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Abstract. Motivated by applications in medical sciences, we study finite
chromatic sets in Euclidean space from a topological perspective. Based on
the persistent homology for images, kernels and cokernels, we design provably

stable homological quantifiers that describe the geometric micro- and macro-
structure of how the color classes mingle. These can be efficiently computed
using chromatic variants of Delaunay and alpha complexes, and code that does

these computations is provided.

1. Introduction. This paper takes a topological approach to quantifying spatial
interactions between several point sets, which we distinguish by color. The aim is
the development of a mathematical language to answer questions like: “how, how
often, and at what scale do blue points surround groups of red points?”, or “are
there cycles made out of blue, red, and green points that make essential use of all
three colors?”. We tackle these questions from a multi-scale homological perspective,
with the goal of disentangling patterns such as the ones shown in Figure 1.

One of the motivations for this work is the recent growth of interest in spatial
biology, which combines the biological properties of cells with their locations. An
example is the tumor immune microenvironment [3] in cancer research, which focuses
on the interplay between tumor and immune cells. Can we identify as well as quantify
patterns in the interaction between cell types that correlate with clinical outcomes?
Another biological process that raises similar mathematical questions is cell sorting
(the natural segregation of cells by types), which in early development is studied
for instance in [21] and in the context of somitogenesis is mentioned in [22]. This
motivates the study of chromatic point sets, in which the points represent cells and
colors represent their types.

Our specific approach is based on the formulation of persistent homology in
terms of growing balls [12], which is often used in topological data analysis to
describe and quantify spatial arrangements of (mono-chromatic) point sets. The
idea behind the construction is to transform a discrete set of points into a nested
sequence of topological spaces. This is achieved by growing balls centered at the
input points (from zero to infinite radius), which yields a sequence of progressively
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Figure 1. Mingling patterns distinguished by the number of colors forming

a cycle and the number of additional colors filling this cycle. The drawings

are caricatures of similar patterns for cycles different from circles and fillings
different from disks. The patterns are but a first attempt to differentiate types

of interactions, and they are by no means precise or exhaustive. For example,

two additional colors can fill a cycle in at least two different ways (see the
pattern of type 1+2): in a collaboration as suggested in the drawing, or each

individually, like two different patterns of type 1+1.

larger shapes. Such a nested sequence of spaces is called a filtration, and it becomes
a sequence of vector spaces connected by linear maps when we apply homology with
field coefficients. The latter is also known as a persistence module. Studying the
induced maps rather than just individual vector spaces, we can not only identify
radii at which topological features appear and disappear, but also pair these events
to quantify for how long each feature persists in the filtration.

When the data is bi-chromatic, say red and blue, we have two sets of growing
balls at our disposal. A natural way to relate them is to consider the inclusion
map between the union of balls of one color, say the blue ones, into the union of
balls of both colors. Like in the mono-chromatic case, we apply homology with field
coefficients and get two persistence modules together with connecting maps, which
are induced by inclusions relating the two filtrations. The connecting maps carry
important information about the mingling of the two point sets. For example, if a
cycle is present in the blue filtration at a certain radius, it may or may not also be
present in the red and blue filtration. If it is, such a cycle will be in the image of
the connecting map, while if it is not, it will be in the kernel. More generally, given
a pair of filtrations related by inclusions, we can look at the persistent homology of
the subspace, the full space, the relative space, as well as the kernels, the images,
and the cokernels of the connecting maps [8]. We call the resulting collection the
6-pack of persistence diagrams, which we use to capture different aspects of the
mingling between geometric sets. One contribution of this paper is the study of
relations between the six persistence diagrams composing the 6-pack, such as linear
relations between their 1-norms, which are the sums of persistences of the points in
the diagrams (Theorem 5.3).

Just like alpha complexes are a possible discrete model for the union of balls
in the mono-chromatic setting [13, 14], we seek a chromatic variant that enables
the computation of the 6-pack of persistent diagrams. At first sight, this seems
problematic as the red alpha complex does not include into the alpha complex of
the union of red and blue points. Similarly, taking the full red subcomplex does
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not work either, as it does not capture the homotopy type of the union of red balls.
We circumvent these limitations by using a third type of complex, the chromatic
Delaunay mosaic, which was introduced for two colors by Reani and Bobrowski
[23] and which we extended beyond two colors in [4]. This mosaic uses an extra
dimension for each color beyond the first to capture the interaction between colors.
Counter-balancing the increase in dimension, [4] shows that the complexity of the
mosaic is moderate for a small number of colors. For example, this paper gives linear
bounds on the expected size for points in two dimensions randomly colored by a
constant number of colors. Building on the results in [4], we show that the chromatic
Delaunay mosaic can be equipped with a radius function whose sublevel sets capture
the alpha complexes of different color classes as well as their interactions. Within
this setting, we show that the radius function on the chromatic Delaunay mosaic
can be computed in linear time assuming the dimension and the number of colors is
constant (Theorem 3.9), and that it has the combinatorial structure of a generalized
discrete Morse function (Theorem 4.6). Code that implements these algorithms is
available at [11]—see the github repository for details.

The entire development could have been based on chromatic variants of the Čech
complex, with almost no differences, except that the complex has size exponential
in the number of vertices, making computational experiments of the kind presented
in this paper infeasible. Similarly, we could have used chromatic variants of the
Vietoris–Rips complex, but the complexes would again be significantly larger, and we
would have to cope with topological artifacts, which at this time are not understood.
More recently, Dowker complexes and witness complexes have been suggested as
possible candidates for encoding spatial relations in the tumor microenvironment
[26]. The main limitation of these complexes is their lack of stability: perturbing a
point set can produce a very different filtration. Moreover, the Dowker complex is
limited to the study of two interacting point sets, while the witness complex requires
a choice of “landmark points” and it is not clear how to choose those in practice.

Outline. Section 2 reviews the alpha complex in the mono-chromatic case. Section 3
extends this construction to the chromatic case. Section 4 proves that the radius
function on the chromatic Delaunay mosaic is generalized discrete Morse. Section 5
studies the persistent homology of the chromatic alpha complexes, with an emphasis
on the two and three colors settings. Section 6 concludes the paper.

2. Mono-chromatic point sets. In this section, we recall several standard defi-
nitions and relevant results used in topological data analysis of point sets with no
extra color labels.

2.1. Voronoi tessellation and Delaunay complex. Letting A ⊆ Rd be a finite
set of points, the Voronoi domain of a ∈ A, denoted dom(a,A), is the set of points
x ∈ Rd that satisfy ‖x− a‖ ≤ ‖x− b‖ for all b ∈ A. Observe that dom(a,A) is
the intersection of finitely many closed half-spaces and therefore a closed convex
polyhedron. The Voronoi tessellation of A, denoted Vor(A), is the collection of
Voronoi domains defined by the points in A. These domains cover Rd while their
interiors are pairwise disjoint. Nevertheless, a collection of these polyhedra may
overlap in a shared face, which we refer to as a Voronoi cell. For a generic set, A,
the dimension of a Voronoi cell is determined by the number of Voronoi domains
that share it.
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Definition 2.1 (Conventional Genericity). We call a point set, A ⊆ Rd, generic if
every p-sphere, with 0 ≤ p < d, passes through at most p+ 2 points of A.

Then, indeed, the common intersection of any p+ 1 Voronoi domains is either
empty or a convex polyhedron of dimension d− p. Note that our notion of genericity
allows for more than p+ 1 points on a p-dimensional affine subspace.

The Delaunay complex, denoted Del(A), is the simplicial complex with vertex
set A that contains a simplex corresponding to each collection of Voronoi domains
with non-empty common intersection. It is isomorphic to the nerve of the Voronoi
domains,

Nerve(Vor(A)) = {ν ⊆ Vor(A) |
⋂
ν 6= ∅}.

The Delaunay complex can also be characterized using empty spheres passing through
points. A ((d−1)-dimensional) sphere, S, is empty if all points of A lie on or outside
the sphere, so there are no points inside the sphere; that is, no points in the interior
of the ball bounded by the sphere. Furthermore, we say the sphere passes through
the points that lie on the sphere; see the left panel of Figure 4 for an empty 1-sphere
that passes through three points.

Lemma 2.2. Let A ⊆ Rd be a finite set of points, and ν ⊆ A. Then ν is a simplex
in the Delaunay complex iff there exists an empty sphere that passes through all
points in ν.

Proof. Let ν ∈ Del(A). By definition of Delaunay complex,
⋂
a∈ν dom(a,A) 6= ∅,

and we let x be a point in this common intersection of Voronoi domains. Then x has
the same distance to all points in ν and the same or a larger distance to all other
points in A. Hence, x is the center of an empty sphere that passes through all points
in ν, and possibly also through other points of A. Each of the above implications
can be reversed, which implies that x is in the intersection of Voronoi domains of
points in ν iff x is the center of an empty ball that passes through ν.

Remark. Notice that the Delaunay complex generally differs from the dual of the
Voronoi tessellation, which contains a p-dimensional cell for each (d− p)-dimensional
intersection of Voronoi domains. We call this dual the Delaunay mosaic: it contains
the convex hull of a subset of points as a cell whenever the corresponding collection
of Voronoi domains is maximal with this necessarily non-empty common intersection.
However, for a generic set of points, the Delaunay mosaic is the Delaunay complex of
the points. Throughout this paper, we will work with the Delaunay complex rather
than the mosaic, and we will appeal to genericity in cases this is necessary. Delaunay
mosaic can also be characterized with empty spheres passing through points: the
convex hull of ν is a cell in the Delaunay mosaic iff there is an empty sphere that
passes through the points in ν and through no other points of A.

2.2. Alpha complex. There can be more than one empty sphere passing through
the vertices of a simplex, ν ∈ Del(A), but there is a unique smallest empty sphere
that passes through the points in ν. This yields a radius function on the Delaunay
complex, Rad: Del(A)→ R, which maps each simplex to the radius of the smallest
empty sphere that passes through its vertices. The alpha complex, Alfr(A) ⊆ Del(A),
is the sublevel set consisting of all simplices with radius at most r. Note that for
r ≤ R we have Alfr(A) ⊆ AlfR(A).

Let Br(a) be the d-ball with radius r centered at a ∈ Rd. The Voronoi ball
of a ∈ A with radius r is this ball restricted to the Voronoi domain: BVr (a,A) =
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Br(a)∩ dom(a,A). Using the correspondence in Lemma 2.2, it is straightforward to
observe that the alpha complex, Alfr(A), is isomorphic to the nerve of the Voronoi
balls of A with radius r. The Nerve Theorem [5] then implies that

Alfr(A) '
⋃

a∈A
BVr (a,A) =

⋃
a∈A

Br(a).

Furthermore, a generalization of this theorem guarantees that the homotopy equiva-
lences for different radii, r ≤ R, commute with the inclusions on both sides. From
the perspective of topology, we can equivalently study the union of growing balls or
its discrete counterpart, the growing alpha complex.

Figure 2. On the left : a set, A ⊆ R2, together with its Voronoi tessellation,

Vor(A), and one Voronoi ball highlighted. On the right : the union of disks,⋃
a∈ABr(a), with the alpha complex, Alfr(A), superimposed.

For a finite point set, the Delaunay complex is finite, and hence the filtration
of different alpha complexes is finite. To better understand the structure of this
filtration, it is helpful to understand the level sets of the radius function. Given
simplices α ⊆ γ in a simplicial complex K, write [α, γ] for the simplices β that
satisfy α ⊆ β ⊆ γ; that is: [α, γ] is an interval in the face poset of K. Given a
monotonic function f : K → R, an interval of f is such an interval on which f is
constant, and it is maximal if it is not strictly contained in a larger interval of f .

Definition 2.3. A monotonic function on a simplicial complex, f : K → R, is
generalized discrete Morse if the maximal intervals of f partition K.

Equivalently, f is generalized discrete Morse if every level set, Kt = f−1(t), is
a disjoint union of maximal intervals. Discrete Morse theory was introduced by
Forman [16] and later generalized by Freij [17] before it became a research area on
its own; see the book by Scoville [24].

Proposition 2.4 ([1, Corollary 4.6]). Let A ⊆ Rd be finite and generic1. Then
Rad: Del(A)→ R is a generalized discrete Morse function.

1The general position condition in [1] is more restrictive than Definition 2.1, but for this claim
the latter suffices. Indeed, Proposition 2.4 is a special case of Theorem 4.6, and the chromatic

genericity in Definition 4.1 can be relaxed to the genericity in Definition 2.1 if there is only one
color (k = 0).



CHROMATIC ALPHA COMPLEXES 35

A benefit of this result is a better understanding of how the homology changes
throughout the filtration. Consider constructing the alpha complex by adding one
interval at a time in the order of their radius values. The homology of the complex
does not change when the interval contains two or more simplices, and it necessarily
changes when the interval contains only one simplex.

3. Chromatic point sets. The main concept in this section is the chromatic
alpha complex, which generalizes the bi-chromatic construction in [23] to three and
more colors. A crucial ingredient is the radius function on the chromatic Delaunay
complex, whose sublevel sets are the chromatic alpha complexes. The section follows
the logical structure of Section 2 to clearly showcase the analogies between the
mono-chromatic and the more general, chromatic settings. Indeed, we will see that
the chromatic definitions match the definitions in the previous section when we only
consider one color.

A chromatic point set is a mapping χ : A→ σ, in which A ⊆ Rd is a finite point
set, and σ is a set of colors. We usually write s = #σ − 1 and σ = {0, 1, . . . , s}.
Furthermore, we write Aj = χ−1(j) for the subset of points of a given color j ∈ σ.
We fix this notation throughout the section.

3.1. Chromatic Voronoi tessellation and chromatic Delaunay complex.
The chromatic Voronoi tessellation, Vor(χ), is the collection of Voronoi domains,
dom(a,Aχ(a)), for all points a ∈ A. In other words, Vor(χ) is the union of the
Vor(Aj), over all j ∈ σ. Differently colored Voronoi domains can have overlapping
interiors. Indeed, every point in Rd is covered by at least s+ 1 different domains
from Vor(χ), namely at least one domain for each color.

The chromatic Delaunay complex, denoted Del(χ), contains a simplex ν ⊆ A if
the common intersection of the corresponding domains is non-empty. It is isomor-
phic to the nerve of the chromatic Voronoi tessellation. A direct analogy of the
characterization of the Delaunay complex with empty spheres is the characterization
of the chromatic Delaunay complex with what we call empty stacks. A σ-stack in
Rd is a collection of s + 1 concentric (d − 1)-spheres, one for each color in σ; see
Figure 3. We drop σ from the notation if it is clear from the context. The radius of
the stack is the maximum radius of its spheres, and its center is the common center
of the spheres. We label the spheres Sj , j ∈ σ, and say the stack is empty if Sj is
empty of points in Aj = χ−1(j), for each j ∈ σ. We say the stack passes through
ν ⊆ A if Sj passes through ν ∩Aj , for each j ∈ σ.

Lemma 3.1. Let χ : A→ σ be a chromatic point set in Rd, write Aj = χ−1(j), and
let ν ⊆ A be a collection of points. Then ν ∈ Del(χ) iff there exists an empty stack
of spheres that passes through ν.

Proof. Let νj = ν ∩Aj be the j-colored points in ν, for each j ∈ σ. By Lemma 2.2,
the existence of an empty sphere, Sj , with center x that passes through νj is
equivalent to x being in the intersection of the corresponding Voronoi domains:
x ∈ ⋂a∈νj dom(a,Aj). Therefore, there exists an empty stack passing through ν

centered at x iff x ∈ ⋂a∈νj dom(a,Aj) for each j ∈ σ. This is the defining property

of ν being in Del(χ), namely that
⋂
a∈ν dom(a,Aχ(a)) is non-empty.
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Figure 3. Two empty stacks in R2 that pass through one blue point, two
green points, and one orange point forming a simplex ν ∈ Del(χ). (In fact,

the stack on the right passes through two orange points, and it also passes
through the one orange point that the left orange circle passes through.) The
set of centers of all empty stacks that pass through these four points is the

intersection of three Voronoi cells: a blue 2-cell, a green 1-cell, and an orange
2-cell. The right panel shows the smallest empty stack in this collection: its
center lies on the boundary of the intersection of Voronoi cells, which is the

reason why one of its circles passes through an extra point.

3.2. Chromatic alpha complex. Like in the mono-chromatic setting, we define
chromatic alpha complexes as sublevel sets of the radius function defined on the
chromatic Delaunay complex. We recall that the radius of a stack is the radius of
its largest sphere.

Definition 3.2. Let χ : A→ σ be a chromatic point set, and Rad: Del(χ)→ R the
radius function defined by mapping ν ∈ Del(χ) to the radius of the smallest empty
stack that passes through ν. The chromatic alpha complex of χ with radius r ∈ R is
Alfr(χ) = Rad−1[0, r].

Using the empty spheres and empty stacks characterizations (Lemmas 2.2 and
3.1), we can see a clear relation between alpha complexes and chromatic alpha
complexes. If there exists an empty (d− 1)-sphere, S, of radius r passing through
ν ⊆ A, then there also exists an empty stack of radius r passing through ν. Indeed,
we can take Sj = S for each j ∈ σ. Similarly, an empty sphere, S, that passes
through points ν ⊆ Aj is itself an empty stack when we set Si to be a sphere with
zero radius for i 6= j. However, the same simplex can have a different radius in
Del(A) and in Del(χ): the smallest empty sphere can have strictly larger radius
than the smallest empty stack passing through the same points; see Figure 4. We
formulate the above observation in a slightly more general form.

Lemma 3.3. Let χ : A→ σ be a chromatic point set in Rd, and τ ⊆ σ a subset of
the colors.

(i) Let η : σ → τ be a merging of colors. Then Alfr(η ◦ χ) ⊆ Alfr(χ) for all r.
(ii) Let χ|τ : χ−1(τ)→ τ be the restriction of χ to colors in τ . Then Alfr(χ|τ) ⊆

Alfr(χ) for all r.

In particular, Alfr(A) ⊆ Alfr(χ), and Alfr(Aj) ⊆ Alfr(χ) for every j ∈ σ, in which
Aj = χ−1(j).
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Proof. To see (i), let (Si)i∈τ be an empty stack of radius r that passes through the
points in ν ⊆ A; it witnesses ν ∈ Alfr(η ◦ χ). Then (Sη(j))j∈σ is an empty stack
of radius r that passes though the points in ν; it witnesses ν ∈ Alfr(χ). To see
(ii), let (Si)i∈τ be an empty stack of radius r that witnesses ν ∈ Alfr(χ|τ). Adding
zero-radius spheres for the colors j ∈ σ \ τ , we get an empty stack that witnesses
ν ∈ Alfr(χ).

Figure 4. An obtuse triangle with two blue points and an orange point at
the obtuse angle. The smallest empty sphere that passes through the three
points on the left has strictly larger radius than the smallest empty stack that

passes through the three points on the right. Therefore, the triangle belongs to
both, the Delaunay complex and the chromatic Delaunay complex, but it has a

different value under the two radius functions.

An important reason why the alpha complex is useful in the mono-chromatic
setting is its correspondence to the union of balls growing from the input points.
From the topological point of view, studying the growing union of balls is equivalent
to studying the growing alpha complex. In the following, we draw an analogous
connection for chromatic alpha complexes. One important distinction is that there
is more structure to be preserved in the chromatic setting: not only the topological
spaces themselves, but also how they are related to each other. For example, for
a bi-chromatic point set as in Figure 5, we study the inclusion of the union of the
blue disks into the union of all disks. We prove that we can equivalently study the
inclusions of the blue alpha complex into the chromatic alpha complex.

For a point a ∈ A in a chromatic set χ : A→ σ, we define its (chromatic) Voronoi
ball of radius r as the intersection of the ball of radius r with the Voronoi domain
within its color class:

BVr (a, χ) = BVr (a,Aχ(a)) = Br(a) ∩ dom(a,Aχ(a)).

Let ν ⊆ A be a set of points. Like in the proof of Lemma 3.1, we observe that x
is the center of an empty stack of radius r passing through ν iff x is contained in
the intersection of the Voronoi balls of radius r centered at the points in ν; that
is: x ∈ ⋂a∈ν BVr (a, χ). This implies that Alfr(χ) is isomorphic to the nerve of all

Voronoi balls BVr (a, χ), a ∈ A. Since the union of the Voronoi balls is the same as
the union of the balls, the Nerve Theorem yields the following:

Lemma 3.4. Alfr(χ) ' Alfr(A), and both are homotopy equivalent to the union of
balls,

⋃
a∈ABr(a).

Unlike the alpha complex, Alfr(A), the chromatic alpha complex, Alfr(χ), con-
tains Alfr(Aj) as a subcomplex for each color j ∈ σ. We claim that this reflects
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Figure 5. On the left : a chromatic set together with the Voronoi tessella-
tions of the blue and orange points overlaid, and one chromatic Voronoi ball

highlighted. On the right : the union of blue and the union of orange disks.

the inclusion of the union of j-colored balls into the union of all balls, which allows
us to study that inclusion on the discrete side. Since the complexes involved are
defined as nerves, we can use a version of the Nerve Theorem (e.g. Theorem B in
[2]) to show that the inclusions commute with the homotopy equivalences.

Lemma 3.5. For every color j ∈ σ and radius r, the following diagram commutes:

Alfr(χ)
⋃
a∈ABr(a)

Alfr(Aj)
⋃
a∈Aj

Br(a)

'

'

See Theorem 3.8 in Section 3.4 for a generalization of this statement and a proof.

3.3. Lifting construction. Next we recall the lifting construction in [4, 23], which
sheds light on the structure of the chromatic Delaunay complex and can be used for
its computation.

Let χ : A → σ be a chromatic set of points, with A ⊆ Rd finite and colors
σ = {0, 1, . . . , s}. To separate the colors, we use points u0, u1, . . . , us in Rs. For
convenience, we assume these points are the vertices of the standard s-simplex
embedded in Rs, but the construction would work for any affinely independent
collection of s + 1 points. Let Rd and Rs be spanned by the first d and last s
coordinate vectors of Rd+s, respectively; that is: we treat Rd and Rs as orthogonal
subspaces of Rd+s. Write Aj = χ−1(j), and set A .

j = Aj + uj for 0 ≤ j ≤ s. Then

A . = A .

0 ∪A .

1 ∪ . . . ∪A .

s is a finite set in Rd+s, and we call it the chromatic lifting
of χ. We claim that the chromatic Delaunay complex, Del(χ), is the standard
Delaunay complex, Del(A .), after identifying the lifted vertices with their original
counterparts. This gives us a straightforward way to compute Del(χ)—we lift the
points and use a standard algorithm to compute the Delaunay complex—and an
intuitive view on the structure of Del(χ); see Figures 6 and 7. The claimed equality
is easy to prove when we use the characterizations via empty stacks and empty
spheres.
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Figure 6. The chromatic lifting for points in R2 with two colors. Left: the
chromatic Delaunay complex embedded in three dimensions using the lifted

points as vertices; it is isomorphic to the Delaunay complex of the lifted points.
The triangles and tetrahedra with more than one color are left unfilled for
clarity. Right: the union of disks of radius r, for each color separately on the

two sides, and for both colors together in the middle. As defined shortly in
Section 3.4, each plank (solid cylinder) connects a disk in the middle with the
same disk on one of the sides. We show one such cylinder for each color.

Lemma 3.6. Let χ : A→ σ be a chromatic point set in Rd and A . ⊆ Rd+s be its
chromatic lifting. There exists an empty stack of s + 1 (d − 1)-spheres that pass
through the points in ν ⊆ A iff there exists an empty (d+ s− 1)-sphere that passes
through the lifted points in ν . =

{
a+ uχ(a) | a ∈ ν

}
.

Proof. There is a 1-to-1 correspondence between the stacks of concentric (d − 1)-
spheres in Rd and the (s+d−1)-spheres in Rd+s that have a non-empty intersection
with Rd + uj for each j ∈ σ. Indeed, if S is such an (s+ d− 1)-sphere, then we get
the stack by setting Sj to be the intersection of S with Rd + uj projected back to
Rd, for each j ∈ σ, and if (Sj)j∈σ is a stack, its spheres share a common center, so
we can find a sphere S whose intersection with Rd + uj is Sj + uj , for each j ∈ σ.

This correspondence implies that S is empty of points in A . and passes through
the points of ν . iff (Sj)j∈σ is empty of points in χ and passes through the points in
ν.

Lemmas 2.2, 3.1, and 3.6 imply the following result.

Corollary 3.7. Let χ : A→ σ be a chromatic point set and A . its chromatic lifting.
Then Del(χ) and Del(A .) are isomorphic, with the isomorphism defined by mapping
a ∈ A to a . = a+ uχ(a).

Remark. The lifting construction provides an interesting insight independent of
the focus of the paper. In machine learning, categorical data is often vectorized via
one-hot encoding : the j-th out of s+ 1 categories is represented by the canonical
vector ej ∈ Rs+1 with one at the j-th place and zeros everywhere else. With the
minor modification of embedding the standard s-simplex in Rs+1 instead of Rs, the
chromatic lifting can be interpreted as concatenating the spatial coordinate of each
point with the one-hot encoding of its color. Corollary 3.7 implies that endowing
this embedding with the Euclidean metric has concrete geometric meaning.
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Figure 7. The chromatic lifting for points in R1 with three colors. Left: the

chromatic Delaunay complex embedded in three dimensions using the lifted

points as vertices; it is isomorphic to the Delaunay complex of the lifted points.
The triangles and tetrahedra are left unfilled for clarity. Right: the union of

segments of length 2r, for each color separately along the three lines. Note
the barycentric subdivision of the triangle at the bottom, and the parallel lines
emanating from the midpoints of the edges and the barycenter of the triangle.

As defined shortly, each plank is a quadrangular prism that connects one of the
intervals with its projections to three of these parallel lines. We show one such
prism for each color.

3.4. Chromatic subcomplexes. The inclusion of one color into all others discussed
above, Alfr(Aj) ↪→ Alfr(χ), has two major drawbacks: it effectively uses only two
colors (j versus the rest), which is too little information to detect any of the tri-
chromatic patterns in Figure 1, and it is asymmetric by construction. To overcome
these issues, we call σ the color simplex, write Σ for the complex of faces of σ, and
for any subcomplex, Γ ⊆ Σ, define the Γ-subcomplex of the chromatic alpha complex:

Alfr(χ,Γ) = {ν ∈ Alfr(χ) | χ(ν) ∈ Γ} .

For example, if Γ consists of all subsets of size t+ 1 or less, then Alfr(χ,Γ) is the
collection of all simplices whose vertices have at most t+ 1 different colors, and we
call this the (t+ 1)-chromatic subcomplex of the alpha complex. This choice of Γ
is symmetric, as it prefers no colors over any other colors. For t = 0, Alfr(χ,Γ) is
the disjoint union of the s + 1 mono-chromatic alpha complexes, and we will see
shortly that studying the inclusion Alfr(χ,Γ) ↪→ Alfr(χ) is equivalent to studying
the natural map
[⋃

a∈A0

Br(a)
]
t
[⋃

a∈A1

Br(a)
]
t . . . t

[⋃
a∈As

Br(a)
]
−→

⋃
a∈A

Br(a),

acting as inclusion on each color. For example, this map captures the loops composed
of points of any one of the colors that are filled by points of the other colors: when
the homology functor is applied, such a loop becomes a non-trivial homology class
that maps to zero.

We need definitions to gain intuition and give meaning to Γ-subcomplexes for Γ
more general than just the vertices in the color simplex. We will make use of the
chromatic lifting defined in the previous section, and instead of growing balls around
the points, we grow what we call planks around the lifted points, which are balls in
Rd extruded into the s extra color dimensions.
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To begin, we fix a chromatic lifting of χ : A→ σ, as in Section 3.3, with points
u0, u1, . . . , us ∈ Rs. With a slight abuse of notation, we write Σ for the simplicial
complex that consists of all simplices spanned by any subset of these s+1 points, and
|Σ| for its underlying space. The barycenter of a simplex is the average of its vertices.
A chain in Σ is a nested sequence of its simplices, which gives a sequence of points
(the barycenters), and taking their convex hull, we get a simplex in the barycentric
subdivision of Σ, denoted Sd Σ; see Figure 7 where we see the barycentric subdivision
of a triangle at the bottom of the right panel. The star of uj in Sd Σ, denoted
st(j,Sd Σ), is the underlying space of all simplices in Sd Σ whose corresponding
chains in Σ contain only simplices that share uj . For example, the star of a vertex
of a barycentrically subdivided triangle is the convex quadrangle that is the union of
the two triangles spanned by the vertex, the barycenters of the two incident edges,
and the barycenter of the triangle in Σ; see Figure 7. Note that a collection of vertex
stars restricted to |Γ| have a non-empty common intersection iff their colors form a
simplex in Γ.

Figure 8. The union of bi-chromatic planks for a tri-chromatic point set in R1.
It is homotopy equivalent to the bi-chromatic subcomplex of the corresponding
chromatic alpha complex. On the left, we show the planks in the sides of the

triangular prism erected on top of the barycentrically subdivided color triangle.
On the right, the three sides of the triangular prism are unfolded into the plane,
and the planks are glued along the orange dashed lines. A similar unfolding one

dimension higher helps us to understand the situation for the 2-dimensional

data in Figure 9.

With these notions, we are ready to define the planks, which are instrumental to
relate the union of balls with the subcomplexes of the chromatic alpha complex. We
have three progressively smaller variants: the first for the entire Σ (Figure 7), the
second restricted to a subcomplex Γ ⊆ Σ (Figure 8), and the third further restricted
to within the mono-chromatic Voronoi domains:

Plankr(a, χ) = Br(a)× st(χ(a),Sd Σ), (3.1)

Plankr(a, χ,Γ) = Br(a)×
(
st(χ(a),Sd Σ) ∩ |Γ|

)
, (3.2)

PlankVr (a, χ,Γ) = BVr (a, χ)×
(
st(χ(a),Sd Σ) ∩ |Γ|

)
. (3.3)

The result we are about to prove follows from the Nerve Theorem, which has a
long history and many versions, which vary in assumptions and generality. The
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Figure 9. The union of bi-chromatic planks for a tri-chromatic point set in
R2. For clarity, only one plank per color is shown. Every blue, green; and yellow

disk is connected to its gray counterparts via a solid cylinder. By construction,

the planks are subsets of the boundary faces of a 4-dimensional triangular prism.
Similar to Figure 8, we unfold the 3-dimensional boundary so we can illustrate

the planks in R3, as shown. Observe the highlighted 2-hole in the middle: this
is a topological feature that captures a loop created by one color (blue) and
filled by each of the other two colors. This is one variant of the pattern of

type 1+2 from Figure 1.

historically first instances appeared in the papers by Leray [20], Borsuk [5], and
Weil [27]. We use a recent version [2, Thm B/3.11], which, in particular, also talks
about diagrams induced by inclusions.

Theorem 3.8. Let χ : A→ σ be a chromatic point set, and Γ ⊆ Σ a subcomplex of
the color simplex.

(1) For every radius r, the union of Γ-planks is homotopy equivalent to the Γ-
subcomplex of the chromatic alpha complex:

⋃
a∈A Plankr(a, χ,Γ) ' Alfr(χ,Γ).

(2) The homotopy equivalences commute with inclusions. Specifically, if r ≤ R and
Γ ⊆ ∆ ⊆ Σ, then the following two diagrams commute:

⋃
a∈A

PlankR(a, χ,Γ) AlfR(χ,Γ)

⋃
a∈A

Plankr(a, χ,Γ) Alfr(χ,Γ)

'

'

⋃
a∈A

Plankr(a, χ,∆) Alfr(χ,∆)

⋃
a∈A

Plankr(a, χ,Γ) Alfr(χ,Γ)

'

'

Proof. Each union of planks of the type defined in (3.2) remains unchanged if we
replace them by planks of the type defined in (3.3). We claim that for a fixed r > 0
and Γ ⊆ Σ, the nerve of the latter type of planks is isomorphic to the Γ-subcomplex
of the chromatic alpha complex:

Nerve({PlankVr (a, χ,Γ) | a ∈ A}) ∼= Alfr(χ,Γ).

Indeed, ν ⊆ A has intersecting such planks iff their Voronoi balls intersect and the
stars of the colors restricted to |Γ| intersect. As argued before Lemma 3.4, the
former happens iff ν ∈ Alfr(χ), and as mentioned earlier in this subsection, the
latter happens iff χ(ν) ∈ Γ. Together, these are the two defining conditions for
ν ∈ Alfr(χ,Γ). Provided the assumptions for the Nerve Theorem [2, Thm B] are
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satisfied, we thus have
⋃

a∈A
Plankr(a, χ,Γ) =

⋃
a∈A

PlankVr (a, χ,Γ)

' Nerve({PlankVr (a, χ,Γ) | a ∈ A}) ∼= Alfr(χ,Γ),

and these homotopy equivalences commute with inclusions. It remains to show that
the two assumptions for the Nerve Theorem [2, Thm B] are indeed satisfied: (a) the
sets are closed and convex, and (b) every non-empty intersection of sets contains a
point that is preserved in all inclusions.

The planks PlankVr (a, χ,Γ) are not necessarily convex, but we can replace each
by its convex hull in Rd+s without changing any common intersection of two or more
of them. To satisfy (b), we need a point in every non-empty common intersection
of planks that is preserved by all relevant inclusions in the claimed diagrams. For
PlankVr (a, χ,Γ) we take the point p .

a = a+ uχ(a). More generally, for a collection,

ν ⊆ A, we find the radius, r, and the point, pν , such that
⋂
a∈ν B

V
r (a, χ) = {pν},

and we set p .

ν equal to pν plus the barycenter of the simplex spanned by the aj with
j ∈ ν. Since p .

ν is the first point that appears in the common intersection of the
growing planks, p .

ν is also contained in the common intersection if we substitute
R ≥ r for r or ∆ ⊇ Γ for Γ.

A careful analysis of the proof of [2, Thm B] shows that in our case we also
get commuting homotopy equivalences for quotient spaces. Viewing the vertical
inclusions in (2) as topological pairs, the horizontal maps are homotopy equiv-
alences of pairs—that is, the homotopies preserve the subspaces. For more de-
tails see [10]. This implies that for Γ ⊆ ∆ we can equivalently study the fil-
tration of the topological pairs

(⋃
a∈A Plankr(a, χ,∆),

⋃
a∈A Plankr(a, χ,Γ)

)
and

(Alfr(χ,∆), Alfr(χ,Γ)). The same holds for the corresponding quotient spaces,
which is particularly relevant for the study of the relative persistent homology in
Section 5.

3.5. Algorithm for chromatic alpha complex. This section discusses how to
compute the chromatic alpha complex. The procedure has two parts: first the
construction of the chromatic Delaunay complex, and second the computation of the
radius function on this complex. Following Corollary 3.7, the chromatic Delaunay
complex is computed as a standard Delaunay complex of the chromatic lifting of the
input chromatic point set; see [29] for fast and widely available code and [4] for bounds
on the complexity for chromatic point sets.2 Below we describe the computation
of the radius function, and argue that for generic data (see Definition 2.1) in fixed
dimension and with a constant number of colors, the algorithm takes time linear in
the size of the chromatic Delaunay complex.

For the algorithm, it is convenient to work with the squared radius, which we
use for the remainder of this section. We fix a chromatic point set, χ : A→ σ, with
A ⊆ Rd and #σ = s + 1. Let ν ∈ Del(χ) be a simplex, τ = χ(ν) its colors, and
P =

⋂
v∈ν dom(v,Aχ(v)) the intersection of the chromatic Voronoi domains of its

vertices. Then the squared radius of the smallest empty stack that passes through

2Some implementations do not allow many points lying on the same affine subspace, and for
others it slows down the computations. An alternative is to slightly perturb the lifted points,

compute the Delaunay complex, and then only keep the down-set of the maximal simplices that
span all colors.
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the points in ν—the value of ν under the squared radius function—is the result of
convex optimization:

Rad2(ν) = min
x∈P

max
v∈ν
‖x− v‖2. (3.4)

We write the convex optimization as an algorithm that avoids the explicit construction
of P and can be implemented using exact arithmetic. For each j ∈ τ , consider
the affine subspace Ej ⊆ Rd consisting of the points x equidistant to all points
in ν with color j, and the function ej : Ej → R that maps x ∈ Ej to the squared
distance to any point of ν with color j. Observe that the intersection of these
affine subspaces, E =

⋂
j∈τ Ej , is the smallest affine subspace that contains P . The

pointwise maximum function, e : E → R defined by e(x) = maxj∈τ ej(x), is a strictly
convex function with unique minimum, y ∈ E. If y ∈ P , then e(y) = minx∈P e(x),
so Rad2(ν) = e(y). Otherwise, minx∈P e(x) is attained on the boundary of P , which
implies that Rad2(ν) is the smallest Rad2(µ) over all cofaces µ of ν in Del(χ). Note
that to query whether y ∈ P , we only need to check whether the stack centered in y
that passes through ν is empty, which is easy.

To formalize the algorithm, we write S(x, r) for the (d− 1)-sphere with radius
r and center x ∈ Rd. The algorithm visits the simplices of Del(χ) in the order of
decreasing dimension:

for p = s+ d downto 0 do

for each p-simplex ν ∈ Del(χ) do
Step 1: construct the affine spaces Ej , j ∈ χ(ν), and E =

⋂
j∈χ(ν)Ej ;

Step 2: construct ej : Ej → R, for each j ∈ χ(ν), and e : E → R;
Step 3: find the unique minimum of e, the point y ∈ E;

Step 4: if S(y,
√
ej(y)) is empty of Aj , for each j ∈ χ(ν)

then Rad(ν) = e(y)
else Rad(ν) = min{Rad(µ) | ν ⊆ µ, µ ∈ Del(χ),dimµ = p+ 1}

endif

endfor

endfor

In particular, for p = 0 the algorithm sets Rad(a) = 0 for every vertex a ∈ Del(χ).
Assume now that the chromatic lifting of the points is generic; see Definition 2.1.
Assuming constant d and s, every step takes only constant time, except Step 4,
which loops over cofaces both for checking emptiness and for determining the coface
with smallest squared radius. We will see shortly that Step 4 takes constant time in
the amortized sense.

Theorem 3.9. Let χ : A → R be a chromatic point set, with A ⊆ Rd finite and
generic, set s = dimσ, and let m be the number of simplices in Del(χ). Assuming d
and s are constants, Rad: Del(χ)→ R can be computed in O(m) time.

Proof. The body of the algorithm is executed once for each simplex ν ∈ Del(χ). It
is easy to see that Steps 1 and 2 take only constant time each. To see the same for
Step 3, we observe that y is the center of the smallest sphere that encloses all vertices
of ν and whose center lies in E. The latter condition can be enforced by reflecting
ν through E and adding its vertices to the points to be enclosed. The number of
points to be considered is at most 2(d + s + 1) = O(1), so we can compute the
smallest enclosing sphere in constant time with the miniball algorithm [28] or indeed
a brute-force algorithm that checks all possibilities. In Step 4 we loop through the
cofaces of ν, both for checking emptiness of stacks, and to find the minimum radius
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in the else-clause. There can be many such cofaces for any individual ν, but any
(p+1)-simplex µ ∈ Del(χ) is a coface of only p+2 p-simplices. Since p+2 ≤ d+s+1,
this implies that in total we run at most O

(
(d+ s+ 1) ·m

)
= O(m) tests.

4. Chromatic radius functions are generalized discrete Morse. As before,
we assume that χ : A → σ is a chromatic point set with finite A ⊆ Rd and σ =
{0, 1, . . . , s}, and we write Rad: Del(χ)→ R for the chromatic radius function. By
Definition 2.3, we call Rad a generalized discrete Morse function if every level set is
a union of disjoint maximal intervals. The purpose of this section is to prove that
Rad is indeed generalized discrete Morse, provided A satisfies a genericity condition,
which we introduce first.

4.1. Chromatic genericity. Definition 2.1 requires from a mono-chromatic set
that any p-sphere passes through at most p + 2 of its points. We strengthen this
requirement so it can be applied to the chromatic case.

Definition 4.1 (Chromatic Genericity). Call a finite set A ⊆ Rd chromatically
generic if every k + 1 concentric (d − 1)-spheres pass through at most d + k + 1
points, and their intersections with any affine p-plane pass through at most p+ k+ 1
of these points.

Letting k + 1 be the number of spheres in a stack, and m the number of points
on these spheres, we sometimes call m − (k + 1) the surplus of the configuration.
Definition 4.1 limits the surplus to d, or to p, respectively. We will use two equivalent
formulations of chromatic genericity. To formulate them, write E(B) for the maximal
affine subspace whose points are equidistant to all points in B. It is the common
intersection of all bisecting hyperplanes of any two points in B.

Lemma 4.2. Assume A ⊆ Rd is finite. Then the following two conditions are
equivalent to A being chromatically generic:

(a) if B0, B1, . . . , Bk are non-empty disjoint subsets of A, then either E = E(B0) ∩
E(B1) ∩ . . . ∩ E(Bk) is empty or the codimension of E is equal to the surplus,

namely
∑k
j=0 #Bj − (k + 1);

(b) if S0, S1, . . . , Sk are concentric spheres, Bj = Sj∩A, and cj ∈ Bj is an arbitrary
but fixed choice for 0 ≤ j ≤ k, then the vectors {b−cj | b ∈ Bj \{cj}, 0 ≤ j ≤ k}
are linearly independent.

Proof. We establish the equivalences by showing that the chromatic genericity of A
implies (a), that (a) implies (b), and that (b) implies the chromatic genericity of A.

Chromatic genericity ⇒ (a). We show the contrapositive. Let B0, B1, . . . , Bk be
non-empty disjoint subsets that violate (a), and suppose that they minimize the
surplus among all such violating collections. To violate (a), E must be non-empty
and at least one of the sets must contain more than one point. Suppose #B0 ≥ 2, let
x ∈ B0, write B′0 = B0 \{x}, and note that (a) holds for B′0, B1, . . . , Bk, by extremal

assumption. The surplus of the latter collection is
∑k
j=0 #Bj − k, which is therefore

the codimension of E′ = E(B′0)∩E(B1)∩ . . .∩E(Bk). It is also the codimension of
E, since E is contained in E′ and the codimensions differ by at most one. It follows
that the two spaces coincide. Write B′ = B′0 tB1 t . . .tBk, let H be the affine hull
of B, and set p = dimH. Let t be the smallest number for which there exist t+ 1
concentric spheres, S0, S1, . . . , St in H, passing through each of B′0, B1, . . . , Bk (a
sphere may pass through more than one subset). We have t ≤ k since we may choose
the common center of the spheres in E′. We claim #B′ ≥ p + t + 1. Assuming
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#B′ < p+ t+ 1, the codimension of E′ is less than p, so dimE′+ dimH > d, which
implies the existence of a line, L, common to H and E′. We can therefore find
indices 0 ≤ i < j ≤ t and points y ∈ Si and z ∈ Sj such that the bisector of y, z
intersects L in a point, o. Choosing the common center of the spheres at o, we thus
get only t spheres, which contradicts the choice of t. So #B′ ≥ p+ t+ 1, as claimed.
Since the constructed stack of spheres is centered at a point in E′ = E ⊆ E(B0),
the sphere passing through B′0 also passes through x. We thus have a stack of t+ 1
spheres in H that passes through more than p+ t+ 2 points, which shows that A is
not chromatically generic.

(a) ⇒ (b). Assume Sj , Bj , cj are as in (b). For each j, we write Uj = {b− cj |
b ∈ Bj \ {cj}} and note that E(Bj) is a translate of the orthogonal complement of
spanUj . Writing U = U0∪U1∪. . .∪Uk, we thus get E as a translate of the orthogonal

complement of spanU . By (a), the codimension of E is
∑k
j=0 #Bj − (k + 1), which

is therefore the dimension of spanU . But this is also the number of vectors in U ,
which implies that they are linearly independent, as required to get (b).

(b) ⇒ chromatic genericity. Let m =
∑k
j=0 #Bj . By (b), we get m − (k + 1)

linearly independent vectors in Rd. Therefore m ≤ d+ k + 1. If all m points lie in a
p-dimensional affine subspace, then the dimension of the span of the vectors is at
most p, which implies m ≤ p+ k + 1, as required for the chromatic genericity.

We call the requirement in Definition 4.1 a genericity condition, tacitly implying
that it is satisfied by almost all finite sets. We prove that this is indeed the case. In
the argument, we concatenate the coordinates of n points in Rd so we can think of
the set as a point in Rnd.

Lemma 4.3. For each positive integer, n, the family of sets of n points in Rd that
violate chromatic genericity is a finite union of sets with measure zero in Rnd.

Proof. It suffices to consider the d-dimensional condition in Definition 4.1. Indeed,
a configuration that violates the p-dimensional condition implies at least p + 2
points in an affine p-plane, and the sets that contain such p + 2 points belong to
a subset of dimension at most nd − 1 of Rnd. Consider k + 1 concentric spheres
and d + k + 2 points on these spheres in Rd. The surplus of this configuration is
d+ 1, which violates chromatic genericity. Assigning the sum of squares of the d
coordinates as a (d + 1)-st coordinate to each point, we get d + k + 2 points on
k + 1 parallel hyperplanes in Rd+1. For each hyperplane, pick one of its points and
take the difference vectors to the other points on this hyperplane. This gives a
total of (d+ k + 2)− (k + 1) = d+ 1 linearly dependent vectors in Rd+1. Writing
(xi,1, xi,2, . . . , xi,d+1) for the i-th vector, the d+ 1 vectors satisfy

det




x1,1 x1,2 . . . x1,d+1

x2,1 x2,2 . . . x2,d+1

...
...

. . .
...

xd+1,1 xd+1,2 . . . xd+1,d+1


 = 0.

This is a polynomial in the coordinates of Rnd that is not everywhere zero. Hence,
its zero-set is a subspace of dimension at most nd− 1.

We have such a polynomial for any d+ k + 2 points and their partition into k + 1
sets. This is a finite collection as k is bounded by n. For a set of n points in Rd to
be chromatically generic, it suffices to avoid the resulting finite number of zero-sets,
each of dimension at most nd− 1, which implies Lebesgue measure zero in Rnd.
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4.2. Convex optimization. The approach mimics the proof in [1, Section 4] that
the radius function on the Delaunay complex of a mono-chromatic point set is
generalized discrete Morse. As before, χ : A→ σ is a chromatic set of finitely many
points with s+ 1 colors in Rd. Given a collection of points, ν ∈ Del(χ), we define
the smallest empty circumstack as the solution to an optimization problem with
variables z ∈ Rd for the center of the stack, and r = (r0, r1, . . . , rs) for the radii of
the spheres in the stack:

minimize
z,r

max{r0, r1, . . . , rs},

subject to ‖x− z‖ = rχ(x) for x ∈ ν,
‖x− z‖ ≥ rχ(x) for x ∈ A \ ν.

We want to turn this into a differentiable convex optimization problem. Since
the maximum function is not differentiable, we introduce a new variable, b. The
constraints need to be either inequalities, g ≤ 0, for convex differentiable g, or
equalities or inequalities, for affine g. We switch to squared distances and radii so
that gx(z) = ‖x− z‖2−r2χ(x) is differentiable and strictly convex, but the inequalities

are in the wrong direction. We substitute new variables, a = (a0, a1, . . . , as), for
the radii, constrain b to be smaller than or equal to all ai, and get an equivalent
optimization problem, whose constraints are affine with respect to the new variables:

aj = ‖z‖2 − r2j for all j = 0, 1, . . . , s,

gx(z, a) = ‖x− z‖2 − r2χ(x) = ‖x‖2 − 2〈x, z〉+ aχ(x).

For any ν ∈ Del(χ), we thus get the following differentiable convex optimization
problem, (Pν), in which we write hj(a, b) = b− aj :

minimize
z,a,b

f(z, b) = ‖z‖2 − b,

subject to hj(a, b) ≤ 0 for j = 0, 1, . . . , s,

gx(z, a) = 0 for x ∈ ν,
gx(z, a) ≥ 0 for x ∈ A \ ν.

We formulate the task this way in order to make use of duality, which is a powerful
tool in convex optimization [6, Chapter 5.2]. The Lagrange dual problem of (Pν),
denoted (Dν) and with variables λ = (λx)x∈A and µ = (µj)j∈σ, is the following:

maximize
λ,µ

G(λ, µ) = inf
z,a,b

f(z, b) +
∑

x∈A
λxgx(z, a) +

∑
j∈σ

µjhj(a, b),

subject to λx ≤ 0 for x ∈ A \ ν,
µj ≥ 0 for j ∈ σ.

Because the sums in (Dν) are both non-positive, the value of the dual problem
for a feasible solution is always smaller than or equal to the value of the primal
problem for any of its feasible solutions. This is in particular true for the optimal
values, and the difference between those is referred to as the optimal duality gap.
Under the chromatic genericity conditions of Definition 4.1, the gap for problem
(Pν) is guaranteed to be zero and attained by some z, a, b, λ, µ. This is because (Pν)
is convex and satisfies the Slater’s condition [6, Section 5.2.3], which states that
there exists a feasible solution with all inequalities strict. For (Pν), this translates
to the claim that if there exists an empty circumstack of ν, then there also exists
one that passes through no points from A \ ν. This reformulation is implied by
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Lemma 4.2 (a). Indeed, if spaces of equidistant points intersect generically, then so
do Voronoi cells, and the desired stack can be centered at any point in the interior
of
⋂
v∈ν dom(v,Aχ(v)).

Since (Pν) is strictly convex as well as differentiable, points z, a, b, λ, µ are primal
and dual optima iff they satisfy the Karush–Kuhn–Tucker (KKT) conditions [6,
Section 5.5.3]:

z, a, b is primal feasible, and λ, µ is dual feasible, (4.1)

λx · gx(z, a) = 0 for all x ∈ A, and µj · hj(a, b) = 0 for all j ∈ σ, (4.2)

∇f(z, b) +
∑

x∈A
λx∇gx(z, a) +

∑
j∈σ

µj∇hj(a, b) = 0. (4.3)

Note that the second condition implies that λx 6= 0 only if gx(z, a) = 0, i.e., the
stack passes through x. Similarly, µj 6= 0 only if the j-colored sphere has maximum
radius among the spheres on the stack. Next, we give the gradients at point (z, a, b)
needed in the last condition:

∇f = (2z; 0, . . . , 0;−1),

∇gx = (−2x; 0, . . . , 0, 1, 0, . . . , 0; 0) with 1 at the position corresponding to aχ(x),

∇hj = (0; 0, . . . , 0,−1, 0, . . . , 0; 1) with −1 at the position corresponding to aj .

Putting all the above observations together—the existence of zero gap solutions, the
KKT conditions, and the gradients—we get the following:

Lemma 4.4. Let χ : A→ σ, with A ⊆ Rd chromatically generic, and ν ∈ Del(χ).
Let z, a, b describe an empty circumstack of ν, and let η ⊇ ν contain all points of
A that lie on this stack. Then this is the smallest empty circumstack of ν iff there
exist λx for x ∈ A and µj for j ∈ σ such that:
∑

x∈η
λxx = z, (4.4)

∑
x∈ηj

λx = µj, in which ηj = η ∩ χ−1(j), (4.5)

∑
j∈σ

µj = 1, (4.6)

λx ≤ 0 for x ∈ A \ ν, and λx = 0 if x ∈ A \ η, (4.7)

µj ≥ 0 for all j ∈ σ, and µj = 0 if the j-th sphere does not have maximum radius.
(4.8)

Proof. We argue the five conditions in reverse order, from (4.8) to (4.4). The
inequality in (4.8) just rewrites the second condition in (Dν), and the strengthening
equality is implied by the second slackness condition in (4.2). Similarly, the inequality
in (4.7) just rewrites the first condition in (Dν), and the strengthening equality is
implied by the first slackness condition in (4.2). For the remaining three conditions,
we plug the gradients into (4.3):

(2z; 0, . . . , 0;−1) +
∑

x∈A
λx(−2x; 0, . . . , 1, . . . , 0; 0)

+
∑

j∈σ
µj(0; 0, . . . ,−1, . . . , 0; 1) = 0.

Comparing the last coordinates, we get (4.6), and comparing the coordinates that
correspond to color j, we get (4.5). Combining (4.5) and (4.6), we get

∑
x∈A λx =∑

x∈η λx = 1 because λx = 0 if x ∈ A \ η. Now comparing the first coordinates of

the gradients, we get (4.4).
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Since (4.5) and (4.6) imply
∑
x∈η λx = 1, the dual solution expresses the center

of the stack as an affine combination of the points on the spheres in this stack;
see (4.4). It pays to unpack this interpretation by distinguishing the spheres with
maximum radius from the others. Let σ′ ⊆ σ be the colors whose spheres have
maximum radius and write σ′′ = σ \ σ′. For each i ∈ σ′′, we have µi = 0, so the sum
of the corresponding λx vanishes, which suggests we interpret the corresponding
combination as a vector:

∑
x∈ηi λxx =

∑
x∈ηi λx(x − y), in which y = y(i) is an

arbitrary but fixed point in ηi. For each j ∈ σ′, the corresponding combination of
the points is

∑
x∈ηj λxx. With this, we can rewrite (4.4) as

z =
∑

j∈σ′

∑

x∈ηj

λxx+
∑

i∈σ′′

∑

x∈ηi

λx(x− y(i)).

The λx in the first sum add up to 1, so we can interpret this first sum as an affine
combination, while we think of the second sum as a vector that moves us from this
affine combination to the center of the smallest empty circumstack.

Remark. Following the terminology in [1], we could refer to the vertices with
λx > 0 as front and the vertices with λx ≤ 0 as back, noting that the latter can be
removed without affecting the radius.

4.3. Proof of generalized discrete Morse property. The crucial insight that
turns the dual solution into a proof that the chromatic radius function is generalized
Morse is the following: when we remove a point x from ν, this only affects Condition
(4.7) in Lemma 4.4. Therefore, if λx ≤ 0, then the smallest empty circumstack of ν is
still the smallest empty circumstack of ν \ {x}. The idea is that we remove all points
from ν with non-positive coefficient and thus obtain the minimum of the interval
that contains ν. For this, it is important that we identify the points uniquely, but
this is guaranteed by the chromatic genericity of the points, which ascertains that
the optimal dual solution is unique.

Lemma 4.5. Let χ : A→ σ be a chromatic point set in Rd, and let z, a, b describe
an empty stack that passes through the points in η ⊆ A. If A is chromatically generic,
then there exists at most one set of parameters λx and µj, with x ∈ A and j ∈ σ,
that satisfies the conditions of Lemma 4.4.

Proof. By Conditions (4.7) and (4.8), we have λx = 0 if x ∈ A \ η and µj = 0 if
j ∈ σ′′, in which we recall that σ = σ′ t σ′′ and σ′ are the colors whose spheres have
maximum radius. It thus suffices to show that the linear relation (4.3) restricted to
points x ∈ η and colors j ∈ σ′,

∇f(z, b) +
∑

x∈η
λx∇gx(z, a) +

∑
j∈σ′

µj∇hj(a, b) = 0,

has at most one solution. We do this by showing that the ∇gx and ∇hj are
linearly independent. Writing these vectors as the columns of a matrix, we perform
elementary column operations to make it obvious that the columns are linearly
independent. First simplify the notation by assuming σ′ = {0, 1, . . . , k}, and replace
∇hj by ∇hj −∇h0, for 1 ≤ j ≤ k. The resulting k vectors are the respective first
columns of blocks 1 to k of the matrix in Figure 10. Furthermore, we replace ∇gx
by ∇gx +∇hj −∇h0 for every x ∈ ηj and 1 ≤ j ≤ k, which effectively moves the 1
in row d+ j + 1 to row d+ 1. Recall that the first d coordinates of ∇gx are those
of −2x. We may replace them by the coordinates of x without affecting the linear
independence of the vectors. Finally, choose an arbitrary but fixed c0 ∈ η0, and
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


block 0 block 1 block k block k + 1
1, 2, . . . , d 0 c0 x− c0 . . . 0 x− c0 . . . . . . 0 x− c0 . . . ck+1 x− ck+1 . . . . . .

d+ 1 −1 1 1 . . . 1 . . .
d+ 2 −1 . . . . . .
...

...
...

d+ k . . . −1 . . .
d+ k + 1 . . . 1 . . .

...
...

...
d+ s+ 2 1 . . . . . .




Figure 10. The columns in this matrix are the gradient vectors after com-

bining them as explained in the proof of Lemma 4.5. Zero entries are left blank.

There are s + 1 blocks of columns, one for each color. The respective first

columns of the first k + 1 blocks contain ∇h0 and ∇hj −∇h0, for 1 ≤ j ≤ k.

The points of colors 0 to k all lie on the same sphere, and we get vectors by

subtracting the same point, c0, from each such point. For each color j ≥ k + 1,

we get vectors from the points in block j by subtracting an arbitrary but fixed

point cj ∈ Bj .

replace ∇gx by ∇gx −∇gc0 , for all x 6= c0 in ηj with 0 ≤ j ≤ k. Similarly, for each
other color j, with k + 1 ≤ j ≤ s, choose an arbitrary but fixed point, cj ∈ ηj , and
replace ∇gx by ∇gx −∇gcj , for each x ∈ ηj \ {cj}; see the first row of the matrix in
Figure 10.

It is now easy to see that the columns in the matrix are linearly independent. To
begin, collect all columns that start with x− cj . Their topmost d positions contain
the vectors considered and found linearly independent in Lemma 4.2 (b). All the
remaining columns have their unique pivots in the s+ 2 rows below the top d rows,
so adding them preserves the linear independence.

Guaranteeing uniqueness of the dual solution is, indeed, necessary to have the
simplices organized in intervals. See Figure 11 for an example of points that fail to
be chromatically generic whose radius function is not generalized discrete Morse.
The common center of the two circles is the point z, which can be expressed as
an affine combination satisfying conditions in Lemma 4.4 in more than one way.
We need λa + λb = 1 and λc + λd = 0. We can express z as a combination of a, b,
and not use c, d at all, we can start at a combination of a, b to the left of a and
then move to z along a positive multiple of the vector d− c, or we can start at a
combination of a, b to the right of b and move to z along a negative multiple of
d− c. This leads to (λa, λb, λc, λd) having signatures (+,+, 0, 0), (+,−,−,+), and
(−,+,+,−), respectively. As explained in the caption of Figure 11, this ambiguity
prevents the formation of intervals.

We are now ready to argue that the radius function on the chromatic Delaunay
complex is generalized discrete Morse, provided the points are chromatically generic.
To this end, we construct the interval that contains a given simplex, ν, in the
Delaunay complex of χ : A→ σ. Starting with the smallest empty circumstack of ν,
we add a sphere for every color that is not yet represented and passes through a
point at distance at most the radius of the stack from its center. Specifically, we add
the unique sphere that shares the center with the other spheres and passes through
the closest point of that color. Call this the augmented smallest empty circumstack
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z
a b

c d

Figure 11. An example showing that chromatic genericity is needed for

the radius function to be generalized discrete Morse. Two blue points, a, b,

and two orange points, c, d, share a common bisector and therefore violate

the chromatic genericity condition in Definition 4.1. Indeed, the four points

also lie on a common circle. The two shown circles belong to the smallest

empty circumstack of the simplex abcd. This stack is still the smallest empty

circumstack for the edges ab, ad, and bc, but not of any single vertex. Hence,

the set of simplices that share the radius with abcd does not have a unique

minimum and is therefore not an interval.

of ν, and write νmax for the points its spheres pass through. This augmented stack
is the smallest empty circumstack of νmax. By Lemma 4.5, there is a unique dual
solution, λ, µ. This dual solution assigns a coefficient λx to each point x ∈ A, and we
write νmin for the points with λx > 0. By construction, ν ⊆ νmax, and by Condition
(4.7) in Lemma 4.4, νmin ⊆ ν.

Theorem 4.6. Let A ⊆ Rd be chromatically generic and χ : A → σ a chromatic
point set. Then the chromatic radius function, Rad: Del(χ) → R, is generalized
discrete Morse.

Proof. Given ν ∈ Del(χ), we show that the simplices ν′ that satisfy νmin ⊆ ν′ ⊆ νmax

are the unique interval of Rad that contains ν. Let λ, µ be the parameters of the
dual solution to the smallest empty circumstack of νmax. By Lemma 4.5, λ and
µ are unique, and by Lemma 4.4, we get the same dual solution of every ν′ that
satisfies νmin ⊆ ν′ ⊆ νmax. This implies Rad(ν′) = Rad(ν) for every such ν′.

Next we show that Rad(ν′′) < Rad(ν) for every ν′′ ⊆ νmax that does not contain
νmin. Consider the smallest empty circumstack of ν′′, and let λ′′, µ′′ be the dual
solution. By Lemma 4.4, we get λ′′x ≤ 0 for every x ∈ νmin \ ν′′, but we have
λx > 0 by construction of νmin. By Lemma 4.5, this implies that the smallest
empty circumstack of ν′′ is different from that of ν. Since the two smallest empty
circumstacks are different, they have different centers and, by strict convexity,
different radii, so Rad(ν′′) < Rad(ν).

It remains to show that Rad(ν′′′) > Rad(ν) for every ν′′′ ⊇ νmin that is not
contained in νmax. The points y ∈ ν′′′ \ νmax do not lie on the smallest empty
circumstack of νmax, which implies that the smallest empty circumstack of ν′′′ is
different from that of ν. Since ν′′′ contains νmin, the stack of ν′′′ must therefore
be larger than that of ν. As before, the smallest empty circumstacks are different,
which implies they have different centers and radii, so Rad(ν′′′) > Rad(ν).
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Remark. The smallest empty circumstack of a maximum, νmax, is also the small-
est circumstack of νmax (without enforcing emptiness). This is evident from the
formulation as an optimization problem: all constaints gx ≥ 0 are inactive so all
corresponding λx vanish. If we remove these constraints, the same parameters
z, a, b, λ, µ still satisfy the KKT conditions and therefore describe the same optimal
solution.

Remark. Given a chromatically generic A ⊆ Rd, we may compare the Delaunay
complexes and their radius functions in the chromatic and the mono-chromatic cases.
As stated in Lemma 3.4, the sublevel sets at matching thresholds have the same
homotopy type. Since the type changes whenever we add a critical simplex—which
is characterized by νmin = νmax—this implies that the two radius functions have the
same critical values. The optimization perspective reveals that the critical values
belong to the same critical simplices. Indeed, the smallest empty circumstack of
a chromatic critical simplex, ν, is in fact a single circumsphere: if νmax = νmin,
then its dual solution has λx > 0 for all x ∈ ν, so µj > 0 for all j ∈ χ(ν), and all
spheres share the same, maximum radius. Since the chromatic radius is bounded
from above by the mono-chromatic radius, both agree on ν. To see that ν is also
critical in the mono-chromatic case, note that problem (Pν), but with inequalities
hj ≤ 0 changed to equalities, has the mono-chromatic radius as the optimum. The
only change in the dual problem is that we lose inequalities on µj . Since Lemma 4.5
guarantees uniqueness regardless of the inequalities, this implies that λx > 0 also
for the modified dual problem, so ν is critical also in the mono-chromatic case.

5. Persistent homology of chromatic alpha complexes. In this section, we
review the background needed to turn the chromatic alpha complexes into persistence
diagrams, and we advocate the use of six such diagrams, which we refer to as a
6-pack. In addition, we discuss the relations between the diagrams in a 6-pack,
as well as relations between different 6-packs arising from different choices of the
subcomplex.

5.1. Background: Persistent homology. The goal of this subsection is to
introduce the framework of persistent homology [12], together with its kernel, image,
and cokernel generalizations [8]. We keep the formalism to a minimum by limiting
ourselves to simplicial complexes and Z/2Z coefficients.

Homology with Z/2Z coefficients. Loosely speaking, homology is an algebraic tool
that defines and counts holes in a shape. Given a simplicial complex, K, a p-chain
is a subset of p-simplices. The sum of two p-chains is the symmetric difference
of the two sets: if a p-simplex belongs to both chains, the two copies erase each
other, as 1 + 1 = 0 in modulo-2 arithmetic. The boundary of a p-simplex is a set
of (p− 1)-dimensional faces, which is a (p− 1)-chain. The p-chains with the sum
operation form a group, Cp(K), and the boundary operator, ∂p : Cp(K)→ Cp−1(K),
maps a p-chain to the sum of its simplices’ boundaries. A p-cycle is a p-chain with
empty boundary, a filling of this p-cycle is a (p+ 1)-chain whose boundary is the
p-cycle, and a p-boundary is a p-cycle for which there exits a filling. The p-boundaries
and the p-cycles form groups by themselves, and since every p-boundary is a p-cycle,
and every p-cycle is a p-chain, we get three nested groups: Bp(K) ⊆ Zp(K) ⊆ Cp(K).
Two p-cycles are homologous if their sum has a filling or, equivalently, adding a p-
boundary to one p-cycle gives the other p-cycle. Being homologous is an equivalence
relation, whose equivalence classes are the elements of the p-th homology group:
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Hp(K) = Zp(K)/Bp(K). All mentioned groups are vector spaces, so the ranks are
their dimensions. Of particular importance is the p-th Betti number of K, which is
the rank of the p-th homology group: rankHp(K) = rankZp(K)− rankBp(K).

Let L be a subcomplex of K. Relative homology describes the connectivity of the
topological pair (K,L), which geometrically represents K with the subspace L identi-
fied as a single point. The chain groups are the quotients Cp(K,L) = Cp(K)

/
Cp(L).

Cycle and boundary subgroups are defined as before and, in particular, a relative
chain is a relative cycle if its boundary lies in L. Their quotients are the relative
homology groups of the pair, denoted Hp(K,L). A convenient algorithm to compute
Hp(K,L) reduces the boundary matrix of K from which all rows and columns that
correspond to simplices in L are purged. For the spaces considered here, relative
homology of a pair is isomorphic to the homology of the quotient space K

/
L. The

homology groups and their relative cousins are related by the following long exact
sequence:

. . .→ Hp(L)→ Hp(K)→ Hp(K,L)→ Hp−1(L)→ . . . (5.1)

A well known property of long exact sequences is that the alternating sum of
dimensions of the vector spaces vanishes.

Lemma 5.1. Let L ⊆ K be simplicial complexes. Then
∑

p∈Z
(−1)p[rankHp(L)− rankHp(K) + rankHp(K,L)] = 0.

Proof. By definition of exactness, the rank of each homology group in (5.1) can be
written as the sum of two non-negative integers such that it shares one with the
preceding group and the other with the succeeding group along the sequence. Since
only finitely many groups have non-zero ranks, this implies that the alternating sum
of ranks vanishes.

Persistent homology. In the following, let f : K → R be monotonic, with values
r1 < r2 < . . . < rn, and let Ki = f−1(−∞, ri] be its i-th sublevel set. Applying the
p-th homology functor to ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn, we get a sequence of vector
spaces:

Hp(K0)→ . . .→ Hp(Ki−1)→ Hp(Ki)→ . . .→ Hp(Kj)→ . . .→ Hp(Kn).

There is one such sequence for each dimension, p. The inclusions Ki ⊆ Kj induce

maps fji : Hp(Ki) → Hp(Kj) for all 0 ≤ i ≤ j ≤ n. This sequence is called a
persistence module. It can be written as a direct sum of indecomposable modules
of the form . . .→ 0→ k→ . . .→ k→ 0→ . . ., where k = Z/2Z, all maps between
these 1-dimensional vector spaces are identities, and all others are zero maps. Each
indecomposable module has a concrete interpretation, namely a birth followed by
a death of a homology class. Specifically, we have such an indecomposable module
from position i to position j − 1 if

• there is a class, γ ∈ Hp(Ki) that does not belong to the image of fii−1, and

• fj−1i (γ) does not belong to the image of fj−1i−1 , but fji (γ) belongs to the image

of fji−1.

We say γ is born at Ki and dies entering Kj . We record this information with
the point (f(ri), f(rj)), noting that the second coordinate is ∞ if the class is born
but never dies. The resulting multi-set of points in the extended plane is the p-th
persistence diagram of f , denoted Dgmp(f). Sometimes, we drop the index and
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write Dgm(f) for the disjoint union of the Dgmp(f) over all dimensions, p. If L is a
subcomplex of K, we get a filtration, Li, by restricting f to L. The inclusions of
the pairs (K0, L0) ⊆ (K1, L1) ⊆ . . . ⊆ (Kn, Ln) give rise to a sequence of relative
homology groups,

Hp(K0, L0)→ . . .→ Hp(Ki−1, Li−1)→ Hp(Ki, Li)→ . . .→ Hp(Kn, Ln).

Applying the above definitions to this sequence yields the p-th relative persistent
diagram.

An important property of the persistence diagram is its stability. Specifically, the
bottleneck distance between the diagrams of f, g : K → R is bounded from above by
the L∞-distance between the two maps:

W∞(Dgmp(f),Dgmp(g)) ≤ ‖f − g‖∞;

see [7]. The persistence of a point in the persistence diagram is the vertical distance to
the diagonal, |f(rj)−f(ri)|, and the 1-norm of the diagram is the sum of persistences
of its points, denoted ‖Dgm(f)‖1. To cope with points at infinity, we use a cut-off,
C, which we effectively substitute for ∞ (and for birth- and death-values larger
than the threshold). This gives finite 1-norms and preserves relationships implied
by exact sequences, as expressed in Theorem 5.3 below.

Kernels, images, and cokernels. Let L ⊆ K be simplicial complexes, fK : K → R
monotonic, and fL : L→ R the restriction of fK to L. Taking sublevel sets, we get
two parallel persistence modules and maps from one module to the other:

Hp(K0) → . . . → Hp(Ki) → Hp(Ki+1) → . . . → Hp(Kn)
↑ . . . ↑ ↑ . . . ↑

Hp(L0) → . . . → Hp(Li) → Hp(Li+1) → . . . → Hp(Ln).

Write κi : Hp(Li)→ Hp(Ki) for the vertical maps, which are induced by the inclusions
Li ⊆ Ki, for 0 ≤ i ≤ n. These maps have kernels, images, and cokernels, which form
persistence modules of their own:

kerp κ0 → . . . → kerp κi → kerp κi+1 → . . . → kerp κn,
imp κ0 → . . . → imp κi → imp κi+1 → . . . → imp κn,
cokp κ0 → . . . → cokp κi → cokp κi+1 → . . . → cokp κn.

These persistence modules were introduced and studied in [8]. Following the no-
tation used in that paper, we write Dgm(ker fL → fK), Dgm(im fL → fK), and
Dgm(cok fL → fK) for the corresponding persistence diagrams. These diagrams
are also stable under perturbations of the monotonic function, and they can be
computed efficiently. We omit details and refer to [8], in particular for the matrix
reduction algorithms, which we have implemented [11] to study the meaning of these
derived persistence diagrams for chromatic point sets.

5.2. 6-pack of persistent diagrams. The main new concept in this section is
a collection of six related persistence diagrams, which we use to quantify the way
different point sets mingle. We call this collection a 6-pack. A 6-pack can be defined
for any pair of topological spaces L ⊆ K with a filtration on K. We explain the
construction on a concrete example illustrated in Figure 12. Let K = Del(χ) be the
chromatic Delaunay complex of the portrayed chromatic set, and let L ⊆ K be the
blue subcomplex, consisting of those simplices in K that only have blue vertices.
Let fK : K → R be the chromatic radius function, and write fL and fK,L for the
restrictions of fK to L and K \ L. The radius function and its restrictions give rise
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Figure 12. A bi-chromatic point set on the left, and a tri-chromatic point
set on the right. The dotted line indicates the separation of green from orange
points that form the background for the blue circle.

to three persistence modules, and we get three additional persistence modules for the
kernel, the image, and the cokernel of the map on homology induced by the inclusion
L ⊆ K; see Section 5.1. The persistence diagrams in the 6-pack are arranged as in
Table 1, in a manner that lends itself to comparing the information between them.

kernel: relative: cokernel:
Dgm(ker fL → fK) Dgm(fK,L) Dgm(cok fL → fK)

domain: image: codomain:
Dgm(fL) Dgm(im fL → fK) Dgm(fK)

Table 1. The arrangement of the persistence diagrams in the 6-pack for the
pair L ⊆ K in two rows and three columns. Read the six positions in a circle so
that the domain lies between the kernel and the image, the image lies between

the domain and the codomain, etc.

Figure 13 displays the 6-pack for the point set in the left panel of Figure 12 with
the blue subcomplex chosen as L. Not surprisingly, the circle of blue points gives
rise to a persistent 1-cycle in L captured in the diagram of the domain. At the time
of its birth, this 1-cycle includes into a non-trivial 1-cycle in K, so we get a point
with the same birth-coordinate in the diagram of the image. When the circle is filled
by orange disks, it becomes a trivial 1-cycle in K, which is marked by its death
in the image and the simultaneous birth in the kernel. Eventually, the blue circle
is filled by blue disks, so it dies in the domain and simultaneously in the kernel.
To summarize, the point (a, c) in the diagram of the domain splits into two points,
(a, b) in the diagram of the image, and (b, c) in the diagram of the kernel. While
the split into two like this is a common phenomenon, not all points split in this
manner; see the relations in the next subsection. The point (b, c) can also be seen
one dimension higher in the relative persistence diagram of the pair. Indeed, there is
a non-bounding 2-cycle in the quotient space once the blue circle is filled by orange
disks. Similarly, the point (a, b) can also be found in the diagram of the codomain.
Both occurrences of (a, b) correspond to the 1-cycle representing the blue circle in
homology, which explains why the point is missing in the diagram of the cokernel.

Note that other natural choices of L are the orange subcomplex or the disjoint
union of the blue and orange subcomplexes, which is a choice that is symmetric with
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#pts 1-norm, C=1
dim 0 13 0.187
dim 1 1 0.272
total 14 0.4590.0

0.1
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kernel

0
1

#pts 1-norm, C=1
dim 0 40 1.598
dim 1 53 0.493
dim 2 1 0.272
total 94 2.362

relative

0
1
2

#pts 1-norm, C=1
dim 0 40 1.598
dim 1 46 0.305
total 86 1.903

cokernel

0
1

#pts 1-norm, C=1
dim 0 20 2.227
dim 1 1 0.339
total 21 2.566
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total 106 4.009
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Figure 13. The 6-pack for the bi-chromatic point set in the left panel of
Figure 12. The domain, L, is the blue subcomplex of the codomain, K, which
is the 3-dimensional chromatic Delaunay complex of the blue and orange points.

respect to the colors. For two colors, these are the three possible Γ-subcomplexes
defined in Section 3.4. We now revisit some of these observations in a more general
setting, where the pair of topological spaces, L ⊆ K, is not necessarily formed by
chromatic complexes.

5.3. Relations between diagrams in a 6-pack. The inclusion of sublevel sets
Li ⊆ Ki induces a map on homology κi : H(Li)→ H(Ki). This map has a component
in each dimension, p, and we write kerp κi, imp κi, cokp κi for the kernel, image,
cokernel of κi in dimension p.

Lemma 5.2. Let Li ⊆ Ki be simplicial complexes and κi : H(Li) → H(Ki) the
induced map on homology. For each dimension, p, there are short exact sequences

0→ kerp κi → Hp(Li)→ imp κi → 0, (5.2)

0→ imp κi → Hp(Ki)→ cokp κi → 0, (5.3)

0→ cokp κi → Hp(Ki, Li)→ kerp−1 κi → 0. (5.4)

Proof. The first two exact sequences are obvious from the definitions and the
isomorphism theorem. To see the third exact sequence, we recall the long exact
sequence of the pair; see Equation (5.1). Working with field coefficients, all homology
groups are vector spaces and thus split. In particular, Hp(Li) ' kerp κi ⊕ imp κi, in
which kerp κi and imp κi are the images of the incoming and outgoing maps. We
can therefore substitute kerp κi → 0 → imp κi for Hp(Li). By the same token, we
substitute imp κi → 0→ cokp κi for Hp(Ki), and we remove 0→ imp κi → imp κi to
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get

. . .→ kerp κi → 0→ cokp κi → Hp(Ki, Li)→ kerp−1 κi → 0→ cokp−1 κi → . . . ,

which contains the required third short exact sequence.

It follows that the ranks of kerp κi and imp κi add up to the rank of Hp(Li), etc.
This implies relations between the 1-norms of corresponding persistence diagrams.

Theorem 5.3. Let L ⊆ K be simplicial complexes, fK : K → R monotonic, and
fL, fK,L the restrictions of fK to L and K \ L. For each dimension, p, and any
fixed cut-off for the 1-norms, C > 0,

‖Dgmp(fL)‖
1

= ‖Dgmp(ker fL → fK)‖
1

+ ‖Dgmp(im fL → fK)‖
1
, (5.5)

‖Dgmp(fK)‖
1

= ‖Dgmp(im fL → fK)‖
1

+ ‖Dgmp(cok fL → fK)‖
1
, (5.6)

‖Dgmp(fK,L)‖
1

= ‖Dgmp(cok fL → fK)‖
1

+ ‖Dgmp−1(ker fL → fK)‖
1
. (5.7)

Proof. We prove (5.5). We write 0 ≤ r1, r2, . . . , rn for the values of fK smaller than
C. In addition, set r0 = −∞ and use the cut-off rn+1 = C for the 1-norms. Letting
Li = fL

−1[0, ri], note that Li = fL
−1[0, r] for all ri ≤ r < ri+1, and hence the

ranks of the various groups are constant between two contiguous values. We can
therefore write the 1-norm of Dgmp(fL) as a sum of n contributions, and similar for
the 1-norms of the kernel and image diagrams:

‖Dgmp(fL)‖
1

=
∑n

i=0
(ri+1 − ri) rankHp(Li),

‖Dgmp(ker fL → fK)‖
1

=
∑n

i=0
(ri+1 − ri) rank kerp κi,

‖Dgmp(im fL → fK)‖
1

=
∑n

i=0
(ri+1 − ri) rank imp κi.

We thus get (5.5) from (5.2). With the same argument applied to Ki, image, and
cokernel, we get (5.6) from (5.3), and applied to (Ki, Li), cokernel, and kernel, we
get (5.7) from (5.4).

We note that similar equations do not hold for the 0-norm, which counts the
points in the diagrams. Putting the equations in Theorem 5.3 together yields a
vanishing alternating sum:

∑
p∈Z

(−1)p
[
‖Dgmp(fL)‖

1
− ‖Dgmp(fK)‖

1
+ ‖Dgmp(fK,L)‖

1

]
= 0.

While there are relations between the diagrams in a 6-pack, no single diagram is
necessarily determined by the others. Figure 14 shows one such example.

Further relations among the diagrams in a 6-pack are suggested by the case-
by-case analysis for the simultaneous occurrence of births and deaths in various
groups provided in [8]. For example, consider the triple ker κi, H(Li), im κi. At a
given radius, the rank of each group can change by at most one. The short exact
sequence (5.2) reduces the twenty-six non-trivial combinations of changes down to
only six. Out of those, [8] gives examples for five of them and shows that the sixth,
death-nothing-birth, cannot occur because a death in ker κi always implies a death
in H(Li). This is an additional relation, which is not implied directly by (5.2). The
same case is excluded for the triple in (5.3). Analogously, one can show that the
case death-nothing-birth is excluded for the triple cokp κi, Hp(Ki, Li), kerp−1 κi.
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kernel0

codomain1

kernel1

relative2

cokernel1

K

L

relative1

image1

domain1

Figure 14. Example showing that five diagrams do not imply the sixth. The
two filtrations differ by a single 2-dimensional cell added in the respective fourth
steps of the filtrations. Correspondingly, five of the 1-dimensional persistence

diagrams (shown as barcodes) are the same, while the highlighted diagrams of
the codomain differ on the two sides.

5.4. Relations between 6-packs of a triplet. The framework described so far
is amenable to a pair of complexes L ⊆ K, filtered by a monotonic function. This
section addresses the next simplest case: when we have a sequence of three nested
complexes, M ⊆ L ⊆ K, which gives rise to four long exact sequences:

. . .→ Hp(L)→ Hp(K)→ Hp(K,L)→ Hp−1(L)→ . . . , (5.8)

. . .→ Hp(M)→ Hp(K)→ Hp(K,M)→ Hp−1(M)→ . . . , (5.9)

. . .→ Hp(M)→ Hp(L)→ Hp(L,M)→ Hp−1(M)→ . . . , (5.10)

. . .→ Hp(L,M)→ Hp(K,M)→ Hp(K,L)→ Hp−1(L,M)→ . . . . (5.11)

To shed light on how they relate to each other, we draw them as sine-like curves,

Hp−1(K,L)

Hp(M)

Hp(L)

Hp(L,M)

Hp(K,M)

Hp(K) Hp(K,L) Hp−1(L,M)

Hp−1(K,M)Hp−1(L)

Hp−1(M) Hp−1(K)

Figure 15. The four exact sequences for three complexes drawn along sine-

like curves in the plane. After each half-period, the dimension of the homology
group drops by one.

each directed from left to right, with the homology groups sitting at the crossings
between the curves; see Figure 15. Observe that the upper left triangular diagram
commutes, which implies

ker [Hp(M)→ Hp(L)] ⊆ ker [Hp(M)→ Hp(K)], (5.12)
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im [Hp(M)→ Hp(K)] ⊆ im [Hp(L)→ Hp(K)] (5.13)

for all dimensions p. Similar inclusions follow from the commutativity of the
other regions in the arrangement of curves. The four inclusions that give rise
to the sequences (5.8) to (5.11) yield four 6-packs, among which six diagrams
appear twice, namely, Dgm(fK), Dgm(fL), Dgm(fM ), Dgm(fK,L), Dgm(fK,M ),
Dgm(fL,M ). Therefore, we have eighteen unique diagrams, some of which are closely
related.

5.5. A Tri-chromatic case study. While two colors give rise to interesting
patterns, more colors do more so. With the increase in the number of colors, there is
an explosive increase of configurations to study. We suggest looking at the relations
between k-chromatic subcomplexes of Del(χ), which are the subcomplexes composed
of all simplices with at most k colors, as defined in Section 3.4. In this section,
we focus on the tri-chromatic case, with colors σ = {0, 1, 2}. Let M be the mono-
chromatic subcomplex, L the bi-chromatic subcomplex, and K the full tri-chromatic
Delaunay complex. As before, fK : K → R is the chromatic squared radius function,
and fL, fM , fK,L, fK,M , fL,M are its restrictions. A cycle can be formed by points
of 1, 2, or 3 colors, and it can be filled by points of 0, 1, or 2 additional colors.
Requiring that the sum of two numbers is at most 3, we get the six mingling types
sketched in Figure 1. Note that these six patterns are not independent. For example,
the pattern 1+2 also gives rise to pattern 1+0, because the cycle gets filled by its
own color eventually. However, different patterns corresponding to the same cycle
will generally have different persistence, which quantifies which patterns is a better
fit. Without a claim on completeness, we list where in the 6-packs one can find
prominent cases of each of these six patterns.

Case 1+0: Dgm(fM ). The complex M is the disjoint union of the three mono-
chromatic Delaunay complexes. The diagram records the mono-chromatic
cycles.

Case 2+0: Dgm(cok fM → fL). The complex L contains all mono- and bi-
chromatic cycles, and it shares the former with M . Therefore, we look at the
cokernel to keep only the cycles that need two colors to be formed. A cycle
dies either when it is filled by its own two colors, or when one of the two colors
suffices to form a homologous cycle.

Case 3+0: Dgm(cok fL → fK). As in the previous case, we look at the cokernel
to capture cycles that are formed by all three colors, but not yet by any two.

Case 1+1: Dgm(ker fM → fL). When a cycle formed by one color is filled by
another color, a birth in this diagram occurs, and the feature persists until it
is filled by its own color.

Case 2+1: Dgm(ker fL,M → fK,M ). The idea is similar to Case 1+1: we look
at cycles formed by two colors that are filled when also using the third. Unlike
in the previous case, we consider the quotient spaces to filter out the mono-
chromatic cycles.

Case 1+2: Dgm(cok fL,M → fK,M ). Mono-chromatic p-cycles filled by both of
the other colors appear in the pair (K,M) as (p+ 1)-cycles. Those that are
filled by exactly one other color also appear in (L,M). We use the cokernel to
filter them out.

We now look more closely at the concrete example displayed in the right panel of
Figure 12: a circle of blue points with split background of green and orange points;
compare with the mingling pattern 1+2. Focusing on this pattern, we search for the
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#pts 1-norm, C=1
dim 1 11 1.027
dim 2 1 0.145
total 12 1.1720.0

0.1

0.2

0.3

0.4

kernel

inf
1
2

#pts 1-norm, C=1
dim 2 11 1.120
dim 3 1 0.145
total 12 1.265

relative

inf
2
3

#pts 1-norm, C=1
dim 2 1 0.092

cokernel

2

#pts 1-norm, C=1
dim 1 62 4.133
dim 2 12 0.373
total 74 4.506

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

domain

inf
1
2

#pts 1-norm, C=1
dim 1 54 3.106
dim 2 11 0.228
total 65 3.334

0.0 0.1 0.2 0.3 0.4

image

inf
1
2

#pts 1-norm, C=1
dim 1 54 3.106
dim 2 11 0.320
total 65 3.426

0.0 0.1 0.2 0.3 0.4

codomain

inf
1
2

birth

de
at

h

Figure 16. The 6-pack of (L,M) ⊆ (K,M) for the data in the right panel
of Figure 12. M , L, and K are the 1-, 2- and 3-chromatic subcomplexes of the
chromatic Delaunay complex.

6-pack of the inclusion of the pairs (L,M) ⊆ (K,M) in Figure 16. As suggested in
Case 1+2 above, we expect a clear signal in the cokernel diagram, and indeed we see
a single prominent point representing a 2-dimensional relative class. By construction,
this class is born when the mono-chromatic 1-cycle is filled with two extra colors,
and its persistence indicates how much longer it takes to fill the 1-cycle with just
one extra color. Compare this with the even more prominent point in the diagram of
the codomain, Dgm(fK,M ). This point represents the same 1-cycle, but it expresses
different information because it is not sensitive to whether the 1-cycle is filled by
one or two additional colors.

It is interesting to interpret the two high persistence points in the diagram of the
domain, which records classes in H(Li,Mi). Since the background consists of two
colors, it fills the blue 1-cycle with only one additional color twice, once with green
and another time with orange. Both classes die at the same moment, namely when
the blue cycle is filled by its own color.

As described in the caption of Figure 1, Case 1+2 could also be interpreted as two
overlapping instances of Case 1+1. For example, consider mixing the orange and
green points in the right panel of Figure 12. This pattern is captured in Dgm(fL)
as explained in Figure 9.

6. Discussion. The main contribution of this paper is the extension of the theory
of alpha complexes to the setting where points are assigned a label. We prove
structural results about the radius function on the chromatic Delaunay complex and
provide an implementation that facilitates its use in applications. The work reported
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in this paper suggests new directions of mathematical research aimed at solidifying
our understanding of the chromatic setting. We list three possible directions.

• Develop a chromatic variant of Forman’s discrete Morse theory [16]. Two
concrete questions are the extension of the collapsibility of the Čech complex
to the alpha complex proved in the mono-chromatic case [1] and the further
collapse of Alfr(χ) to Alfr(A).

• In many biological questions, the mingling between different populations of cells
changes over time; see e.g. the study of cell segregation in early development
[21] and an early topological approach in [19]. It would therefore be useful to
extend the vineyard algorithm [9] to the chromatic setting introduced in
this paper.

• Applications in material science suggest to relax the focus on the nearest point
and base the theory on order-k Voronoi tessellations [15, 25], for k possibly
larger than 1. Among the different options, we favor the construction in which
the order-k chromatic Delaunay complex is isomorphic to the nerve of
the order-k Voronoi tessellation of the chromatically lifted points.

In applications to atomic structures, it is furthermore useful to model with different
size balls. This can be done by basing the chromatic construction on the extension
of Delaunay complexes to points with real weights, known under a variety of names,
such as regular triangulations [18] or weighted Delaunay complexes [12, Section III.3].
Letting w : A→ R assign the weights, the weighted square distance of a point x ∈ Rd
to a ∈ A is ‖x− a‖2 − w(a). In molecular biology, w(a) would typically be the
square root of the van der Waals radius so that the zero set of the power distance is
the sphere with this radius. With this notion, all geometric structures can be defined
as before. In particular, the weighted chromatic Delaunay complex is isomorphic to
the weighted Delaunay complex for the chromatically lifted points, and the sublevel
set of the (weighted) radius function for r serves as the discrete representation of
the union of balls in which the ball centered at a ∈ A has squared radius w(a) + r2.
We drop further details while mentioning that the difference between weighted and
unweighted theories is small, and minor changes suffice to adapt the software for
constructing the 6-packs to the weighted case.
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[15] G. Fejes Tóth, Multiple packing and covering of the plane with circles, Acta Math. Acad. Sci.

Hung., 27 (1976), 135-140.

[16] R. Forman, Morse theory for cell complexes, Adv. Math., 134 (1998), 90-145.
[17] R. Freij, Equivariant discrete Morse theory, Discrete Math., 309 (2009), 3821-3829.

[18] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidi-
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