronoi tessellations and their dual Delaunay mosaics in
Euclidean space, and refer to [1] for further reading on the subject. Particularly relevant
for this paper is the long history of work on the combinatorial properties of Voronoi
tessellations and Delaunay mosaics for random point sets [7, 8, 13–15, 17–19].

2.1 Voronoi Tessellations

Letting A ⊆ R
d be a finite set and b ∈ A a point, the Voronoi domain of b, denoted

dom(b, A), is the set of points, x ∈ R
d , for which ‖x − b‖ ≤ ‖x − a‖ for all a ∈ A.

Since A is finite, dom(b, A) is the intersection of finitely many closed half-spaces
and thus a convex polyhedron. This polyhedron contains a neighborhood of b, so it
is d-dimensional. A supporting hyperplane of dom(b, A) is a (d − 1)-plane whose
intersection with the polyhedron is non-empty but with its interior is empty. A face
of dom(b, A) is the intersection with a supporting hyperplane, which is a convex
polyhedron of dimension p < d.
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TheVoronoi tessellation of A, denotedVor(A), is the collection ofVoronoi domains,
dom(b, A) with b ∈ A. We refer to the domains as d-cells and to their p-dimensional
faces as p-cells of Vor(A). The 0-cells are also called vertices and the 1-cells are
also called edges. While any two d-cells of Vor(A) have disjoint interiors, they may
intersect in shared faces. More generally, the common intersection of one or more
d-cells is either empty or a shared face. For every x ∈ R

d , there is a unique cell of
smallest dimension that contains x , and this cell contains x in its interior. It follows
that the interiors of the cells of Vor(A) partition R

d .
Writing n = #A, it is clear that Vor(A) has precisely n d-cells. For d = 2, this

implies that there are at most 3n edges and at most 2n vertices. More generally for n
points in R

d , the Voronoi tessellation has O(n�d/2�) cells. While this bound is tight,
the number of cells depends on the relative position of the points and is much smaller
for many sets, including some considered in this paper. For example, the Voronoi
tessellation of n points chosen uniformly at random inside the unit cube in a constant-
dimensional Euclidean space has only O(n) cells in expectation; see e.g. [7].

2.2 DelaunayMosaics

The Delaunay mosaic of A ⊆ R
d , denoted Del(A), is the dual of the Voronoi tes-

sellation of A. To be specific, consider a p-cell of Vor(A), and observe that it is the
common intersection of m ≥ d − p + 1 Voronoi domains. Assuming this collection
of domains is maximal, and writing a1, a2, . . . , am for the points in A that generate
them, we call the convex hull of the ai the dual Delaunay cell of the Voronoi p-cell.
Its dimension is q = d − p. The Delaunay mosaic of A is the collection of Delaunay
cells dual to cells of Vor(A).

We note that Del(A) is a polyhedral complex; that is: it consists of closed polyhedral
cells such that the boundary of each cell is the union of lower-dimensional cells in
the complex. Similarly, the collection of cells of Vor(A) is a polyhedral complex, but
note that Vor(A) is, by definition, only the collection of Voronoi domains, which is
not a complex.

Call a (d − 1)-dimensional sphere empty of points in A if no point in A is enclosed
by the sphere. The points may lie on the sphere or outside the sphere, but they are
not allowed to lie inside the sphere. It is not difficult to see that the convex hull of
m points in A is a cell in Del(A) iff these m points lie on an empty (d − 1)-sphere,
while all other points in A lie strictly outside this sphere. Indeed, the center of such
an empty sphere is a point in the interior of the dual Voronoi cell, and the Voronoi
domains generated by the m points all share the cell.

We say A ⊆ R
d is generic, or in general position, if no p + 2 points of A lie

on a common (p − 1)-sphere, for 1 ≤ p ≤ d. In this case, all cells in Del(A) are
simplices, so Del(A) is a simplicial complex in R

d . Correspondingly, every p-cell
of Vor(A) is the common intersection of exactly d − p + 1 Voronoi domains, so the
common intersection of any d +2 Voronoi domains is necessarily empty. This is what
we call a simple decomposition ofRd . In this case, the Delaunay mosiac is isomorphic
to the nerve of the Voronoi tessellation, which consists of all collections of domains
in Vor(A) that have a non-empty common intersection. The assumption that A be
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generic often simplifies matters, and it can be simulated computationally [9] to avoid
cumbersome special cases.

3 Chromatic Complexes

The main concepts in this section are the chromatic Delaunay mosaics and Voronoi
tessellations, which generalize the bi-chromatic construction in [22] to more than two
colors. After introducing the chromatic complexes, we establish some of their basic
properties.

3.1 Chromatic DelaunayMosaics

Throughout this section, we let A be n points in Rd , σ = {0, 1, . . . , s} a collection of
colors, χ : A → σ a coloring, and A j = χ−1( j) the subset of points with color j , for
0 ≤ j ≤ s. We call χ a chromatic point set.

Indeed, we let s+1 (and not s) be the number of colors throughout the entire paper.
We recall that the standard s-simplex is the convex hull of the s + 1 unit coordinate
vectors inRs+1. To map this simplex to s dimensions, we identifyRs with the s-plane
defined by x1+ x2+ . . .+ xs+1 = 1 inRs+1 and parametrize it with the inherited s+1
barycentric coordinates. A subset of t + 1 ≤ s + 1 unit coordinate vectors defines the
standard t-simplex, which we map toRt by parametrizing it with the t +1 barycentric
coordinates inherited from R

t+1. We are ready to construct the chromatic Delaunay
mosaic of χ , denoted Del(χ). We start by writing R

s+d = R
s × R

d , implying the
explicit embeddings ofRs andRd intoRs+d , and then construct Del(χ) in three steps:

Step 1: let u0, u1, . . . , us be the vertices of the standard s-simplex in R
s ;

Step 2: set A′ = A′
0 
 A′

1 
 . . . 
 A′
s , in which A′

j = u j + A j ⊆ u j + R
d , for each

0 ≤ j ≤ s;
Step 3: construct Del(χ) = Del(A′);

see Figure 1. As Del(χ) is essentially a standard Delaunay mosaic, the paper can
also be viewed as a study of Delaunay mosaics of point clouds restricted to a specific
collection of affine spaces.

Similarly, we apply the construction to a subset of the colors, τ ⊆ σ , and write
Del(χ |τ), in which χ |τ is our notation for the restriction of χ to χ−1(τ ). This mosaic
lives inRt+d , inwhich t = #τ−1. It is not difficult to see thatDel(χ |τ) is a subcomplex
of Del(χ). To state this property formally, we call a cell in Del(χ) τ -colored if the
colors of its vertices belong to τ , and τ -colorful if it is τ -colored and has a vertex of
every color in τ . Every cell is τ -colorful for the smallest subset, τ ⊆ σ , for which the
cell is τ -colored. This implies that we get a partition of the cells into 2s+1 − 1 classes.
Note that the τ -colored cells form a subcomplex of Del(A), while the τ -colorful cells
generally do not.

Proposition 3.1 (Sub-chromatic Delaunay Subcomplexes) Let A ⊆ R
d be finite,

χ : A → σ a coloring, and τ ⊆ σ . Then the subcomplex of τ -colored cells in Del(χ)

is Del(χ |τ).
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Fig. 1 The chromatic Delaunay mosaic of three finite sets in R
1 together with the stratification of space

into membranes. The points of each set are placed on a copy of R1 orthogonal to the 2-plane that carries
the standard triangle constructed in Step 1. The stratification consists of a 1-dimensional membrane geo-
metrically located between the three lines, and three 2-dimensional membranes, one between any two of
the lines

Proof Let H be a hyperplane in R
d+s that passes through all points with color in τ

such that all other points in A′ are contained in an open half-space bounded by H . The
cells of Del(χ |τ) are characterized by the existence of an empty (t + d − 1)-sphere in
H that passes through the vertices of the cell and through no other points with color in
τ . Since all points with color in σ \ τ lie in an open half-space bounded by H , we can
extend this (t + d − 1)-sphere to an empty (d + s − 1)-sphere that passes through the
same points. Hence, Del(χ |τ) ⊆ Del(χ), which implies the claim because Del(χ |τ)

exhausts all τ -colored cells in Del(χ). �

It is perhaps more difficult to see how Del(χ) relates to Del(A). In the relatively

straightforward simplicial case, Del(χ) contains a subcomplex whose projection to
R
d is Del(A); see Figure 2. In the general and therefore not necessarily simplicial

case, we can for example have a convex quadrangle in Del(A) that is the projection of
a tetrahedron in Del(χ). We formulate the relationship that allows for this and similar
cases in terms of the nerves of Vor(A) and Vor(A′), where Vor(A′) is the Voronoi
tessellation of the lifted point set, A′.

Proposition 3.2 (Projection to Delaunay Mosaic) Let A ⊆ R
d be finite, σ =

{0, 1, . . . , s}, and χ : A → σ a coloring. Then the nerve of the (d + s)-cells of
Vor(A′) in Rd+s has a subcomplex that projects to the nerve of the d-cells of Vor(A)

in Rd .
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Fig. 2 Left: the Delaunay mosaic of a bi-colored set in the plane, Del(A).Middle: the chromatic Delaunay
mosaic, Del(χ), with colorful triangles left unfilled for clarity. Right: the subcomplex of Del(χ) that is
isomorphic to Del(A)

Proof Recall that k + 1 points in A are the vertices of a cell in Del(A) iff there is an
empty (d − 1)-sphere, S, that passes through these k + 1 points and through no other
points of A. The nerve of the corresponding k + 1 Voronoi d-cells is a k-simplex.

Following the construction of the chromatic Delaunay mosaic, we copy S to u j + S
for each j ∈ σ . Let S′ be the (d + s − 1)-sphere in R

d+s whose intersection with
u j +R

d is u j + S, for every j ∈ σ . It should be clear that S′ exists: its center projected
to R

s is the barycenter of the standard s-simplex and projected to R
d is the center

of S. By construction, S′ is empty and passes through the points u j + a with a ∈ S
and χ(a) = j , and through no other points of A′. The nerve of the corresponding
(d + s)-cells in Vor(A′) is again isomorphic to a k-simplex, and its projection to R

d

is the k-simplex isomorphic to the nerve of the k + 1 Voronoi d-cells we started with.
The claim follows. �


3.2 Voronoi Tessellations for Chromatic Point Sets

The Voronoi tessellation of the chromatic point set χ : A → σ is the Voronoi tes-
sellation of the lifting A′ ⊆ R

d+s . We denote this Voronoi tessellation by Vor(χ).
There is a bijection between the cells of Vor(χ) and Del(χ), denoted by mapping ν

to ν∗ ∈ Del(χ), such that dim ν + dim ν∗ = d + s and μ is a face of ν iff ν∗ is a face
of μ∗. We call ν τ -colored or τ -colorful if ν∗ is τ -colored or τ -colorful, respectively.
For each τ ⊆ σ , we define the τ -membrane of χ as the union of the interiors of the
τ -colorful cells of Vor(χ), denoted M(τ ). Since the interiors of the cells in Vor(χ)

partition R
d+s , and the interior of each cell belongs to exactly one membrane, the

membranes are pairwise disjoint and partition R
d+s ; see Figure 1.

Proposition 3.3 (Stratification into Membranes) Let A ⊆ R
d be finite, σ =

{0, 1, . . . , s}, and χ : A → σ a coloring.

1. For each non-empty τ ⊆ σ , M(τ ) is a manifold homeomorphic to R
s−t+d , with

t = #τ − 1.
2. The collection of M(τ ) forms a stratification of Rd+s with strata of dimension

d to d + s, in which the p-stratum is the disjoint union of all M(τ ) with #τ =
d + s − p + 1.

Proof We begin with τ = σ . Let w ∈ R
d and consider w + R

s , which is an s-plane
parallel to R

s and therefore orthogonal to R
d . By Pythagoras’ theorem, the squared
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distance between points x ∈ w + R
s and y ∈ R

d is ‖x − w‖2 + ‖w − y‖2. Letting
a be the point in A closest to x , this implies that a is the closest point in A to any
point in w + R

s . Similarly, if a′
j is the point in A′

j closest to x , then a′
j is the closest

point in A′
j to any point in w + R

s . There is a unique point z(w) ∈ w + R
s at equal

distance to a′
0, a

′
1, . . . , a

′
s . Hence, z(w) ∈ M(σ ) and it is indeed the only point of

w + R
s in M(σ ). It follows that M(σ ) is the image of z : Rd → R

d+s defined by
mapping w to z(w). Note that z is continuous and its inverse is a projection, so M(σ )

is homeomorphic to R
d . It is the stratum of the lowest dimension, d, in the claimed

stratification.
To describe the remainder of the stratification, let V (σ ) be the Voronoi tessellation

of u0, u1, . . . , us in R
s . Since the u j are the vertices of the standard s-simplex, this

tessellation consists of a vertex at 0 ∈ R
s , s + 1 half-lines emanating from 0,

(s+1
2

)

2-dimensional wedges connecting the half-lines in pairs, etc. Returning tow+R
s , we

observe that it slices the stratification of Rd+s into a translate of this s-dimensional
Voronoi tessellation, z(w)+V (σ ). Varyingw over all points ofRd , we get the claimed
stratification of Rd+s . �


3.3 Overlay of Mono-chromatic Voronoi Tessellations

Related to the strata are the overlays of tessellations.Given A ⊆ R
d ,σ = {0, 1, . . . , s},

and χ : A → {0, 1, . . . , s}, the overlay of the s + 1 mono-chromatic Voronoi tessella-
tions, denoted Vor(A j | j ∈ σ), is the decomposition of Rd obtained by drawing the
Voronoi cells of dimension at most d − 1 on top of each other; see Figure 3. More
formally, each d-dimensional cell in the overlay is the common intersection of s+1 d-
cells, one in each Vor(A j ) for j ∈ σ , and the overlay consists of these d-dimensional
cells and their faces. Even if the points in A are in general position, the overlay is not
necessarily a simple decomposition of Rd .

Proposition 3.4 (Membranes and Overlays) Let A ⊆ R
d be finite, χ : A →

{0, 1, . . . , s} a coloring, and A j = χ−1( j) for 0 ≤ j ≤ s. For each τ ⊆ σ ,
Vor(A j | j ∈ τ) is the projection of the τ -membrane, M(τ ), to Rd .

Proof We begin with τ = σ . By Lemma 3.3, M(σ ) is a manifold of dimension d, and
in the proof of this lemma we learn that the orthogonal projection, π : M(σ ) → R

d ,
is a homeomorphism. Indeed, π−1 is the restriction of z : Rd → R

d+s defined there.
Since M(σ ) is decomposed into cells of Vor(χ), z is piecewise linear, so it suffices to
prove that the linear pieces are the images of the cells in Vor(A j | j ∈ σ).

Let ν j be a d-cell of Vor(A j ) and write a j ∈ A j for the point that generates ν j , for
0 ≤ j ≤ s. Assume that ν = ν0 ∩ ν1 ∩ . . .∩ νs has non-empty interior, so it is a d-cell
of the overlay. Correspondingly, the image of every point x ∈ ν, z(x) = π−1(x), is
equidistant from the points u j + a j , for 0 ≤ j ≤ s. It follows that the image of ν is a
subset of a linear piece in M(σ ). For every neighboring d-cell of ν in the overlay, we
change one of the a j , so their images belong to different linear pieces of M(σ ). This
implies that the image of ν is a linear piece of M(σ ), as required.

To generalize, let τ ⊆ σ and use the above argument to conclude that
Vor(A j | j ∈ τ) is the projection of the τ -membrane to R

d . Recall that Vor(χ |τ)
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Fig. 3 The overlay of a blue and a orange Voronoi tessellation in the plane. In the generic case, each of
its vertices is either a vertex of a mono-chromatic tessellation, which has degree 3, or the crossing of two
edges, which has degree 4

decomposes Rt+d , and by Lemma 3.1, the extrusion of the τ -membrane in Vor(χ |τ)

along the remaining s − t coordinate directions in R
d+s contains the τ -membrane in

Vor(χ). Moreover, the projections of the two τ -membranes—one in Vor(χ |τ) and the
other in Vor(χ)—to Rd are identical, which implies the claim. �


4 Counting Cells

In this section, we are interested in the size of the chromatic Delaunay mosaic or,
equivalently, of the overlays between the mono-chromatic Voronoi tessellations. We
study extremal questions, inwhichwemaximize over the point sets and their colorings,
but we also consider random colorings. Refer to Table 1 for a summary of our results.
The bounds in row 2, columns 2, 1, and in row 1, column 1 are proved in Sections 4.1,
4.2, and 4.3. The details of the bounds in row 2, column 3 are discussed in Section 5.
It remains to explain how we get the bound in row 1, column 1, which we do here.

We aim to give a bound on the size of any Del(χ). Consider first the case in which
there are equally many colors and dimensions: d = s + 1. For the lower bound, we
assign each color to about n/d points, and we place the points with color j in sequence
on the j-th coordinate axis. This gives a constant times nd colorful crossings, which
are the 0-dimensional common intersections of two ormore cells in differently colored
mono-chromatic Voronoi tessellations. For the upper bound, we use the general bound
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on the number of simplices in aDelaunaymosaic of n (uncolored) points inRd+s given
in [5], which for d + s = 2d − 1 gives O(nd).

We get nd as an upper bound also for the case in which there are more colors than
dimensions: d < s + 1. To see this, note that any crossing involves at most d colors,
so multiplying the bound for d = s + 1 with

(s+1
d

)
, which is a constant, suffices.

This leaves the case d > s + 1. Here we use the moment curve, which in R
d is

the set of points (t, t2, . . . , td), t ∈ R. The upper bound is constant times n�(d + s)/2�
again from the general case of n points in Rd+s . For the lower bound, we assign each
color to about n/s + 1 points, place the points of the first color on the moment curve in
R
d−s (which we assume is spanned by the first d − s coordinate axes of Rd ), and the

points of each other color on one of the s remaining coordinate axes. We get a constant
times n�(d − s)/2� vertices in the Voronoi tessellation of the first color within Rd−s . Each
such vertex expands to the orthogonal s-plane in the Voronoi tessellation of the first
color within R

d , and this s-plane intersects the grid formed by the other s colors in
a constant times ns crossings. The total number of crossings is therefore a constant
times n�(d − s)/2� · ns = n�(d + s)/2�, as required.

4.1 Few Spherical k-sets Imply Small Expected Overlays

Let A be a set of n points inRd . We call a subset of k ≤ n points a spherical k-set of A
if there is a sphere that separates the k from the remaining n − k points. Note that this
differs from the classic notion of a k-set, for which there is a hyperplane that separates
the k points of the k-set from the remaining n − k points. In this section, we relate the
number of spherical k-sets with the expected size of the overlay of mono-chromatic
Voronoi tessellations for random colorings of A. Specifically, we prove the following
lemma.

Lemma 4.1 (Spherical k-sets and Overlay) Let c, d, e be positive constants, and A a
set of n points in R

d such that for every 1 ≤ k ≤ n, the number of spherical k-sets
is O(kcne). Let furthermore s ≥ 0 be a constant, let σ = {0, 1, . . . , s}, and write
A j = χ−1( j), in which χ : A → σ is a random coloring. Then the expected size of
Vor(A j | j ∈ σ) is O(ne).

Proof We assume that the points in A are in general position and write A j = χ−1( j).
Suppose we pick s + 1 cells, one from each Vor(A j ), and write i j − 1 for their co-
dimensions. The common intersection of the s + 1 cells is either empty or a cell of
co-dimension

∑s
j=0(i j−1). This is a vertex only if

∑s
j=0(i j−1) = d or, equivalently,∑s

j=0 i j = d+s+1. To bound the expected size of the overlay, we bound the expected
number of such vertices in the overlay, which is the sum of their probabilities to belong
to the overlay. Below we argue that each spherical k-set can give rise to only a limited
number of vertices, and we give a bound on the probability of any of them to appear
in a random coloring.

Fix any d + s + 1 points from A and a coloring χ : A → {0, 1, . . . , s} such that
every color is assigned to at least one of these d + s + 1 points. Writing i j for the
number of points with color j , we have

∑s
j=0 i j = d + s + 1 and 1 ≤ i j ≤ d + 1 for

each j . Let E j be the set of points y ∈ R
d at equal distance to the i j points with color
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j ; it is a plane of co-dimension i j − 1. Since
∑s

j=0(i j − 1) = d and the d + s + 1

points are in general position, the common intersection of the E j is a point x ∈ R
d .

This point is a vertex of the overlay iff there is a stack of spheres, S0, S1, . . . , Ss , with
common center, x , such that S j passes through the i j points with color j , and all other
points in A j = χ−1( j) lie outside S j . Suppose that S0 is the largest of the s + 1
spheres. Let k be the number of points on or inside S0, note that this is a spherical
k-set, and recall that there are at most O(kcne) such sets by assumption. Other than
the i0 ≤ d + 1 points on S0, all points in the spherical k-set must have color different
from 0. The probability of this is s/(s + 1) to the power k − i0 ≥ k − d − 1. The
number of possible overlay vertices whose largest sphere of the corresponding stack
of spheres separates the same spherical k-set is at most

( k
d+s+1

)
(s + 1)d+s+1. This is

the product of the number of subsets of size d + s + 1 and the number of different
colorings of such a set. Writing X for the number of vertices in the overlay, we thus
get

E[X ] <
∑n

k=d+s+1
O(kcne) · ( k

d+s+1

)
(s + 1)d+s+1 ·

(
s

s + 1

)k−d−1

(4.1)

< O(ne) ·
∑∞

k=0

(s + 1)2d+s+2

sd+1 · kc+d+s+1 ·
(

s

s + 1

)k

. (4.2)

The first factor within the latter sum is constant, the second is a constant degree
polynomial, and the last factor is an exponential that vanishes as k goes to infinity.
Because of the exponential decay, the sum converges to a constant that depends on c,
d, and s but not on n. It follows that the number of vertices in the overlay is O(ne).

Observe that every vertex of the overlay belongs to only a constant number of cells
of dimension 1 to d. Every such cell has at least one vertex, which implies that the
number of cells of any dimension in the overlay is O(ne). �


As originally proved by Lee [16], the number of spherical k-sets of n points in
R
2 is less than 2kn. The expected size of the overlay of the mono-chromatic Voronoi

tessellations for a random coloring in R2 is therefore O(n). To get a result for general
dimensions, we note that the spherical k-sets in R

d correspond to (linear) k-sets in
R
d+1 via lifting to a paraboloid. For the latter, Clarkson and Shor [5] proved that the

number of �-sets, for � = 1, 2, . . . , k, is O(k�(d+1)/2�n�(d+1)/2�). Lemma 4.1 implies
the following theorem.

Theorem 4.2 (Overlay Size for Random Coloring) Let d and s be constants, let A
be a set of n points in R

d , let σ = {0, 1, . . . , s}, and write A j = χ−1( j), in which
χ : A → σ is a randomcoloring. Then the expectednumber of cells inVor(A j | j ∈ σ)

is O(n�d/2�).

This bound is asymptotically tight since even a single Voronoi tessellation of n points
inRd can have�(n�d/2�) vertices, for example if the points are chosen on the moment
curve inRd . Note that if s is not assumed to be constant, then the upper bound provided
by our analysis contains an exponential factor is s, as can be seen in equation (4.2).
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4.2 Delone Sets Have Small Expected Overlays

We start by showing that packed sets without big holes have few spherical k-sets. To
formalize this claim, we recall that A ⊆ R

d is a Delone set if there are constants
0 < r < R < ∞ such that every open ball of radius r contains at most one point of
A, and every closed ball of radius R contains at least one point of A. The proof of the
claim makes use of an extension of Voronoi tessellations to higher order. To define it,
let B ⊆ A and write dom(B, A) for the points x ∈ R

d that satisfy ‖x − b‖ ≤ ‖x − a‖
for all b ∈ B and all a ∈ A \ B. Now fix an integer k ≥ 1 and note that the cells
dom(B, A) with #B = k cover the entire Rd . The collection of the dom(B, A) with
#B = k is referred to as the order-k Voronoi tessellation of A, denoted Vork(A). Note
that Vor1(A) = Vor(A) as introduced in Section 2. Note also that there is a non-empty
cell, dom(B, A), in Vork(A) iff B is a spherical k-set. For counting purposes, we say
a spherical k-set, B ⊆ A, corresponds to a point, b ∈ A, if there is a sphere that
separates B from A \ B and b is the point in A closest to the center of this sphere.
Since the separating sphere is generally not unique, B may correspond to more than
one point in A.

Lemma 4.3 (Bounded Correspondence) Let A ⊆ R
d be a Delone set. Then every

point in A corresponds to at most O(kd+1) spherical k-sets of A.

Proof Let x be a point in R
d and suppose that it lies in the interior of a d-cell of

the order-k Voronoi tessellation of A. Assuming this cell is dom(B, A), then B is the
unique spherical k-set that is separated from A \ B by a sphere with center x . Letting
t be the radius of one such sphere, we have krd ≤ (t + r)d because the sphere with
center x and radius t + r encloses k disjoint open balls of radius r . Furthermore,
(t − R)d ≤ kRd because the closed balls of radius R centered at the points of B cover
the ball with center x and radius t − R. Hence

(
d
√
k − 1)r ≤ t ≤ (

d
√
k + 1)R. (4.3)

Let b ∈ A be a point with x ∈ dom(b, A). Since A is Delone, dom(b, A) is covered
by the ball with center b and radius R. It follows that the sphere with center b and
radius (

d
√
k + 2)R encloses all spherical k-sets that correspond to b. The number of

points in A enclosed by this sphere satisfies

� ≤
[(

d
√
k + 2

)
R + r

]d
/rd , (4.4)

which is O(k) because r and R and therefore R/r are positive constants. For a finite
set in R

d , the number of ways it can be split into two by a sphere is less than the
(d + 1)-st power of its cardinality. Hence, there are at most O(kd+1) spherical k-sets
that correspond to b. �


Delone sets are necessarily infinite, so we let � be the closed ball with radius ω

centered at the origin, and count a spherical k-set, B ⊆ A, only if there is a sphere
that separates B from A \ B whose center is in �.
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Theorem 4.4 (Overlay Size for Delone Set) Let d and s be constants, let A ⊆ R
d be

a Delone set, let σ = {0, 1, . . . , s}, let χ : A → σ be a random coloring, and let � be
the ball of points at distance at most ω > R from the origin. Writing n = #(A ∩ �)

and A j = χ−1( j), the expected number of cells in Vor(A j | j ∈ σ) that have at least
one vertex in � is O(n).

Proof Let 0 < r < R < ∞ be constants for which A is Delone, and note that
the number of points of A at distance at most ω + R from the origin is O(n). Any
spherical k-set that has a separating sphere with center in � corresponds to a point in
this slightly larger ball, so Lemma 4.3 implies that the number of such spherical k-sets
is O(kd+1n).

We count the vertices of the overlay using Lemma 4.1 but restricted to crossings
inside�.We have c = d+1 and e = 1, sowe get an expected number of O(n) vertices
in �. Assuming general position, every vertex belongs to only a constant number of
cells, which implies the claimed bound on the number of cells with at least one vertex
in �. �


A vertex of the overlay corresponds to an (d + s)-cell in the chromatic Delaunay
mosaic whose circumcenter projects to the vertex. Theorem 4.4 thus counts the cells
in the chromatic Delaunay mosaic that are faces of (d + s)-cells whose circumcenters
project into �.

4.3 Well Spread Sets in the Plane Have Always Small Overlays

In d = 2 dimensions, Theorem 4.4 can be strengthened while weakening the assump-
tions on the points. The strong bound is presented in Theorem 4.7. The proof relies on
two technical lemmas,whichwe prove first. LetY ⊆ R

2,
 : Y → R non-negative, and
Union(Y , 
) the union of closed disks with centers x ∈ Y and radii 
(x). For example,
Y may be a line segment, a square, or the complement of a square, as illustrated in
Figure 4, and the radii may be any non-negative real numbers.

Lemma 4.5 (Boundary of Union of Disks) Let S be a line segment of length L, Q a
square with sides of length L, and Q̄ the closed complement of Q. For Y ∈ {S, Q, Q̄},
let 
Y : Y → R be non-negative and RY = maxx∈Y 
Y (x). Then

length[∂Union(S, 
S)] < 4L + 8RS, (4.5)

length[∂Union(Q, 
Q)] < 8L + 8RQ, (4.6)

length[∂Union(Q̄, 
Q̄)] < 8L. (4.7)

Proof We begin with the line segment, S, write aff S for the line that contains S, and
assume that this line is horizontal. Note that ∂Union(S, 
S) is invariant under reflection
across this line. Think of the boundary above the line as the graph of a function, with
alternating minima and maxima as we go from left to right. We focus on the piece of
the graph between a minimum and an adjacent maximum, and claim that this piece
is at least as wide as it is high. To see this, note that the maximum is attained at the
center of a disk, and the piece lies on or above the upper half-circle of this disk. If the
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Fig. 4 Unions of closed disks whose centers lie on a line segment, on the left, in a square, in the middle,
and in the complement of a square, on the right. The blue points mark the shared endpoints of the circular
arcs that make up the boundary of the union of disks

entire piece lies in this half-circle, and the minimum is where the half-circle touches
the line, then the width is equal to the height. In all other cases, the width exceeds the
height. The length of the piece is less than its width plus its height, which is at most
twice the width. The sum of widths is at most L + 2RS , which implies that the length
of ∂Union(S, 
S) above aff S is less than 2L + 4RS . We get the same bound for the
length below aff S, which implies (4.5).

To get (4.6), we decompose ∂Union(Q, 
Q) into four curves by cutting along the
lines that support the upper and lower sides of the square. By the above argument, the
length of the upper curve is less than 2L + 4RQ , and similar for the lower curve. The
left curve has (vertical) width L , so we get 2L as an upper bound for the length, and
similar for the right curve. The sum of the four bounds is equal to the right-hand side
of (4.6).

To get (4.7), we decompose Q̄ into four pieces by cutting along the two lines that
contain the diagonals of the square. For each piece, we take the union of disks with
centers in the piece, and finally clip the boundary to within Q. The four curves cover
∂Union(Q̄, 
Q̄), and by the above argument, each curve has length less than 2L . This
implies (4.7). �


Suppose there is a finite set, B ⊆ R
2, such that 
(x) is the distance to the clos-

est point in B. In this case, the number of points in B that lie on the boundary of
Union(Y , 
) relates to the number of edges in Vor(B) that cross Y or the boundary of
Y . As before, we distinguish between a line segment, a square, and the complement
of the square.

Lemma 4.6 (Counting Points and Crossings) Let S be a line segment, Q a square, Q̄
the closed complement of Q, and B ⊆ R

2 finite. For Y ∈ {S, Q, Q̄}, let 
Y : Y → R

be defined by 
Y (x) = mina∈B ‖x − a‖, and write BY = B ∩ ∂Union(Y , 
Y ). Then
the number of edges of Vor(B) that have a non-empty intersection with S, ∂Q, ∂ Q̄ is
bounded from above by #BS, #BQ, #BQ̄, respectively.

Proof We begin with the line segment, S, and as before we assume that aff S is hor-
izontal. By construction, Union(S, 
S) is contractible and symmetric with respect to
aff S. It follows that ∂Union(S, 
S) is a closed curve with even number of circular
arcs meeting at the same number of vertices. In the generic case, every point of B on
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∂Union(S, 
S) is a vertex of the curve, and a vertex is a point in B iff the reflected
vertex on the other side of aff S is not a point in B. If we replace a point of B that is
a vertex of the curve by its reflected copy, then this changes the Voronoi tessellation
but not the way in which S crosses its edges. We can therefore assume that all vertices
above aff S are points in B, while all vertices below aff S are not. In this case, we have
a crossing for each pair of adjacent vertices above aff S. The number of crossings is
thus less than the number of points of B on the boundary of the union of disks, which
implies the first claim.

Consider next the case of a square, Q. As before, we decompose ∂Union(Q, 
Q)

into four curves, one above the line of the upper side, the second below the line of the
lower side, and the remaining left and right curves. For each curve, we reflect points
of B so that all vertices shared between adjacent circular arcs are points in B. In this
case, we have four more points of B on ∂Union(Q, 
Q) than edges of Vor(B) that
cross the sides of Q. The argument for the complement of Q is similar and omitted. �


Define the spread of a finite set as the maximum distance between two points
divided by the minimum distance between two points. A set in R

2 is well spread if
its spread is not much bigger than

√
n. We show that for a well spread set in the

plane, the overlay of mono-chromatic Voronoi tessellations has small size for every
coloring. Related to our theorem is a result by Erickson [13], who showed that the
(mono-chromatic) Delaunay triangulation of any set of n points in R

3 with spread m
has complexity O(m3). Our theorem improves Erickson’s more general result to the
special case where points live on two parallel planes.

Theorem 4.7 (Overlay Size for Well Spread Set) Let A ⊆ R
2 be finite with spread

m, write n = #A, let σ = {0, 1, . . . , s} be the set of colors, and write A j = χ−1( j),
in which χ : A → σ is any coloring. Then the number of regions in Vor(A j | j ∈ σ)

is O(s2m2).

Proof Wewill show that the number of crossings between the edges of any two mono-
chromatic Voronoi tessellations is O(m2). Since there are

(s+1
2

)
pairs of colors, it

would imply O(s2m2) crossings in total. The number of regions in the overlay is
the number of regions in the s + 1 mono-chromatic Voronoi tessellations, which is
n = #A, plus twice the number of crossings. Since n = O(m2), this implies that the
number of regions is O(s2m2).

For the remainder of this proof, we fix two colors, 0 and 1, we assume that the
minimum distance between points in A is 1, so the maximum distance is m. Observe
that there is a square with sides of lengthm that contains A, and therefore A0 and A1. If
there is at least one point each of A0 and A1 in the square, thenwe subdivide it into four
equally large squares. We recursively subdivide each of these squares independently
until we arrive at squares that contain points of at most one of these two colors. By
choosing the initial square judiciously, we may assume that no point of A lies on the
boundary of any of these squares. Since subdivision does not alter the total area, the
sum of areas of these squares is m2.

Let Q be a square in this subdivision, write L for the length of its sides, and assume
that it contains no points of A0. Let Q′ be the parent square of four times the area,
which, by construction, contains at least one point of A0 and at least one point of A1.
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Let 
Q : Q → R be defined by 
Q(x) = mina∈A0 ‖x − a‖. Since Q′ contains at least
one point of A0, we have RQ = maxx∈Q 
Q(x) < 2

√
2L . Recall that Union(Q, 
Q)

is the union of closed disks with centers x and radii 
Q(x). By Lemma 4.5, the length
of the boundary satisfies

length[∂Union(Q, 
Q)] < 8L + 8RQ < (8 + 16
√
2)L < 31L. (4.8)

Since any two points of A0 are at least a distance 1 apart, this implies that there are
fewer than 31L points of A0 on the boundary of the union of disks. By Lemma 4.6,
fewer than 31L edges in Vor(A0) cross the sides of Q. Since no point of A0 is inside
Q, the edges of Vor(A0) inside Q do not form cycles, so more than half of them cross
the sides of Q. It follows that fewer than 62L edges of Vor(A0) have a non-empty
intersection with Q.

Let S be the intersection of one such edge with Q, which is either the entire edge
or a connected piece of it. The length of S is at most

√
2L . Let 
S : S → R be

defined by 
S(x) = mina∈A1 ‖x − a‖. The maximum such distance satisfies RS =
maxx∈S 
S(x) < 2

√
2L . By Lemma 4.5, the length of the boundary satisfies

length[∂Union(S, 
S)] < 4L + 8RS < (4 + 16
√
2)L < 27L. (4.9)

Since any two points of A1 are at least a distance 1 apart, this implies that fewer than
27L points of A1 lie on the boundary of the union of disks. By Lemma 4.6, fewer than
27L edges of Vor(A1) cross S.

Multiplying with the number of edges in Vor(A0) inside Q, we get fewer than
62L · 27L = 1674L2 crossings. This is only a constant times the area of Q. Taking
the sum over all squares in the subdivision, we thus get fewer than 1674m2 crossings
between edges of Vor(A0) and Vor(A1) inside the initial square.

It remains to bound the number of crossings outside the initial square. Let Q̄ be
the complement of the initial square, which we recall has sides of length m. Let

 j : Q̄ → R be defined by 
 j (x) = mina∈A j ‖x − a‖, for j = 0, 1. By Lemma 4.5,
we have

length[∂Union(Q̄, 
 j )] < 8m. (4.10)

By Lemma 4.6, fewer than 8m edges of Vor(A j ) cross the sides of Q̄. Since there
are no points of A j in Q̄, this implies that Vor(A j ) has fewer than 16m edges with
non-empty intersection with Q̄. Even if every such edge of Vor(A0) crossed every
such edge of Vor(A1), we still have fewer than 16m ·16m = 256m2 crossings outside
Q. Adding the numbers of crossings inside and outside Q, we get fewer than 1930m2

crossings altogether. �

For spreadm = O(

√
n), Theorem 4.7 implies that the overlay of a constant number

of mono-chromatic Voronoi tessellations has size O(n). This is clearly tight. More
generally, we now show that the upper bound on the size is tight for all feasible values
of m in O(n).
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Let j be a positive integer, let A0 contain the points (0, i), (i, 0), and ( j, j), for
1 ≤ i ≤ j , and let A1 contain the points (0,−i), (−i, 0), and (− j,− j), again for
1 ≤ i ≤ j . At this stage of the construction, we have n = 4 j+2 points and a spread of
m = 2

√
2 j = (n − 2)/

√
2. We bound the size of the overlay from below by counting

the crossings betweenVoronoi edges in the upper-left and the lower-right quadrants. In
the upper-left quadrant, we see j − 1 horizontal half-lines of Vor(A0), each crossing
each one of the j − 1 vertical half-lines of Vor(A1). Adding the crossings in the
symmetric lower-right quadrant, we get 2( j − 1)2 crossings in total. For m = 2

√
2 j ,

we have 2( j − 1)2 = �(m2), which establishes that assuming s is a constant number,
the upper bound in Theorem 4.7 is tight for m = (n − 2)/

√
2.

To generalize, we add any number of integer points in [1, j] × [1, j] to A0, and
the same number of integer points in [− j,−1] × [− j,−1] to A1. The spread is still
m = 2

√
2 j , and the number of crossings is still at least 2( j − 1)2. The only thing

that changed is the number of points, n, which can be any integer between 4 j + 2
and 2( j + 1)2 − 2. In other words, m can take on values between a constant times√
n and a constant times n, and we get an overlay of size �(m2) in each case. In

summary, assuming s is a constant number, the upper bound in Theorem 4.7 is tight
for m = O(n).

5 Poisson Point Processes

We use a stationary Poisson point process in Rd with a random coloring as the model
for random data. Recall that the intensity of the process is the expected number of
points per unit volume in R

d . To make a linguistic difference, we call the expected
number of vertices of the Voronoi tessellation per unit volume the density of the
vertices, and similar for the cells of dimension one or higher. After deriving relevant
densities from prior work, we present experimental findings, which confirm some of
the derived densities but also go beyond them. We note that a stationary Poisson point
process on a compact domain is a sampling according to the uniform distribution. So
modulo boundary effects, the density of the process translates to a linear bound for
the uniform distribution.

5.1 Densities, Analytically

We focus on the vertices of the overlay of Voronoi tessellations. The local neighbor-
hood of every such vertex has constant size, which implies that the density of p-cells
in the overlay is at most a constant times the density of the vertices. Besides the ver-
tices of the mono-chromatic Voronoi tessellations, there are also crossings, which are
the 0-dimensional common intersections of two or more cells in differently colored
mono-chromatic Voronoi tessellations. Assuming general position, the sum of the co-
dimensions of these cells is necessarily equal to d. For every 0 ≤ p ≤ d and every
k ≥ 1, the density of the p-cells in the order-k Voronoi tessellation of a stationary
Poisson point process, A ⊆ R

d , is a constant times kd−1, and an explicit formula is
given in [12, Theorem 1.2]. Given a random coloring, the proof of Lemma 4.1 thus
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implies that the density of crossings between the mono-chromatic Voronoi tessella-
tions is also bounded away from infinity. For the cases in which d = 2 or s + 1 = 2,
we can use prior work on weighted and unweighted Delaunay mosaics [11, 12] to
determine these densities precisely. In R

2, crossings happen between two edges, one
each of two different Voronoi tessellations.

Theorem 5.1 (Density of Crossings in Plane) Let A ⊆ R
2 be a stationary Poisson

point process with intensity 
 > 0 and χ : A → {0, 1, . . . , s} a random coloring.
Then the density of crossings between the mono-chromatic Voronoi tessellations is

cross = 4s

π
· 
.

Proof Since the coloring is random, each A j = χ−1( j) is a stationary Poisson point
process with intensity 


s+1 ; see e.g. [21, Chapter 11]. By [12, Theorem 1.1], this

implies that the density of the length of the 1-skeleton of Vor(A j ) is 2
√


/(s + 1),
and as proved in [11], the density of crossings between a line and the 1-skeleton is
4
π

√

/(s + 1). This is true for every 0 ≤ j ≤ s, so we get the density of crossings

between the two 1-skeletons by multiplication, which gives 8
π



s+1 . There are

(s+1
2

) =
1
2 s(s + 1) pairs of colors, which implies 
cross = 4s

π
· 
. �


The proof of Theorem 5.1 can be modified to show that the density of crossings is
maximized by balanced colorings. Suppose for example that s+1 = 2 and the random
coloring is biased, with probabilities λ and 1−λ for colors 0 and 1, respectively. Then
the intensities of A0 and A1 are λ
 and (1 − λ)
, so the density of the crossings
between their Voronoi tessellations is 8

π

√
λ(1 − λ), which is a maximum for λ = 1

2 .
We extend Theorem 5.1 to two colors in d dimensions, while leaving the case of

three or more colors in three or more dimensions as an open question. We prepare
the extension by introducing three families of constants, in which we write ωd for the
(d − 1)-dimensional volume of the unit sphere in R

d and 
 for the gamma function,
which generalizes the factorial to real arguments:

Vp,d = 2d−p+1π
d−p
2

d(d − p + 1)! · 
(
d2−pd+p+1

2 )


(
d2−pd+p

2 )
· 
( d+2

2 )d−p+ p
d


( d+1
2 )d−p

· 
(d − p + p
d )


(
p+1
2 )

, (5.1)

Dp,d = ω1ωd+1

ωp+1ωd−p+1

2p+1π
p
2

d(p + 1)! · 
(
pd+d−p+1

2 )


(
pd+d−p

2 )
· 
( d+2

2 )p+1− p
d


( d+1
2 )p

· 
(p + 1 − p
d )


(
d−p+1

2 )
,

(5.2)

Xd = 1
2 (V1,d D1,d + V2,d D2,d + . . . + Vd−1,d Dd−1,d), (5.3)

for d ≥ 2 and 1 ≤ p ≤ d − 1. By comparing the factors of Vp,d and Dp,d , it is not
difficult to see that Vp,d Dp,d = Vd−p,d Dd−p,d . Indeed, the two sides of this equation
are just different ways to count the same thing, as we will see shortly. Table 2 gives
approximations of the constants for small values of d and p.
The meaning of the constants and the corresponding sources will be revealed in the
proof of the next theorem. For two Voronoi tessellations in R

d , crossings happen
between the p-cells of one and the (d − p)-cells of the other tessellation.
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Table 2 Approximations of the constants in (5.1), (5.2), (5.3) for small values of d and p

Vp,d · Dp,d

p = 1 p = 2 p = 3 p = 4 p = 5 Xd

d = 2 2.00 · 1.27 1.27

d = 3 5.83 · 1.46 2.91 · 2.92 8.49

d = 4 23.96 · 1.58 10.97 · 3.66 3.72 · 10.17 57.88

d = 5 126.74 · 1.67 53.22 · 4.25 17.00 · 13.30 4.45 · 47.53 437.78

d = 6 809.75 · 1.74 316.00 · 4.74 94.90 · 16.11 23.68 · 63.20 5.12 · 274.93 3668.63

Theorem 5.2 (Density of Crossings for Two Colors) Let A ⊆ R
d be a stationary

Poisson point process with intensity 
 > 0, and let χ : A → {0, 1} be a random
bi-coloring. Then the density of the crossings between the mono-chromatic Voronoi
tessellations is 
cross(χ) = Xd · 
.

Proof Because the bi-coloring is random, both A0 = χ−1(0) and A1 = χ−1(1) are
stationary Poisson point processes with intensity 


2 in R
d . By [12, Theorem 1.1],

the density of the p-dimensional volume of the p-skeleton of either tessellation is
Vp,d · ( 


2 )(d−p)/d , and by [11], the density of the crossings between a p-plane and the
(d − p)-cells of either tessellation is Dp,d · ( 


2 )p/d . Multiplying the two densities and
taking the sum for 1 ≤ p ≤ d − 1, we get 
cross = 2Xd · 


2 = Xd · 
. �


5.2 Points in the Plane, Experimentally

This subsection presents experimental results for points in two dimensions. As a sub-
stitute for R2, we glue the sides of the unit square to form a torus and let A ⊆ [0, 1)2
be a stationary Poisson point process with intensity 
 > 0. Letting χ : A → {0, 1}
be a random bi-coloring, we construct the chromatic Delaunay mosaic, Del(χ), while
simulating general position of the points, if necessary, so the mosaic is simplicial.
Finally, we count the simplices of different types and write Nuv for the number of
simplices with u vertices of color 0 and v vertices of color 1. For example, N02 counts
the edges in Del(A1), and N11 counts the colorful edges in Del(χ). Writing mp for
the number of p-cells in the two mono-chromatic Voronoi tessellations, and n p for
the number of colorful p-cells in Vor(χ), we have

m0 = N03 + N30, n0 = N13 + N22 + N31, (5.4)

m1 = N02 + N20, n1 = N12 + N21, (5.5)

m2 = N01 + N10, n2 = N11; (5.6)

see Table 3 for some computed averages. By symmetry, Nuv = Nvu in expectation,
so almost half the entries in this table are redundant.

Table 4 shows more detailed statistics for the colorful tetrahedra, which correspond
to the vertices in the overlay of the twomono-chromaticVoronoi tessellations. To facil-
itate the comparison between the mono-chromatic and chromatic Delaunay mosaics,
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Table 3 The average number of simplices of each type—computed over 100 repeats of the experiment—in
the chromatic Delaunay mosaic of a randomly bi-colored stationary Poisson point process with intensity

 = 1000 in [0, 1)2

Average #Simplices

Vertices Edges Triangles Tetrahedra

N01 = 499.7 N02 = 1499.0 N03 = 999.3 N13 = 999.3

N10 = 500.3 N11 = 2274.8 N12 = 2773.8 N22 = 1274.8

N20 = 1501.0 N21 = 2775.8 N31 = 1000.7

N30 = 1000.7

Table 4 The minimum, maximum, average number of colorful Delaunay tetrahedra over 100 runs of a
bi-chromatic stationary Poisson point process with intensities from 1000 to 10000 in [0, 1)2. Right: the
mean and standard deviation of the normalized crossing density, (n0 − m0)/
.

#Colorful Tetrahedra #Crossings


 Min Max Avg Avg StDev

1000 2999 3513 3265.8 1.2711 0.0466

2000 6121 6872 6562.0 1.2774 0.0321

5000 15812 17025 16393.9 1.2753 0.0201

10000 31855 33468 32744.3 1.2731 0.0152

we also consider the surplus of vertices in the chromatic Voronoi tessellation, bywhich
we mean n0 − m0. Since N03 = N13 and N30 = N31, the surplus is the number of
crossings, n0−m0 = N22, and by dividing with the intensity, we get an approximation
of the normalized crossing density, (n0 −m0)/
. In our experiments, the latter agrees
with the constant in Theorem 5.1, which for s + 1 = 2 is 4

π
= 1.27 . . .. While the

standard deviation shrinks with increasing intensity, the approximation of the normal-
ized crossing density does not seem to be affected by the number of points used in the
experiment.

Moving on to a random tri-coloring, χ : A → {0, 1, 2}, we write Nuvw for the
number of simplices in Del(χ) with u, v, w vertices of color 0, 1, 2, respectively. The
number of p-cells in the mono-chromatic and chromatic Voronoi tessellations thus
satisfy

m0 = N003 + N030 + N300, n0 = N113 + N131 + N311 + N122 + N212 + N221,

(5.7)

m1 = N002 + N020 + N200, n1 = N112 + N121 + N211, (5.8)

m2 = N001 + N010 + N100, n2 = N111; (5.9)

see Table 5 for some computed averages. We omit any detailed statistics for number
of colorful 4-simplices and just mention that n0 − m0 = N022 + N202 + N220 counts
the crossings, and that (n0 − m0)/
 agrees with the constant in Theorem 5.1, which
for s + 1 = 3 is 8

π
= 2.54 . . ..
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Table 5 The average number of simplices of each type—computed over 100 repeats of the experiment—in
the chromatic Delaunay mosaic of a tri-colored stationary Poisson point process with intensity 
 = 1000
in [0, 1)2. Numbers implied by symmetry are omitted.

Average #Simplices

Vertices Edges Triangles Tetrahedra 4-Simplices

N001 = 337.0 N002 = 1010.8 N003 = 673.9 N013 = 673.9 N113 = 673.9

N011 = 1526.3 N012 = 1864.5 N022 = 853.7 N122 = 853.7

N111 = 3557.3 N112 = 2716.4

Table 6 The average number of simplices of each type—computed over 100 repeats of the experiment—in
the chromatic Delaunay mosaic of a bi-colored stationary Poisson point process with intensity 
 = 1000
in [0, 1)3. Numbers implied by symmetry are omitted.

Average #Simplices

Vertices Edges Triangles Tetrahedra 4-simplices

N01 = 503.6 N02 = 3912.8 N03 = 6818.5 N04 = 3409.2 N14 = 3409.2

N11 = 5269.8 N12 = 12441.8 N13 = 11082.8 N23 = 4264.4

N22 = 12793.8

5.3 Points in Space, Experimentally

This subsection presents experimental results for points in three dimensions. As a
substitute for R3, we glue the sides of the unit cube to form a 3-dimensional torus
and let A ⊆ [0, 1)3 be a stationary Poisson point process with intensity 
 > 0.
We begin with a random bi-coloring, χ : A → {0, 1}, for which the p-cells in the
mono-chromatic and chromatic Voronoi tessellations satisfy

m0 = N04 + N40, n0 = N14 + N23 + N32 + N41, (5.10)

m1 = N03 + N30, n1 = N13 + N22 + N31, (5.11)

m2 = N02 + N20, n2 = N12 + N21, (5.12)

m3 = N01 + N10, n3 = N11; (5.13)

see Table 6 for some computed averages. The crossings for two colors in three
dimensions are between Voronoi edges and Voronoi polygons, which are counted
by n0 − m0 = N23 + N32.

We continue with a random tri-coloring, χ : A → {0, 1, 2}, for which the chromatic
Delaunaymosaic is a complex inR5. The p-cells of themono-chromatic and chromatic
Voronoi tessellations satisfy

m0 = N004 + N040 + N400, n0 = N114 + N141 + N411 + N123 + N132

+ N213 + N312 + N231 + N321 + N222,

(5.14)
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Table 7 The average number of simplices of each type—computed over 100 repeats of the experiment—in
the chromatic Delaunay mosaic of a tri-colored stationary Poisson point process with intensity 
 = 1000
in [0, 1)3. Numbers implied by symmetry are omitted.

Average #Simplices

Vertices Edges Triangles Tetrahedra 4-simplices 5-simplices

N001 = 332.7 N002 = 2585.6 N003 = 4505.7 N004 = 2252.8 N014 = 2252.8 N114 = 2252.8

N011 = 3491.8 N012 = 8237.4 N013 = 7331.2 N023 = 2825.6 N123 = 2825.6

N111 = 12678.0 N022 = 8478.8 N113 = 10150.7 N222 = 3217.8

N112 = 17092.8 N122 = 11696.5

m1 = N003 + N030 + N300, n1 = N113 + N131 + N311 + N122 + N212 + N221,

(5.15)

m2 = N002 + N020 + N200, n2 = N112 + N121 + N211, (5.16)

m3 = N001 + N010 + N100, n3 = N111; (5.17)

see Table 7 for some computed averages. The crossings are either between an edge of
one color and a polygon of another color, or between three polygons, one of each color,
which are counted by n0 −m0 = N123 + N132 + N213 + N312 + N231 + N321 + N222.
We remark that N222 is the only count for which the previous subsection does not offer
an analytic expression for its expected value.

6 Discussion

This paper introduces chromatic Delaunay mosaics to study the mingling of points of
different color classes in Euclidean space. Our main results are structural—proving
relations useful in the topological analysis of mingling—and combinatorial—arguing
that the size of the mosaic is sufficiently small to be attractive in applications. There
are three questions suggested by the work in this paper we mention.

• Given a tri-colored stationary Poisson point process in R
3, what is the density of

crossings between three 2-cells—one each from the Voronoi tessellations of the
three color classes? Indeed, d = s + 1 = 3 is the first case for which the density
of crossings is not yet known. What if d ≥ 3 and s + 1 ≥ 3?

• Weprove that sets with few spherical k-sets have small expected overlays ofmono-
chromatic Voronoi tessellations; see Lemma 4.1. Is the converse also true? More
generally, how are sets with few spherical k-sets, sets with colorings whose mono-
chromatic Voronoi tessellations have small overlays, and packed sets related?

• For a well spread set inR2, we strengthen the linear bound on the overlay size from
expected toworst case, so it holds for every coloring of the set. Is there a reasonable
notion of packed sets in three and higher dimensions, such that the overlay of the
mono-chromatic Voronoi tessellations has linear size for every coloring?

There are also open-ended research directions suggested by the work reported in this
paper. For example: how tolerant are our results to faults in the data, such as the
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misclassification of (biological) cells? How much of a difference does the change of
the color of a small number of points make to the size and structure of the chromatic
Delaunay mosaic? What is the variance of the overlay size assuming the coloring is
random?
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