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 a b s t r a c t

We study flips in hypertriangulations of planar points sets. Here
a level-k hypertriangulation of n points in the plane is a subdivi-
sion induced by the projection of a k-hypersimplex, which is the
convex hull of the barycenters of the (k − 1)-dimensional faces
of the standard (n − 1)-simplex. In particular, we introduce four
types of flips and prove that the level-2 hypertriangulations are
connected by these flips.
© 2025 Elsevier Ltd. All rights are reserved, including those for text

and data mining, AI training, and similar technologies.

1. Introduction

Triangulations appear in many fields of pure and applied mathematics, and they go back to 
the study of the Catalan numbers by Euler and Goldbach in the early 18th century [22], if not 
further. Flips were introduced by Wagner [31] as a tool to study how triangulations change. In 
particular, he proved that for a finite planar set, the family of triangulations is flip-connected. 
This fact was later exploited by Lawson [17] to construct triangulations algorithmically for the 
purpose of surface interpolation. Ever since, flip-connectivity has become a standard topic in 
discrete and computational geometry. In the plane, flip-connectivity leads to efficient algorithms for 
constructing Delaunay triangulations and to proofs of extremal properties, for example that among 
all triangulations of a finite set the Delaunay triangulation maximizes the minimum angle [30].

Beyond two dimensions, the connectivity with flips — also called Pachner moves or bistellar 
flips — is a more challenging concept. For example, the greedy algorithm that flips a locally non-
convex configuration succeeds in constructing the Delaunay triangulation in the plane [17], but 
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can get stuck in local minima in three dimensions; see [15] for examples. However, a more 
limited protocol that inserts points incrementally and repairs the Delaunay triangulation after every 
insertion also succeeds in three dimensions [16] and extends to higher dimensions and to coherent 
triangulations [11]. Note that the latter are known in the literature under a variety of names, 
including Laguerre, regular, and weighted Delaunay triangulations. While flip-connectivity in three 
dimensions is still an open question, Santos [27] has exhibited a configuration in six dimensions 
whose family of triangulations is not flip-connected. We refer to [7,14,18,20,29,32] and references 
therein for a multitude of results on flip-connectivity in a variety of settings.

In a more general setting beyond triangulations, flips were introduced in the study of subdivi-
sions induced by projections of polytopes and associated fiber polytopes by Billera and Sturmfels [5]. 
The corresponding notion of flips comes from the Baues poset, see [4,26,28]. It seems that such flips 
were first discussed by Billera, Kapranov, and Sturmfels in [4] as possible generalizations of bistellar 
moves in the setting of the generalized Baues conjecture and related connectivity. We refer to these 
as combinatorial or Baues flips as it seems difficult to give a geometric description in all possible 
cases, even for a generic projection. Primarily in connection to the Baues problem, the connectivity 
of the flip graph for various settings related to the subdivisions induced by projections of polytopes 
has been studied in [1,4,19,25], where positive as well as negative results are described.

In this paper, we study flips in the family of hypertriangulations of a finite set of n points 
in the plane. The term hypertriangulations, or more generally, hypersimplicial subdivisions, was 
introduced by Olarte and Santos [21] to study the Baues problem for families of plabic graphs 
related to the totally positive Grassmannian [23]; these constructions and their connections to 
plabic graphs appeared in earlier works by Postnikov [23] and Galashin [12]. Hypertriangulations 
are triangulations induced by projections of an (n − 1)-dimensional hypersimplex to the plane. To 
explain these concepts, we fix an integer k between 1 and n − 1, called the level, and we write 
∆

(k)
n  for the k-fold scaling of the convex hull of the barycenters of the (k − 1)-dimensional faces 

of the standard (n − 1)-simplex, ∆n = ∆
(1)
n . Correspondingly, we write A(k) for the set of k-fold 

sums of the points in a given set of n points, A = A(1). The projection fixes a bijection between the 
vertices of ∆n and the points of A and, by construction, maps the vertices of ∆(k)

n  to the points of A(k). 
The hypertriangulations follow by selecting and projecting appropriate subsets of the 2-dimensional 
faces of ∆(k)

n . The subclass of coherent level-k hypertriangulations are also known as weighted order-k
Delaunay triangulations, defined by generalizing order-k Delaunay triangulations [2] to the weighted 
setting as suggested in [10].1 The case k = 1 corresponds to the family of usual triangulations of 
the set A that can be viewed as (tight) subdivisions induced by the projection of (the vertices of) 
the standard simplex ∆n on the points of A. Our main result establishes flip-connectivity of level-2 
hypertriangulations of generic point sets, as stated and proved in Section 4.

Theorem  4.4.  For every generic point set A ⊆ R2, the level-2 hypertriangulations of A are flip-
connected.

We note that when A is in convex position, then flip-connectivity of the family of all level-k
hypertriangulations of A can be deduced from results of Postnikov [23, Cor. 11.2].

The flips we consider in the theorem above are possibly more restrictive than the Baues 
flips. They are introduced geometrically in Section 3. For the specific setting of projections of 
hypersimplices, these flips coincide with π-flips introduced by Santos in [28] and are subsets of 
the Baues flips for the corresponding projections. However, we were unable to prove or disprove 
that the family of flips we use coincides with the family of Baues flips for (generic) projections of 
hypersimplices.

Since all two-dimensional faces of hypersimplices are triangles, the family of level-k hypertri-
angulations of A is a subset of the family of triangulations of the set A(k). Notwithstanding, the flip 

1 More formally, given a set of points in R2 with assigned real weights, we lift the points to paraboloid y = x21 + x22
in R3 and shift each point vertically according to its weight. Considering the convex hull of all k-fold sums of the lifted 
points we obtain the order-k Delaunay triangulation of the original weigthed point set. Varying the weights, we may 
obtain all coherent hypertriangulations as described in Section 2.3 below. An alternative way to obtain order-k Delaunay 
triangulations is using duals to kth-order power diagrams (weighted order-k Voronoi diagrams), see [9, Sect. 13.6].
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connectivity of the former family does not follow from the flip-connectivity of the latter family 
and the flips are defined differently. Moreover, flip-connectivity using Baues flips is not guaranteed 
for projections of simplicial polytopes on the plane as illustrated by the example of Rambau and 
Ziegler [25]. Thus, in this paper we prove that every (generic) projection of the hypersimplex 
∆

(2)
n  gives rise to a connected Baues poset extending the same property known for projections of 

simplices.
Before presenting the outline of this paper, we stress that we restrict ourselves to generic point 

sets in the plane. Section 2 follows Olarte and Santos [21] and introduces level-k hypertriangulations 
of a set of n points, A, as tight subdivisions induced by the projection of the hypersimplex ∆(k)

n . In 
particular, we give a combinatorial description of such triangulations without using the associated 
projection. We also define the more general hypersimplicial subdivisions and sketch a connection 
to fiber polytopes [5]. Section 3 introduces the four types of flips for level-k hypertriangulations. 
Notably, these flips are geometric, they do not depend on the level k, and they include (colored 
versions of) the classic flips for triangulations of planar point sets [6]. Section 4, and Section 4.3 
in particular, proves the main result of this paper: that the family of level-2 hypertriangulations of 
every (generic) planar point set is flip-connected. The main tool in the proof is the aging function 
for triangles of hypertriangulations defined in Section 4.1. We note that the aging function was used 
before by Galashin [12] and Olarte and Santos [21] for point sets in convex position; particularly, 
Galashin [12, Cor. 4.4] (see also [3, Lem. 3.6]) proved that the aging function and its inverse are 
well-defined for all hypertriangulations and all suitable levels k if A is in convex position. For our 
approach, properties of the aging function for arbitrary generic point sets are instrumental and 
we prove these properties in Sections 4.1 and 4.2. In Section 4.4, we adapt an example by Olarte 
and Santos [21] to show that the aging function may fail in general. In Section 4.5, we briefly 
discuss coherent hypertriangulations and their flip-connectivity. Section 5 concludes the paper with 
a discussion of possible further research.

2. Introduction to hypertriangulations

This section explains the main object of study: the hypertriangulations of a finite point set. To 
begin, we give an informal introduction to the subject, drawing connections to the theory of fiber 
polytopes along the way, and follow up with formal definitions thereafter.

2.1. Level-k hypertriangulations

Let A = {a1, a2, . . . , an} be a set of n points in R2. Write [n] = {1, 2, . . . , n}, and for a subset 
I ⊆ [n], let aI =

∑
i∈I ai be the vector sum of the points with index in I . Fixing a parameter 

k ∈ [n − 1], we write A(k)
= {aI | I ⊆ [n], |I| = k} for the k-fold sums and consider all partial 

triangulations of A(k), by which we mean the decompositions of the convex hull of A(k) into triangles 
with vertices in A(k) such that no vertex of one triangle lies on a side of another triangle. We assume 
that A is generic and for the time being, this means that no three points of A(k) are collinear. We 
will weaken that restriction to a standard one in Section 2.2.

Definition 2.1.  A level-k hypertriangulation of A is a partial triangulation of A(k) so that
(V) every vertex is of the form aI , with |I| = k, and
(E) every edge connects two vertices, aI and aJ , that satisfy |I ∩ J| = k − 1.

See Fig.  1 for a level-3 hypertriangulation of 6 points in R2 as an example. The labels of the 
vertices indicate how they are obtained from the 6 points shown on the left. Note that some of 
the 20 points in A(3) are not vertices of the displayed hypertriangulation. The requirement on the 
endpoints of every edge implies a similar requirement on the vertices of every triangle:

Definition 2.2.  Let ∆ = aIaJaK  be a triangle whose vertices and edges satisfy conditions (V) and 
(E). Then either |I ∩ J ∩ K | = k − 1, in which case we call ∆ a white triangle, or |I ∩ J ∩ K | = k − 2, 
in which case we call ∆ a black triangle.
3
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Fig. 1. Left: n = 6 points in the plane. Right: the (n3) = 20 triple sums of these points together with a triangulation of 12
of the 20 points. The three vertices of every black triangle share one point in their sums, and the three vertices of every 
white triangle share two.

Note that white triangles exist for 1 ≤ k ≤ n−2 and black triangles exist for 2 ≤ k ≤ n−1. For a 
given triangulation, T , we write W (T ) and B(T ) for the sets of white and black triangles, respectively. 
In the example in Fig.  1, there are 8 triangles of each color.

2.2. Hypersimplicial subdivisions

The following interpretation of the above concepts gives an equivalent description within 
the theory of fiber polytopes and induced subdivisions. We refer to [33, Chap. 9] and [6] for a 
comprehensive introductions to this theory.

Write ∆n = conv{e1, e2, . . . , en} ⊆ Rn for the standard (n − 1)-simplex, and more generally 
∆

(k)
n = conv{eI | I ⊆ [n], |I| = k} for the kth standard (n − 1)-dimensional hypersimplex. Let 

π : ∆n → convA be the (linear) projection defined by π (ei) = ai, and following Olarte and 
Santos [21], we extend this to the projection π : ∆

(k)
n → convA(k). We get tilings of A(k) by projecting 

subsets of the set of 2-dimensional faces of ∆(k)
n  instead of the entire hypersimplex. By construction, 

the label of each vertex of ∆(k)
n  is a subset of k integers in [n], the endpoints of each edge have labels 

that differ in exactly one integer, and the 2-dimensional faces are triangles and therefore satisfy the 
condition on the vertex labels given in Definition  2.2. Each such tiling is called a hypertriangulation
in [21], and it agrees with our notion of hypertriangulation given in Definition  2.1 in the generic 
setting.

Remark.  According to our current definition of a generic set, A, no three points of A(k) are collinear, 
for any k ∈ [n − 1]. This implies that the projection of any 2-dimensional face of ∆(k)

n  is a triangle. 
This property also holds if we weaken our notion of genericity to requiring that no three points 
of A are collinear, and this is the definition we will use from now on. However, in this case, two 
or more points of A(k) may coincide, but since they have different labels, we still treat them as 
different points. In the presence of coinciding points, we require that at most one of these points 
is used in any one triangulation. Equivalently, we require that the hypertriangulation remains a 
hypertriangulation if we perturb the points in A by any sufficiently small amount. For an example 
see Fig.  2, which shows two geometrically identical projections of four 2-dimensional faces of the 
octahedron, ∆(2)

4 . Since the respective central vertices have different labels (13 versus 24), the two 
hypertriangulations are considered different.
4
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Fig. 2. Left: two hypertriangulations of four points arranged as the vertices of a diamond in the plane. Right: one of the 
hypertriangulations as the projection of an octahedron.

Fig. 3. Left: a subdivision of the 2-fold sums of four points that is not a hypersimplicial subdivision of the six points. 
Right: a subdivision of the 2-fold sums of the six points in Fig.  1 that can be interpreted as hypersimplicial in more than 
one way.

Definition 2.3.  A level-k hypersimplicial subdivision of A is a tiling of convA(k) with projected faces 
of ∆(k)

n  that remains a tiling under any sufficiently small perturbation of A.

Note that Definition  2.3 allows for projections of faces of dimension larger than 2, which are 
convex polygons with possibly more than three edges. In contrast to hypertriangulations, Conditions 
(V) and (E) of Definition  2.1 do not suffice to distinguish hypersimplicial subdivisions from other 
tilings of A. Take for example a set A consisting of three points spanning a triangle with a fourth 
point inside this triangle. Then convA(2) is a convex hexagon, which we may tile as shown in the 
left panel of Fig.  3. All edges satisfy Condition (E), but this tiling cannot be obtained as projection 
of faces of the octahedron ∆(2)

4 .
Similarly, two different hypersimplicial subdivisions may lead to geometrically identical tilings. 

See the right panel in Fig.  3, in which we cannot distinguish between the lower right triangle 
being the projection of a tetrahedron or of its 2-dimensional face whose projected image (which 
is the triangle) contains the projected fourth vertex. These two choices are treated as different 
subdivisions, with the latter being a refinement of the former. To disambiguate the situation, we 
5
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will draw the projection of the fourth vertex only if the triangle is the projection of the tetrahedron 
but not if it is the projection of a 2-dimensional face of the tetrahedron.

2.3. Coherent hypersimplicial subdivisions and fiber polytopes

Within all hypersimplicial subdivisions of a finite set, A ⊆ R2, the coherent hypersimplicial 
subdivisions form a privileged subfamily. These subdivisions are constructed as lower boundaries 
of convex polytopes obtained by lifting the points of A(k) according to a linear function on Rn. Let 
h :Rn

→ R be such a linear function, and write hi = h(ei) for the value at the basis vector ei. For 
every k, the value at a vertex of ∆(k)

n  is the sum of the values of the corresponding k vertices of ∆n. 
We therefore write hI = h(eI ) =

∑
i∈I hi for every I ⊆ [n].

Definition 2.4.  Let A(k)
h = {(aI , hI ) | |I| = k} be the h-lifted points at level k and note that these 

are points in R3. The associated coherent hypersimplicial subdivision, denoted T (k)(A, h), is the natural 
projection (which removes the last coordinate) of the lower boundary of convA(k)

h  to convA(k). In the 
particular case in which the lower boundary has only triangular faces (and no points in the interiors 
of these faces), we call its projection a coherent hypertriangulation of A.

The corresponding fiber polytope, denoted F(∆(k)
n → A(k)), is the set of points

1
area(convA(k))

∫
convA(k)

f (x) dx,

over all continuous functions f : convA(k)
→ ∆

(k)
n  such that π (f (x)) = x for all x ∈ convA(k). 

Note that this is a subset of ∆(k)
n ⊆ Rn. The vertices of the fiber polytope correspond to coherent 

hypertriangulations, and the faces correspond to all coherent subdivisions; see [5,21] for more 
details.

Because ∆(k)
n  is a complex of hypersimplices, we can use the following equivalent definition, 

which resembles the one of the secondary polytope associated with the point set A; see [13].

Definition 2.5.  Set eI =
∑

i∈I ei for each I ⊆ [n], and write GKZ(∆) = area(∆) ·
1
3 (eI + eJ + eK ) for 

every triangle ∆ = aIaJaK . Then the corresponding fiber polytope, or level-k hypersecondary polytope
of A, denoted F (k)(A), is the convex hull of the points

GKZ(T ) =
1

area(convA(k))

∑
∆∈T

GKZ(∆),

where the points are constructed for all level-k hypertriangulations T  of A.

3. Flips in hypertriangulations

The level-1 hypertriangulations of a finite set, A ⊆ R2, are commonly called the (partial) 
triangulations of A. Flips are the elementary operations that transform one triangulation of A to 
another. In the generic situation, there are two types: the first substitutes one diagonal of a convex 
quadrangle by the other, and the second subdivides a triangle into three by adding a vertex or 
coarsens by removing a degree-3 vertex; see the Type-I and Type-II flips in Fig.  5. For just four points 
the flips provide transitions between the only triangulations on these points. As shown in [14], these 
two operations suffice to transform any triangulation to any other triangulation of A.

This section introduces similar operations for level-k hypertriangulations in R2. Before giving the 
formal definitions, we take a look at configurations of just four points, for which our flips appear 
naturally.
6
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Fig. 4. The two configurations of four points in R2 and their hypertriangulations: convex configuration in top row and 
non-convex configuration in bottom row. From left to right: the two level-1, level-2, and level-3 hypertriangulations for 
each configuration. Observe that the squares in the upper middle can be more general parallelograms so that the respective 
central fifth vertices are not at the same geometric location. Similarly, the convex hexagons in the lower middle are not 
necessarily regular but are necessarily centrally symmetric.

3.1. Hypertriangulations of four points

For n = 4 points in R2, we have level-k hypertriangulations for k = 1, 2, 3. In the generic 
case, there are only two combinatorially different configurations of four points: the vertices of a 
convex quadrangle, or the vertices of a triangle with the fourth point inside the triangle. We refer 
to them as the convex configuration and the non-convex configuration, respectively. As illustrated in 
Fig.  4, we have two hypertriangulations for each k and each of the two configurations, so twelve 
hypertriangulations altogether.

• For k = 1, the vertices are the original points, and all triangles are white.
• For k = 2, there are six points, each the sum of two points in A. If A is a convex configuration, 

the convex hull of A(2) is a parallelogram and the remaining two points lie inside the 
parallelogram. There are only two hypertriangulations, each choosing one of the two extra 
points as a vertex and decomposing the parallelogram into two white and two black triangles. 
If A is a non-convex configuration, the points in A(2) are the vertices of a centrally symmetric 
convex hexagon, and there are again only two hypertriangulations.

• For k = 3, the situation is similar to the case k = 1, except that all triangles are black.

The six pairs of hypertriangulations of four points inspire our definition of flips for hypertriangula-
tions in R2.

3.2. Flips

We introduce four types of flips in hypertriangulations; all illustrated in Fig.  5. A flip preserves 
the level of the hypertriangulation, so the vertices and edges it introduces must satisfy Conditions 
(V) and (E) of Definition  2.1.

Definition 3.1.  A Type-I flip removes two triangles that share an edge and whose union is a convex 
quadrangle, and it adds the other two triangles whose union is the same quadrangle. The four 
triangles, two before and two after the flip, are either all white or all black.

A Type-II flip replaces a triangle by three triangles sharing a vertex inside the removed triangle or, 
in the other direction, replaces the three triangles sharing a degree-3 vertex with a single triangle. 
The four triangles, before and after the flip, are either all white or all black.
7
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Fig. 5. The four types of flips in hypertriangulations. Type-I and Type-II flips apply to all white or all black triangles, 
while Type-III and Type-IV flips involve white and black triangles before and also after the flip.

A Type-III flip applies to a parallelogram decomposed into four triangles, which alternate between 
white and black around the shared vertex, and replaces these triangles by their reflections through 
the center of the parallelogram. The reflection also switches the colors.

A Type-IV flip applies to a centrally symmetric convex hexagon decomposed into four triangles, 
one in the middle with a color that is different from the shared color of the surrounding three 
triangles. The flip replaces the four triangles by their reflections through the center of the hexagon, 
and the reflection switches the colors, as before.

Remark.  Explicitly requiring colors of triangles and Condition (E) of edges is sometimes excessive. 
For example, if two triangles have the same color, share an edge, and form a convex quadrangle, 
then Condition (E) is necessarily satisfied by the new edge. Similarly, if a vertex is shared by a cycle 
of four triangles with alternating colors, then these four triangles can be replaced by a Type-III flip. 
On the other hand, for Type-II and Type-IV flips, Condition (E) needs to be taken into account at 
least in one direction.

Example 3.2.  Take another look at Fig.  1, which shows a level-3 hypertriangulation of six points 
in R2. It is chosen so that all different types of flips can be applied. On the upper left, we see three 
white triangles that can be replaced by a single white triangle in a Type-II flip. Below them, we see 
three black triangles that can be replaced by a single black triangle in another Type-II flip. In the 
upper middle, we see a hexagonal region with a black triangle surrounded by three white triangles, 
which can be replaced by a white triangle surrounded by three black triangles in a Type-IV flip. After 
applying this flip, we get a convex quadrangle decomposed into two black triangles, which can be 
replaced by two other black triangles in a Type-I flip. Below that hexagonal region, we see another 
with a white triangle surrounded by three black triangles, and after applying a Type-IV flip, we get 
an elongated convex quadrangle decomposed into two white triangles, which can be replace by 
two other white triangles in another Type-I flip. Finally on the right, we see a parallelogram whose 
triangles alternate between black and white, which can be replaced by four other triangles in a 
Type-III flip.

4. Level-2 hypertriangulations

This section proves that for every generic point set, A ⊆ R2, the collection of level-2 hypertrian-
gulations is flip-connected. The main tool used for this purpose is the aging function and its inverse. 
This function and its inverse appeared as UP and DOWN functions for triangulated plabic tilings in 
the works Galashin [12] and Balitskiy and Wellman [3] on plabic graphs, and in a modified settings 
as functions U and D for zonotopal tilings in the work of Olarte and Santos [21] on hypersimplicial 
8
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Fig. 6. A level-1 hypertriangulation of 7 points on the left, and the (shrunken) image of the aging function applied to its 
8 white triangles on the right. The area left out by the black triangles are (shrunken) copies of the vertex stars in the 
level-1 hypertriangulation.

subdivisions, and as transitions between generations of slices of rhomboid tilings in the work of 
Edelsbrunner and Osang [10] on a fast algorithm for level-k Delaunay mosaics.

4.1. Aging function

The aging function, F , maps a white triangle with vertices in A(k) to a black triangle with vertices 
in A(k+1). Specifically, if |I| = |J| = |K | = k and |I ∩ J ∩ K | = k − 1, then

F (aIaJaK ) = aI∪JaJ∪KaK∪I .

Indeed, we have
|I ∪ J| = |J ∪ K | = |K ∪ I| = k + 1

and

|(I ∪ J) ∩ (J ∪ K ) ∩ (K ∪ I)| = k − 1,

so the image of aIaJaK  under F  is black. The inverse of the aging function is well defined on the 
black triangles: if |I| = |J| = |K | = k and |I ∩ J ∩ K | = k − 2, then

F−1(aIaJaK ) = aI∩JaJ∩KaK∩I .

Recall that W (T ) and B(T ) are the white and black triangles in T . Accordingly, we write F (W (T ))
and F−1(B(T )) for the images under the aging function and its inverse. With this notation, we have 
the following property.

Lemma 4.1.  For every level-1 hypertriangulation, T , of a generic set A ⊆ R2, there exists a level-2
hypertriangulation, U, of A such that B(U) = F (W (T )).

Proof.  Since T  is level-1, all its triangles are white. To get F (W (T )), we take the midpoints of all 
edges in T  and for every triangle in T  draw a (black) triangle that connects the midpoints within 
this triangle. After inflating the configuration by a factor 2, we get a subset of A(2) together with a 
collection of black triangles; see Fig.  6, which suppresses the inflation for better visualization. The 
part of the convex hull of A(2) not covered by black triangles is thus split into regions, and it remains 
to show that all these regions can be triangulated using white triangles only.

The gaps between the black triangles are of two types. Each gap that is completely surrounded 
by black triangles is in the shape of the star of an internal vertex of T . Indeed, for every internal 
vertex, ai of T , the black triangles within the star of ai cut out a scaled copy of the said star, which 
inflates into a copy of the star. This star can be triangulated using the vertices in its boundary, and 
since these vertices share i as one of their labels, all resulting triangles are white.
9
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Each gap that is not completely surrounded by black triangles is obtained from the star of a 
boundary vertex of T . Specifically, for every boundary vertex, aj of T , the black triangles in its star 
cut out a scaled copy of the star, which, after inflation, is intersected with convA(2). This intersection 
consists of one or more possibly non-convex polygons. The vertices of these polygons are the 
vertices of the star (other than aj), as well as vertices of convA(2). The former share j as one of 
their labels. To see that this is also true for the latter, we rotate two parallel supporting lines, one 
around convA and the other around convA(2). Whenever the second supporting line passes through a 
boundary vertex that is also a vertex of one of the polygons, the first supporting line passes through 
aj. It follows that j is a label of the boundary vertex. Hence, all vertices of the polygons share j as 
one of their labels, and any triangulation obtained by connecting these vertices produces only white 
triangles. □

4.2. Inverse of aging function

The aging function can be reversed to construct the level-1 hypertriangulation that gives 
rise to a given level-2 hypertriangulation. To prepare this construction, we let U be a level-2
hypertriangulation of A, and for each ai ∈ A, we write Wi(U) for the set of white triangles in U , 
whose three vertices share the label i. In the forward construction of Lemma  4.1, Wi(U) would be the 
triangles re-triangulating (part of) the star of ai, but a priori it is not clear that U can be constructed 
this way. We will sometimes abuse notation and write Wi(U) for the union of its triangles.

Lemma 4.2.  Let U be a level-2 hypertriangulation of a generic set A ⊆ R2, let ai ∈ A. Assume Wi(U) is 
non-empty, and let x be a point in its interior. Then all triangles in U that have a non-empty intersection 
with the line segment from x to 2ai belong to Wi(U), and if ai lies in the interior of convA, then Wi(U)
contains the entire line segment.

Proof.  We prove the case in which ai lies in the interior of convA. The case of a boundary point is 
easier and omitted. To get a contradiction, we assume there is a point x ∈ Wi(U) such that Wi(U)
does not contain the entire line segment from x to 2ai. Hence, the line segment crosses the boundary 
of Wi(U), and we let aij and aik be the endpoints of the boundary edge that crosses the line segment 
closest to x. Let L be the line that passes through aij and aik. Since x and 2ai lie on opposite sides of 
L, the points 2aj and 2ak lie on the same side of L as x. It follows that the entire black triangle with 
vertices aij, aik, ajk lies on this side of L. But then there are points on the line segment from x to 2ai
outside Wi(U) that are closer to x than the crossing with L, which is a contradiction. Hence, Wi(U)
is star-convex and contains the entire line segment from x to ai. □

We use Lemma  4.2 to prove that the aging function allows us to go back and forth between 
level-1 and level-2 hypertriangulations.

Lemma 4.3.  Let U be a level-2 hypertriangulation of a generic set A ⊆ R2. Then F−1(B(U)) is a well 
defined level-1 hypertriangulation of A.

Proof.  First we prove that if ai and aj are the endpoints of a side of convA, then there is exactly 
one triangle in B(U) with vertex aij. Observe that aij is necessarily a vertex of convA(2), let aik and 
ajℓ be the neighboring boundary vertices, and note that U contains the two edges that connect aij
to these vertices. This can be seen by rotating the supporting line for convA(2) parallel to aiaj at aij
around aij; rotation in one direction will give the vertex aik and rotation in the opposite direction 
will give the vertex ajℓ. Traverse the sequence of triangles aijuv incident to aij and note that there 
is necessarily an edge, uv, such that u and v neither share i nor j as a label. Hence, aijuv is a black 
triangle incident to aij. If there are two such black triangles, then there is a white triangle between 
them as two black triangles cannot share a side since vertices of one side of any black triangle in U
determine the third vertex of the triangle. This white triangle is incident to aij but neither belongs 
to Wi(U) nor to Wj(U), which is not possible.

Next let ∆ = aijaikajk be any black triangle in U , and suppose that the edge from ai to aj is not a 
side of convA. We prove that there is exactly one other black triangle, ∆′, in U that shares a , and 
ij

10
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Fig. 7. Left: a Type-III flip on level 2 superimposed on the corresponding Type-I flip on level 1. Right: a Type-IV flip on 
level 2 superimposed on the corresponding Type-II flip on level 1.

that ∆ and ∆′ lie on opposite sides of the line that passes through 2ai and 2aj. We consider the 
case in which both ai and aj lie in the interior of convA. In all other cases, the argument is similar 
and omitted. In the assumed case, Wi(U) and Wj(U) are both star-convex and meet at aij. Traversing 
the triangles aijuv incident to aij — starting at u = aik and ending at v = ajℓ while avoiding ∆ — we 
observe that there must be a second black triangle, ∆′. Furthermore, there cannot be three black 
triangles because aij has only two labels and can therefore not belong to three white regions. The 
property that ∆ and ∆′ lie on opposite sides of the line passing through 2ai and 2aj follows from 
the star-convexity of Wi(U) and Wj(U) and the fact that these two regions touch at aij, which lies 
on this line and between ai and aj.

When we construct F−1(B(U)), we get one white triangle next to every boundary edge of convA
and two non-overlapping white triangles on opposite sides of every non-boundary edge. A point in 
the interior of convA and sufficiently close to a boundary edge is covered by exactly one triangle in 
F−1(B(U)). To move to any other point in convA, we walk from triangle to triangle, and each time 
we leave a triangle we enter another. This implies that almost all points in convA are covered by 
exactly one triangle in F−1(B(U)). It follows that F−1(B(U)) is a level-1 hypertriangulation of A. It is 
unique because the construction via the inverse of the aging function is deterministic. □

4.3. Flip-connectivity

We are now ready to prove the main result of this section. Given a generic set A ⊆ R2, 
consider the graph whose nodes are the level-k hypertriangulations of A, with an arc connecting 
two nodes if there is a flip that transforms one hypertriangulation to the other. We call the level-k
hypertriangulations flip-connected if this graph is connected.

Theorem 4.4.  For every generic point set A ⊆ R2, the level-2 hypertriangulations of A are 
flip-connected.

Proof.  Let U and U ′ be two level-2 hypertriangulations of A, and let T = F−1(B(U)) and 
T ′

= F−1(B(U ′)) be the corresponding level-1 hypertriangulations, which are possibly partial 
triangulations of A. If T = T ′, then U and U ′ agree on their black triangles. Similarly, the regions of 
white triangles are the same, but they may be differently triangulated. Each such region is a convex 
or non-convex polygon, and it is known that any two triangulations of a polygon are connected by 
Type-I and Type-II flips; see [14].

So suppose T ̸= T ′. It is also well known that possibly partial triangulations of A are connected 
by Type-I and Type-II flips; see Fig.  5. We will show that each Type-I flip on level 1 corresponds to 
a Type-III flip on level 2, and each Type-II flip on level 1 corresponds to a Type-IV flip on level 2. 
So we can perform the flips on the two levels in parallel, but note that Type-I and Type-II flips on 
level 2 are sometimes necessary to enable the Type-III and Type-IV flips.

In the case of a Type-I flip on level 1, we need to retriangulate the white regions on level 2 as 
in Fig.  7 on the left, so a Type-III flip can be performed. Such a retriangulation with Type-I flips on 
level 2 is always possible. The case of a Type-II flip on level 1 is similar, except that we need Type-I 
11
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Fig. 8. From left to right: a partial triangulation of five points with two white triangles, a level-2 hypertriangulation with 
corresponding two black triangles and six additional white triangles, and the corresponding six aged black triangles, some 
of which overlap. The construction is based on Example 5.1 by Olarte and Santos [21].

as well as Tyle-II flips on level 2 to retriangulate the three white regions around the central black 
triangle to enable the Type-IV flip; see Fig.  7 on the right. Again, such a retriangulation is always 
possible. □

We observe that mapping aI to a[n]\I induces a bijection between the level-k and the level-(n−k)
hypertriangulations and their respective flips. Hence, the flip-connectivity on level 1 implies the 
flip-connectivity on level n − 1. More interestingly, Theorem  4.4 implies that also the level-(n − 2)
hypertriangulations of a generic set A ⊆ R2 are flip-connected.

4.4. Obstacle for generalization

To summarize, we used the aging function from level 1 to level 2 to prove the flip-connectivity 
of level-2 hypertriangulations. It is not difficult to generalize the aging function to higher levels, but 
Lemma  4.1 fails to generalize, which is the reason the authors of this paper were not able to prove 
flip-connectivity in full generality beyond level 2. Indeed, it is known that the extension of Lemma 
4.1 to the aging function that maps white triangles on level 2 to black triangles on level 3 fails 
already for five points. In particular, the level-2 hypertriangulation in [21, Example 5.1] contains 
three triangles, ∆1, ∆2, ∆3, whose images under the aging function overlap; see Fig.  8.

4.5. Coherent hypertriangulations

In this section we briefly discuss the family of coherent level-k hypertriangulations and its 
flip-connectivity for every k. We note that the aging function and its inverse are well-defined in 
that setting as for every level-k coherent hypertriangulation U with the height function h, the 
corresponding (non-unique) level-(k+ 1) and level-(k− 1) hypertriangulations with black triangles 
F (W (U)) and white triangles F−1(B(U)) may be constructed using the same height function.

The flip-connectivity of the family of coherent hypertriangulations relates to properties of the 
corresponding fiber polytope, F (k)(A). In the simplest case, for k = 1, the edges of the secondary 
polytope, F (1)(A), correspond to bi-stellar flips, and in the generic case, the flips between coherent 
triangulations result in edges of the secondary polytope; see [6, Section 5.3], where coherent 
triangulations are called regular.

As suggested in [23, Section 8], a similar property should hold for all Baues posets (for generic 
projections) when we use Baues flips instead of bi-stellar flips, but we did not find a precise 
statement to this effect in the literature. We therefore include a short sketch of this property for 
hypertriangulations using the more restrictive family of flips of Types I through IV. We also refer 
to [6, Theorem 5.3.1] for a similar result on usual triangulations (the case k = 1), which inspired 
our proof.
12
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Proposition 4.5.  If GKZ(T0) and GKZ(T1) are two vertices of F (k)(A) connected by an edge, then the 
coherent hypertriangulations T0 and T1 differ by a flip of type I, II, III, or IV (and thus also by a Baues 
flip).

Sketch of proof.  Let T  be the coherent subdivision that corresponds to the edge connecting 
GKZ(T0) and GKZ(T1). Since T  is not a hypertriangulation, it contains the projection of a face, F , 
of dimension 3 or larger. If dim F ≥ 4, then F  is a hypersimplex, and the corresponding coherent 
hypertriangulations of F  give a fiber polytope of dimension at least 2 and hence cannot be the edge 
of F (k)(A).

If T  contains projections of at least two faces F  and G of the hypersimplex ∆(k)
n  with dim F =

dimG = 3, then lifting the points of A(k) according to any height function, h, from the normal cone 
of the edge corresponding to T  gives two non-triangular faces of the lower boundary of convA(k)

h ; 
here we treat a triangular face with a point in its relative interior as non-triangular.

The labels of vertices eI of F  are obtained by taking 1-, 2-, or 3-element subsets of {i, j, k, ℓ} ⊂ [n]
and complementing them by a subset of [n] of size k − 1, k − 2, or k − 3. In any case, the lifted 
points (aI , hI ) must lie on one two-dimensional plane in R3 and this results into a linear equation 
for the heights hi, hj, hk, and hℓ. Moreover, the corresponding facet of convA(k)

h  is parallel to the 
two-dimensional plane through the lifted points ai, aj, ak, and aℓ.

Similarly, we get a linear equation for the four heights from the face G. Since the edge between 
GKZ(T0) and GKZ(T1) has codimension 1, the equations for F  and G must be proportional. In that case 
the corresponding facets of the convex hull of the lifted points are parallel and this is impossible 
for the lower boundary of convA(k)

h .
To summarize: the projection of F  is the only polygon where T0 differs from T1, and since 

dim F = 3, this results in a flip from T0 to T1. □

Since all coherent level-k hypertriangulations correspond to vertices of the corresponding fiber 
polytope, the following corollary is immediate.

Corollary 4.6.  For every point set A, the family of all coherent level-k hypertriangulations is 
flip-connected.

5. Concluding remarks

This section mentions avenues for further research on hypertriangulations and their flips. In 
dimension d = 2, there is of course the open question of flip-connectivity for levels k between 
3 and n − 3, in which n is the number of points.
Beyond 2 dimensions. In dimension d ≥ 3, the question of flip-connectivity for hypertriangulations 
has yet to be formalized. Even for generic sets of n points, hypertriangulations beyond level 1 are 
generally not simplicial because generic hypersimplices are not necessarily simplices. The aging 
function can still be defined and goes through d generations of a d-simplex: for 1 ≤ j ≤ d− 1 from 
the convex hull of the barycenters of the (j − 1)-faces to the convex hull of the barycenters of the 
j-faces. For example in dimension d = 3, it goes from a tetrahedron (convex hull of its vertices) to 
an octahedron (convex hull of the midpoints of its edges) to another tetrahedron (convex hull of the 
barycenters of its triangles). Flips would be defined as in Section 3, which is best described in terms 
of projections from d+1 dimensions. According to Radon’s theorem, there are d+1 combinatorially 
different projections of a (d+1)-simplex to Rd [24]. The types are paired up, giving ⌈(d + 1)/2⌉ flips. 
The (d+ 1)-simplex has d+ 1 generations, but there is a symmetry between the barycenters of the 
(j−1)-faces and the (d+1−j)-faces, giving ⌈(d + 1)/2⌉ cases. We thus get ⌈(d + 1)/2⌉2 flips, namely 
four in R2, also only four in R3, but nine in R4.

Generalized Baues problem. One of the main questions in the theory of induced subdivisions 
is the generalized Baues problem. Roughly, the question asks how well the family of all induced 
subdivisions embeds the family of coherent subdivisions. A more specific question asks whether 
the order complex of the poset of all induced subdivisions is homotopy equivalent to the order 
13
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complex of the poset of coherent subdivisions. We refer to the survey of Reiner [26] for precise 
definitions and details.

In the setting of (2-dimensional) hypertriangulations, the generalized Baues problem has a 
positive answer for k = 1, the case of usual triangulations, as shown by Edelman and Reiner [8]. 
Consequently, the problem has also a positive answer for k = n − 1. In addition, Olarte and 
Santos [21] proved that the generalized Baues problem has a positive answer if the points are 
in convex position. For an arbitrary generic set in R2, the generalized Baues question for level-k
hypertriangulations remains open for all 2 ≤ k ≤ n − 2.

Acknowledgments

Work by all authors but the second is supported by the European Research Council (ERC), grant 
no. 788183, by the Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-N31, and by the 
DFG Collaborative Research Center TRR 109, Austrian Science Fund (FWF), grant no. I 02979-N35. 
Work by the second author is partially supported by the Alexander von Humboldt Foundation and 
by the Simons Foundation. The second author thanks Jesús A. De Loera for useful discussions on 
flips and non-flips and Pavel Galashin and Alexey Balitskiy for useful discussions on plabic graphs.

References

[1] C. Athanasiadis, Projections of polytopes on the plane and the generalized Baues problem, Trans. Amer. Math. Soc. 
129 (7) (2001) 2103–2109, http://dx.doi.org/10.1090/S0002-9939-00-05728-2.

[2] F. Aurenhammer, A new duality result concerning Voronoi diagrams, Discrete Comput. Geom. 5 (1990) 243—254, 
http://dx.doi.org/10.1007/BF02187788.

[3] A. Balitskiy, J. Wellman, Flip cycles in plabic graphs, Sel. Math. New Ser. 26 (2020) 15, http://dx.doi.org/10.1007/
s00029-020-0544-1.

[4] L.J. Billera, M.M. Kapranov, B. Sturmfels, Cellular strings on polytopes, Proc. Amer. Math. Soc. 122 (2) (1994) 549–555, 
http://dx.doi.org/10.1090/S0002-9939-1994-1205482-0.

[5] L.J. Billera, B. Sturmfels, Fiber polytopes, Ann. Math. 135 (1992) 527–549, http://dx.doi.org/10.2307/2946575.
[6] J.A. De Loera, J. Rambau, F. Santos, Triangulations. Structures for Algorithms and Applications, Springer-Verlag, Berlin, 

2010, http://dx.doi.org/10.1007/978-3-642-12971-1.
[7] P.H. Edelman, V. Reiner, Catalan triangulations of the Möbius band, Graphs Combin. 13 (1997) 231–243, http:

//dx.doi.org/10.1007/BF03353000.
[8] P.H. Edelman, V. Reiner, Visibility complexes and the Baues Problem for triangulations in the plane, Discrete Comput. 

Geom. 20 (1998) 35–59, http://dx.doi.org/10.1007/PL00009377.
[9] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag Berlin Heidelberg, 1987, http://dx.doi.org/

10.1007/978-3-642-61568-9.
[10] H. Edelsbrunner, G. Osang, A simple algorithm for higher-order Delaunay mosaics and alpha shapes, Algorithmica 

85 (2023) 277–295, http://dx.doi.org/10.1007/s00453-022-01027-6.
[11] H. Edelsbrunner, N.R. Shah, Incremental topological flipping works for regular triangulations, Algorithmica 15 (1996) 

223–241, http://dx.doi.org/10.1007/BF01975867.
[12] P. Galashin, Plabic graphs and zonotopal tilings, Proc. Lond. Math. Soc. 117 (4) (2018) 661–681, http://dx.doi.org/10.

1112/plms.12139.
[13] I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, 

Birkhäuser, Boston, Massachusetts, 1994, http://dx.doi.org/10.1007/978-0-8176-4771-1.
[14] F. Hurtado, M. Noy, J. Urrutia, Flipping edges in triangulations, Discrete Comput. Geom. 22 (1999) 333–346, 

http://dx.doi.org/10.1007/PL00009464.
[15] B. Joe, Three-dimensional triangulations from local transformations, SIAM J. Sci. Stat. Comput. 10 (1989) 718–741, 

http://dx.doi.org/10.1137/0910044.
[16] B. Joe, Construction of three-dimensional Delaunay triangulations using local transformations, Comput. Aided Geom. 

Design 8 (1991) 123–142, http://dx.doi.org/10.1016/0167-8396(91)90038-D.
[17] C.L. Lawson, Software for C1 surface interpolation, in: Mathematical Software, Proc. Sympos. at the Mathematics Re-

search Center, Univ. Wisconsin–Madison, 1977, pp. 161–194, http://dx.doi.org/10.1016/B978-0-12-587260-7.50011-
X.

[18] G. Liu, A zonotope and a product of two simplices with disconnected flip graphs, Discrete Comput. Geom. 59 (2018) 
810–842, http://dx.doi.org/10.1007/s00454-018-9971-6.

[19] G. Liu, A counterexample to the extension space conjecture for realizable oriented matroids, Proc. Lond. Math. Soc. 
101 (1) (2020) 175–193, http://dx.doi.org/10.1112/jlms.12264.

[20] G. Liu, Flip-connectivity of triangulations of the product of a tetrahedron and simplex, Discrete Comput. Geom. 63 
(2020) 1–30, http://dx.doi.org/10.1007/s00454-019-00157-z.

[21] J.A. Olarte, F. Santos, Hypersimplicial subdivisions, Sel. Math. New Ser. 28 (2021) 4, http://dx.doi.org/10.1007/s00029-
021-00722-6.
14

http://dx.doi.org/10.1090/S0002-9939-00-05728-2
http://dx.doi.org/10.1007/BF02187788
http://dx.doi.org/10.1007/s00029-020-0544-1
http://dx.doi.org/10.1007/s00029-020-0544-1
http://dx.doi.org/10.1007/s00029-020-0544-1
http://dx.doi.org/10.1090/S0002-9939-1994-1205482-0
http://dx.doi.org/10.2307/2946575
http://dx.doi.org/10.1007/978-3-642-12971-1
http://dx.doi.org/10.1007/BF03353000
http://dx.doi.org/10.1007/BF03353000
http://dx.doi.org/10.1007/BF03353000
http://dx.doi.org/10.1007/PL00009377
http://dx.doi.org/10.1007/978-3-642-61568-9
http://dx.doi.org/10.1007/978-3-642-61568-9
http://dx.doi.org/10.1007/978-3-642-61568-9
http://dx.doi.org/10.1007/s00453-022-01027-6
http://dx.doi.org/10.1007/BF01975867
http://dx.doi.org/10.1112/plms.12139
http://dx.doi.org/10.1112/plms.12139
http://dx.doi.org/10.1112/plms.12139
http://dx.doi.org/10.1007/978-0-8176-4771-1
http://dx.doi.org/10.1007/PL00009464
http://dx.doi.org/10.1137/0910044
http://dx.doi.org/10.1016/0167-8396(91)90038-D
http://dx.doi.org/10.1016/B978-0-12-587260-7.50011-X
http://dx.doi.org/10.1016/B978-0-12-587260-7.50011-X
http://dx.doi.org/10.1016/B978-0-12-587260-7.50011-X
http://dx.doi.org/10.1007/s00454-018-9971-6
http://dx.doi.org/10.1112/jlms.12264
http://dx.doi.org/10.1007/s00454-019-00157-z
http://dx.doi.org/10.1007/s00029-021-00722-6
http://dx.doi.org/10.1007/s00029-021-00722-6
http://dx.doi.org/10.1007/s00029-021-00722-6


H. Edelsbrunner, A. Garber, M. Ghafari et al. European Journal of Combinatorics 132 (2026) 104248
[22] I. Pak, History of Catalan Numbers. Appendix to R. Stanley, Catalan Numbers, Cambridge Univ. Press, 2015, pp. 
177–189, https://arxiv.org/abs/1408.5711.

[23] A. Postnikov, Positive grassmanian and polyhedral subdivisions, in: Proceeding of International Congress of 
Mathematicians, Rio de Janeiro, 2018, pp. 3199–3230, http://dx.doi.org/10.1142/9789813272880_0177.

[24] J. Radon, Mengen konvexer Körper, die einen gemeinsame Punkt Enthalten, Math. Ann. 83 (1921) 13–15.
[25] J. Rambau, G. Ziegler, Projections of polytopes and the generalized Baues conjecture, Discrete Comput. Geom. 16 

(1996) 215–237, http://dx.doi.org/10.1007/BF02711510.
[26] V. Reiner, The generalized Baues problem, in: New Perspectives in Algebraic Combinatorics, vol. 38, Math. Sci. Res. 

Inst. Publ., 1999, pp. 293–336, https://library.slmath.org/books/Book38/files/reiner.pdf.
[27] F. Santos, A point set whose space of triangulations is disconnected, J. Amer. Math. Soc. 13 (3) (2000) 611–637, 

http://dx.doi.org/10.1090/S0894-0347-00-00330-1.
[28] F. Santos, On the refinements of a polyhedral subdivision, Collect. Math. 52 (3) (2001) 231–256, http://dmle.icmat.

es/pdf/COLLECTANEAMATHEMATICA_2001_52_03_03.pdf.
[29] F. Santos, The cayley trick and triangulations of products of simplices, in: A. Barvinok, M. Beck, C. Haase, B. Reznick, 

V. Welker (Eds.), Integer Points in Polyhedra - Geometry, Number Theory, Algebra, Optimization, in: Contemporary 
Mathematics, vol. 374, 2005.

[30] R. Sibson, Locally equiangular triangulations, Comput. J. 21 (1978) 243–245, http://dx.doi.org/10.1093/comjnl/21.3.
243.

[31] K. Wagner, Bemerkungem zum vierfarbenproblem, Jber. Dtsch. Math-Verein. 46 (1936) 26–32.
[32] U. Wagner, E. Welzl, Connectivity of triangulation flip graphs in the plane, Discrete Comput. Geom. 68 (2022) 

1227–1284, http://dx.doi.org/10.1007/s00454-022-00436-2.
[33] G.M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 2008, http://dx.doi.org/10.1007/978-1-4613-8431-1.
15

https://arxiv.org/abs/1408.5711
http://dx.doi.org/10.1142/9789813272880_0177
http://refhub.elsevier.com/S0195-6698(25)00137-4/sb24
http://dx.doi.org/10.1007/BF02711510
https://library.slmath.org/books/Book38/files/reiner.pdf
http://dx.doi.org/10.1090/S0894-0347-00-00330-1
http://dmle.icmat.es/pdf/COLLECTANEAMATHEMATICA_2001_52_03_03.pdf
http://dmle.icmat.es/pdf/COLLECTANEAMATHEMATICA_2001_52_03_03.pdf
http://dmle.icmat.es/pdf/COLLECTANEAMATHEMATICA_2001_52_03_03.pdf
http://refhub.elsevier.com/S0195-6698(25)00137-4/sb29
http://refhub.elsevier.com/S0195-6698(25)00137-4/sb29
http://refhub.elsevier.com/S0195-6698(25)00137-4/sb29
http://refhub.elsevier.com/S0195-6698(25)00137-4/sb29
http://refhub.elsevier.com/S0195-6698(25)00137-4/sb29
http://dx.doi.org/10.1093/comjnl/21.3.243
http://dx.doi.org/10.1093/comjnl/21.3.243
http://dx.doi.org/10.1093/comjnl/21.3.243
http://refhub.elsevier.com/S0195-6698(25)00137-4/sb31
http://dx.doi.org/10.1007/s00454-022-00436-2
http://dx.doi.org/10.1007/978-1-4613-8431-1

	Flips in two-dimensional hypertriangulations
	Introduction
	Introduction to Hypertriangulations
	Level-k Hypertriangulations
	Hypersimplicial Subdivisions
	Coherent Hypersimplicial Subdivisions and Fiber Polytopes

	Flips in Hypertriangulations
	Hypertriangulations of Four Points
	Flips

	Level-2 Hypertriangulations
	Aging Function
	Inverse of Aging Function
	Flip-connectivity
	Obstacle for Generalization
	Coherent Hypertriangulations

	Concluding Remarks
	Acknowledgments
	References


