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Abstract1

The Upper Bound Theorem for convex polytopes implies that the p-th Betti number of the Čech2

complex of any set of N points in Rd and any radius satisfies βp = O(Nm), with m = min{p+1, ⌈d/2⌉}.3

We construct sets in even and odd dimensions that prove this upper bound is asymptotically tight.4

For example, we describe a set of N = 2(n + 1) points in R3 and two radii such that the first Betti5

number of the Čech complex at one radius is (n + 1)2 − 1, and the second Betti number of the Čech6

complex at the other radius is n2.7
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1 Introduction8

Given a finite set of points A ⊆ Rd and a radius r ≥ 0, the Čech complex of A and r consists9

of all subsets B ⊆ A for which the intersection of the closed balls of radius r centered at the10

points in B is non-empty. This is an abstract simplicial complex isomorphic to the nerve of11

the balls, and by the Nerve Theorem [5], it has the same homotopy type as the union of the12

balls. This property is the reason for the popularity of the Čech complex in topological data13

analysis; see e.g. [7, 9]. Of particular interest are the Betti numbers of the union of balls,14

which may be interpreted as the numbers of holes of different dimensions. These are intrinsic15

properties, but for a space embedded in Rd, they describe the connectivity of the space as16

well as that of its complement. Most notably, the (reduced) zero-th Betti number, β0, is one17

less than the number of connected components, and the last possibly non-zero Betti number,18

βd−1, is the number of voids (bounded components of the complement). Spaces that have the19

same homotopy type—such as a union of balls and the corresponding Čech complex—have20

identical Betti numbers. While the Čech complex is not necessarily embedded in Rd, the21

corresponding union of balls is, which implies that also the Čech complex has no non-zero22

Betti numbers beyond dimension d− 1. To gain insight into the statistical behavior of the23

Betti numbers of Čech complexes, it is useful to understand how large the numbers can get,24

and this is the question we study in this paper.25

The question of maximum Betti numbers lies at the crossroads of computational topology26

and discrete geometry. Originally inspired by problems in the theory of polytopes [19,27

27], optimization [22], robotics, motion planning [23], and molecular modeling [20], many28

interesting and surprisingly difficult questions were asked about the complexity of the union29

of n geometric objects, as n tends to infinity. For a survey, consult [1]. Particular attention30

was given to estimating the number of voids among N simply shaped bodies, e.g., for the31

translates of a fixed convex body in Rd. In the plane, the answer is typically linear in N (for32
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instance, for disks or other fat objects), but for d = 3, the situation is more delicate. The33

maximum number of voids among N translates of a convex polytope with a constant number34

of faces is Θ(N2), but this number reduces to linear for the cube and other simple shapes [3].35

It was conjectured for a long time that similar bounds hold for the translates of a convex36

shape that is not necessarily a polytope. However, this turned out to be false: Aronov,37

Cheung, Dobbins and Goaoc [2] constructed a convex body in R3 for which the number38

of voids is Ω(N3). This is the largest possible order of magnitude for any arrangement of39

convex bodies, even if they are not translates of a fixed one [18]. It is an outstanding open40

problem whether there exists a centrally symmetric convex body with this property.41

For the special case where the convex body is the unit ball in R3, the maximum number of42

voids in a union of N translates is O(N2). This can be easily derived from the Upper Bound43

Theorem for 4-dimensional convex polytopes. It has been open for a long time whether this44

bound can be attained. Our main theorem answers this question in the affirmative, in a45

more general sense.46

▶ Main Theorem. For every d ≥ 1, 0 ≤ p ≤ d− 1, and N ≥ 1, there is a set of N points in47

Rd and a radius such that the p-th Betti number of the Čech complex of the points and the48

radius is βp = Θ(Nm), with m = min{p+ 1, ⌈d/2⌉}.49

For d = 3, the maximum second Betti number is β2 = Θ(N2), which is equivalent to the50

maximum number of voids being Θ(N2). In addition to the Čech complex, the proof of the51

Main Theorem makes use of three complexes defined for a set of N points, A ⊆ Rd, in which52

the third also depends on a radius r ≥ 0:53

the Voronoi domain of a point a ∈ A, denoted dom(a,A), contains all points x ∈ Rd that54

are at least as close to a as to any other point in A, and the Voronoi tessellation of A,55

denoted Vor(A), is the collection of domains dom(a,A) with a ∈ A [25];56

the Delaunay mosaic of A, denoted Del(A), contains the convex hull of Σ ⊆ A if the57

common intersection of the dom(a,A), with a ∈ Σ, is non-empty, and no other Voronoi58

domain contains this common intersection [8]; it is closed under taking faces and therefore59

is a polyhedral complex;60

the Alpha complex of A and r, denoted Alf(A, r), is the subcomplex of the Delaunay61

mosaic that contains the convex hull of Σ if the common intersection of the dom(a,A),62

with a ∈ Σ, contains a point at distance at most r from the points in Σ; see [10, 11]. If a63

cell in Del(A) satisfies this property, then all its faces satisfy the property, which implies64

that Alf(r,A) is a complex, and thus indeed a subcomplex of Del(A).65

The Delaunay mosaic is also known as the dual of the Voronoi tessellation, or the Delaunay66

triangulation of A. Note that Alf(A, r) ⊆ Alf(A,R) whenever r ≤ R, and that for sufficiently67

large radius, the Alpha complex is the Delaunay mosaic. Similar to the Čech complex, the68

Alpha complex has the same homotopy type as the union of balls with radius r centered69

at the points in A, and thus the same Betti numbers. It is instructive to increase r from 070

to ∞ and to consider the filtration or nested sequence of Alpha complexes. The difference71

between an Alpha complex, K, and the next Alpha complex in the filtration, L, consists72

of one or more cells. If it is a single cell of dimension p, then either βp(L) = βp(K) + 1 or73

βp−1(L) = βp−1(K) − 1, and all other Betti numbers are the same. In the first case, we say74

the cell gives birth to a p-cycle, while in the second case, it gives death to a (p− 1)-cycle, and75

in both cases we say it is critical. If there are two or more cells in the difference, this may76

be a generic event or accidental due to non-generic position of the points. In the simplest77

generic case, we simultaneously add two cells (one a face of the other), and the addition is78

an anti-collapse, which does not affect the homotopy type of the complex. More elaborate79
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anti-collapses, such as the simultaneous addition of an edge, two triangles, and a tetrahedron,80

can arise generically. The cells in an interval of size 2 or larger cancel each other’s effect on81

the homotopy type, so we say these cells are non-critical. We refer to [4] for more details.82

With these notions, it is not difficult to prove the upper bounds in the Main Theorem. As83

mentioned above, the Čech and alpha complexes for radius r have the same Betti numbers.84

Since a p-cycle is given birth to by a p-cell in the filtration of Alpha complexes, and every85

p-cell gives birth to at most one p-cycle, the number of p-cells is an upper bound on the86

number of p-cycles, which are counted by the p-th Betti number. The number of p-cells in the87

Alpha complex is at most that number in the Delaunay mosaic, which, by the Upper Bound88

Theorem for convex polytopes [19, 27], is at most O(Nm), with m = min{p+ 1, ⌈d/2⌉}.89

By comparison, to come up with constructions that prove matching lower bounds is delicate90

and the main contribution of this paper. Our constructions are multipartite and inspired by91

Lenz’ constructions related to Erdős’s celebrated question on repeated distances [13]: “what92

is the largest number of point pairs {a, b} in an N -element set in Rd with ∥a− b∥ = 1?”93

Lenz noticed that in 4 (and higher) dimensions, this maximum is Θ(N2). To see this, take94

two circles of radius √
2/2 centered at the origin, lying in two orthogonal planes, and place95

⌈N/2⌉ and ⌊N/2⌋ points on them. By Pythagoras’ theorem, the distance between any two96

points on different circles is 1, so the number of unit distances is roughly N2/4, which is97

nearly optimal. For d = 2 and 3, we are far from knowing asymptotically tight bounds. The98

current best constructions give Ω(N1+c/ log log N ) unit distance pairs in the plane [6, page99

191] and Ω(N4/3 log logN) in R3, while the corresponding upper bounds are O(N4/3) and100

O(N3/2); see [24] and [17, 26]. Even the following, potentially simpler, bipartite repeated101

distance question is open in R3: “given N red points and N blue points in R3, such that102

the minimum distance between a red and a blue point is 1, what is the largest number of103

red-blue point pairs that determine a unit distance?” The best known upper bound, due to104

Edelsbrunner and Sharir [12] is O(N4/3), but we have no superlinear lower bound. This last105

question is closely related to the subject of our present paper.106

It is not difficult to see that the upper bounds in the Main Theorem also hold for the107

Betti numbers of the union of N not necessarily congruent balls in Rd. This requires the108

use of weighted versions of the Voronoi tessellation and the Upper Bound Theorem. In the109

lower bound constructions, much of the difficulty stems from the fact that we insist on using110

congruent balls. This suggests the analogy to the problem of repeated distances.111

Outline. Section 2 proves the Main Theorem for sets in even dimensions. Starting with112

Lenz’ constructions, we partition the Delaunay mosaic into finitely many groups of congruent113

simplices. We compute the radii of their circumspheres and obtain the Betti numbers by114

straightforward counting. In Section 3, we establish the Main Theorem for sets in three115

dimensions. The situation is more delicate now, because the simplices of the Delaunay mosaic116

no longer fall into a small number of distinct congruence classes. Nevertheless, they can117

be divided into groups of nearly congruent simplices, which will be sufficient to carry out118

the counting argument. In Section 4, we extend the result to any odd dimension. Again we119

require a detailed analysis of the shapes and sizes of the simplices, which now proceeds by120

induction on the dimension. Section 5 contains concluding remarks and open questions.121

2 Even Dimensions122

In this section, we give an answer to the maximum Betti number question for Čech complexes123

in even dimensions. To state the result, let nk be the minimum integer such that the edges124

of a regular nk-gon inscribed in a circle of radius
√

2/2 are strictly shorter than
√

2/k. For125
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k = 1 we have n1 = 3, and for k = 2 we have n2 = 5, because the side length of an inscribed126

square is equal to 1.127

▶ Theorem 2.1 (Maximum Betti Numbers in R2k). For every 2k ≥ 2 and n ≥ nk, there exist128

a set A of N = kn points in R2k and radii ρ0 < ρ1 < . . . < ρ2k−2 such that129

βp(Čech(A, ρp)) =
(

k
p+1

)
· np+1 ±O(1), for 0 ≤ p ≤ k − 1; (1)130

βp(Čech(A, ρp)) =
(

k−1
p+1−k

)
· nk ±O(1), for k ≤ p ≤ 2k − 2. (2)131

For p = 2k − 1, there exist N = k(n+ 1) + 2 points in R2k and a radius such that the p-th132

Betti number of the Čech complex is nk ±O(nk−1).133

The reason for the condition n ≥ nk will become clear in the proof of Lemma 2.5, which134

establishes a particular ordering of the circumradii of the cells in the Delaunay mosaic. The135

proof of the cases 0 ≤ p ≤ 2k − 2 is not difficult and uses elementary computations, the136

results of which will be instrumental for establishing the more challenging odd-dimensional137

statements in Sections 3 and 4. The proof consists of four steps presented in four subsections:138

the construction of the point set in Section 2.1, the geometric analysis of the simplices in139

the Delaunay mosaic in Section 2.2, the ordering of the circumradii in Section 2.3, and the140

final counting in Section 2.4. The proof of the case p = 2k− 1 in R2k readily follows the case141

p = 2k − 2 in R2k−1, as we will explain in Section 4.6.142

2.1 Construction143

Let d = 2k. We construct a set A = A2k(n) of N = kn points in Rd using k concentric circles144

in mutually orthogonal coordinate planes: for 0 ≤ ℓ ≤ k − 1, the circle Cℓ with center at the145

origin, 0 ∈ Rd, is defined by x2
2ℓ+1 + x2

2ℓ+2 = 1
2 and xi = 0 for all i ̸= 2ℓ+ 1, 2ℓ+ 2. On each146

of the k circles, we choose n ≥ 3 points that form a regular n-gon. The length of the edges147

of these n-gons will be denoted by 2s. Obviously, we have s =
√

2
2 sin π

n . Assuming k ≥ 2,148

the condition n ≥ nk implies that the Euclidean distance between consecutive points along149

the same circle is less than 1, and by Pythagoras’ theorem, the distance between any two150

points on different circles is 1. It follows that for r = 1
2 , neighboring balls centered on the151

same circle overlap, while the balls centered on different circles only touch. Correspondingly,152

the first Betti number of the Čech complex for a radius slightly less than 1
2 is β1 = k. To get153

the first Betti number for r = 1
2 , we add all edges of length 1, of which k − 1 connect the k154

circles into a single connected component, while the others increase the first Betti number to155

β1 = k +
(

k
2
)
n2 − (k − 1) =

(
k
2
)
n2 + 1.156

To generalize the analysis beyond the first Betti number, we consider the Delaunay mosaic157

and two radii defined for each of its cells. The circumsphere of a p-cell is the unique (p− 1)-158

sphere that passes through its vertices, and we call its center and radius the circumcenter159

and the circumradius of the cell. To define the second radius, we call a (d− 1)-sphere empty160

if all points of A lie on or outside the sphere. The radius function on the Delaunay mosaic,161

Rad: Del(A) → R, maps each cell to the radius of the smallest empty (d− 1)-sphere that162

passes through the vertices of the cell. By construction, each Alpha complex is a sublevel set163

of this function: Alf(A, r) = Rad−1[0, r]. The two radii of a cell may be different, but they164

agree for the critical cells as defined in terms of their topological effect in the introduction.165

It will be convenient to work with the corresponding geometric characterization of criticality:166

▶ Definition 2.2 (Critical Cell). A critical cell of Rad: Del(A) → R is a cell Σ ∈ Del(A)167

that (1) contains the circumcenter in its interior, and (2) the (d− 1)-sphere centered at the168
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circumcenter that passes through the vertices of Σ is empty and the vertices of Σ are the only169

points of A on this sphere.170

There are two conditions for a cell to be critical for a reason. The first guarantees that171

its topological effect is not canceled by one of its faces, and the second guarantees that it172

does not cancel the topological effect of one of the cells it is a face of. As proved in [4],173

the radius function of a generic set, A ⊆ Rd, is generalized discrete Morse; see Forman [14]174

for background on discrete Morse functions. This means that each level set of Rad is a175

union of disjoint combinatorial intervals, and a simplex is critical iff it is the only simplex in176

its interval. Our set A is not generic because the (d − 1)-sphere with center 0 ∈ R2k and177

radius √
2/2 passes through all its points. Indeed, Del(A) is really a 2k-dimensional convex178

polytope, namely the convex hull of A and all its faces. Nevertheless, the distinction between179

critical and non-critical cells is still meaningful, and all cells in the Delaunay mosaic of our180

construction will be seen to be critical.181

The value of the 2k-polytope under the radius function is √
2/2, while the values of its182

proper faces are strictly smaller than √
2/2. Let Σℓ,j be such a face, in which ℓ + 1 is the183

number of circles that contain one or two of its vertices, and j + 1 is the number of circles184

that contain two. This face is a simplex of dimension dim Σℓ,j = ℓ+ 1 + j, and it has j + 1185

disjoint short edges of length 2s, while the remaining long edges all have unit length. Indeed,186

the geometry of the simplex is determined by ℓ and j and does not depend on the circles187

from which we pick the vertices or where along these circles we pick them, as long as two188

vertices from the same circle are consecutive along this circle. For example, Σ1,−1, Σ1,0, and189

Σ1,1 are the unit length edge, the isosceles triangle with one short and two long edges, and190

the tetrahedron with two disjoint short and four long edges, respectively. We call the Σℓ,j191

ideal simplices. In even dimensions they are precisely the simplices in the Delaunay mosaic192

of our construction. However, in odd dimensions, the cells in the Delaunay mosaic only193

converge to the ideal simplices. This will be explained in detail in Sections 3 and 4.194

2.2 Circumradii of Ideal Simplices195

In this section, we compute the sizes of some ideal simplices, beginning in four dimensions.196

The ideal 2-simplex or triangle, denoted Σ1,0, is the isosceles triangle with one short and two197

long edges. We write h(s) for the height of Σ1,0 (the distance between the midpoint of the198

short edge and the opposite vertex), and r(s) for the circumradius. There is a unique way199

to glue four such triangles to form the boundary of a tetrahedron: the two short edges are200

disjoint and their endpoints are connected by four long edges. This is the ideal 3-simplex or201

tetrahedron, denoted Σ1,1. We write H(s) for its height (the distance between the midpoints202

of the two short edges), and R(s) for its circumradius.203

▶ Lemma 2.3 (Ideal Triangle and Tetrahedron). The squared heights and circumradii of the204

ideal triangle and the ideal tetrahedron in R4 satisfy205

h2(s) = 1 − s2, 4r2(s) = 1
1 − s2 , (3)206

H2(s) = 1 − 2s2, 4R2(s) = 1 + 2s2. (4)207

Proof. By Pythagoras’ theorem, the squared height of the ideal triangle is h2 = 1 − s2. If208

we glue the two halves of a scaled copy of the ideal triangle to the two halves of the short209

edge, we get a quadrangle inscribed in the circumcircle of the triangle. One of its diagonals210

passes through the center, and its squared length satisfies 4r2 = 1 + (s/h)2 = 1 + s2

1−s2 .211
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By Pythagoras’ theorem, the squared height of the ideal tetrahedron is H2 = h2 − s2 =212

1 − 2s2. Hence, the squared diameter of the circumsphere is 4R2 = H2 + (2s)2 = 1 + 2s2. ◀213

To generalize the analysis beyond the ideal simplices in four dimensions, we write rℓ,j(s) for214

the circumradius of Σℓ,j , so r1,−1(s) = 1
2 , r1,0(s) = r(s), and r1,1(s) = R(s). For two kinds215

of ideal simplices, the circumradii are particularly easy to compute, namely for the Σℓ,−1 and216

the Σℓ,ℓ, and we will see that knowing their circumradii will be sufficient for our purposes.217

▶ Lemma 2.4 (Further Ideal Simplices). For ℓ ≥ 0, the squared circumradii of Σℓ,−1 and Σℓ,ℓ218

satisfy r2
ℓ,−1(s) = ℓ/(2ℓ+ 2) and r2

ℓ,ℓ(s) = (ℓ+ 2s2)/(2ℓ+ 2).219

Proof. Consider the standard ℓ-simplex, which is the convex hull of the endpoints of the ℓ+1220

unit coordinate vectors in Rℓ+1. Its squared circumradius is the squared distance between221

the barycenter and any one of the vertices, which is easy to compute. By comparison, the222

squared circumradius of the regular ℓ-simplex with unit length edges is half that of the223

standard ℓ-simplex:224

R2
ℓ = 1

2

[
ℓ2

(ℓ+ 1)2 + 1
(ℓ+ 1)2 + . . .+ 1

(ℓ+ 1)2

]
= ℓ

2(ℓ+ 1) , (5)225

Since r2
ℓ,−1(s) = R2

ℓ , this proves the first equation in the lemma. Note that the convex hull226

of the midpoints of the ℓ+ 1 short edges of Σℓ,ℓ is a regular ℓ-simplex with edges of squared227

length H2(s) = 1 − 2s2. The short edges are orthogonal to this ℓ-simplex, which implies228

r2
ℓ,ℓ = H2(s) ·R2

ℓ + s2 = R2
ℓ + (1 − 2R2

ℓ )s2 = ℓ+ 2s2

2ℓ+ 2 , (6)229

which proves the second equation in the lemma. ◀230

2.3 Ordering the Radii231

In this subsection, we show that the radii of the circumspheres of the ideal simplices increase232

with increasing ℓ and j:233

▶ Lemma 2.5 (Ordering of Radii in R2k). Let 0 < s < 1/
√

2k. Then the ideal simplices234

satisfy rℓ,ℓ(s) < rℓ+1,−1(s) for 0 ≤ ℓ ≤ k − 2, and rℓ,j(s) < rℓ,j+1(s) for −1 ≤ j < ℓ ≤ k − 1.235

Proof. To prove the first inequality, we use Lemma 2.4 to compute the difference between236

the two squared radii:237

r2
ℓ+1,−1(s) − r2

ℓ,ℓ(s) = ℓ+ 1
2(ℓ+ 2) − ℓ+ 2s2

2(ℓ+ 1) = 1 − 2s2(ℓ+ 2)
2(ℓ+ 2)(ℓ+ 1) . (7)238

Hence, r2
ℓ,ℓ(s) < r2

ℓ+1,−1(s) iff s2 < 1/(2ℓ+ 4). We need this inequality for 0 ≤ ℓ ≤ k − 2, so239

s2 < 1/(2k) is sufficient, but this is guaranteed by the assumption.240

We prove the second inequality geometrically, without explicit computation of the radii.241

Fix an ideal simplex, Σℓ,j , and let Sd−1 be the (d− 1)-sphere whose center and radius are242

the circumcenter and circumradius of Σℓ,j . Assume w.l.o.g. that the circles C0 to Cj contain243

two vertices of Σℓ,j each, and the circles Cj+1 to Cℓ contain one vertex of Σℓ,j each. For244

0 ≤ i ≤ k− 1, write Pi for the 2-plane that contains Ci and xi for the projection of the center245

of Sd−1 onto Pi. Note that ∥xi∥2 is the squared distance to the origin, and for 0 ≤ i ≤ ℓ246

write r2
i for the squared distance between xi and the one or two vertices of Σℓ,j in Pi. Fixing247

i between 0 and ℓ, the squared radius of Sd−1 is r2
i plus the squared distance of the center of248
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Sd−1 from Pi, which is the sum of the squared norms other than ∥xi∥2. Taking the sum for249

0 ≤ i ≤ ℓ and dividing by ℓ+ 1, we get250

r2
ℓ,j(s) = 1

ℓ+ 1

[∑ℓ

i=0
r2

i + ℓ ·
∑ℓ

i=0
∥xi∥2 + (ℓ+ 1) ·

∑k−1

i=ℓ+1
∥xi∥2

]
. (8)251

By construction, r2
ℓ,j(s) is the minimum squared radius of any (d − 1)-sphere that passes252

through the vertices of Σℓ,j . Hence, also the right-hand side of (8) is a minimum, but since253

the 2-planes are pairwise orthogonal, we can minimize in each 2-plane independently of the254

other. For ℓ + 1 ≤ i ≤ k − 1, this implies ∥xi∥2 = 0, so we can drop the last sum in (8).255

For j + 1 ≤ i ≤ ℓ, xi lies on the line passing through the one vertex in Pi and the origin.256

This implies that Sd−1 touches Ci at this vertex, and all other points of the circle lie strictly257

outside Sd−1. For 0 ≤ i ≤ j, xi lies on the bisector line of the two vertices, which passes258

through the origin. The contribution to (8) for an index between 0 and j is thus strictly259

larger than for an index between j + 1 and ℓ. This finally implies r2
ℓ,j(s) < r2

ℓ,j+1(s) and260

completes the proof of the second inequality. ◀261

Recall that 2s is the edge length of a regular n-gon inscribed in a circle of radius
√

2/2.262

By the definition of nk, the condition s < 1/
√

2k in the lemma holds, whenever n ≥ nk.263

For the counting argument in the next subsection, we need the ordering of the radii264

as defined by the radius function, but it is now easy to see that they are the same as the265

circumradii, so Lemma 2.5 applies. Indeed, Rad(Σℓ,j) = rℓ,j(s) if Σℓ,j is a critical simplex of266

Rad. To realize that it is, we note that the circumcenter of Σℓ,j lies in its interior because of267

symmetry. To see that also the second condition for criticality in Definition 2.2 is satisfied,268

we recall that Sd−1 is the (d− 1)-sphere whose center and radius are the circumcenter and269

circumradius of Σℓ,j . By the argument in the proof of Lemma 2.5, Sd−1 is empty, and all270

points of A other than the vertices of Σℓ,j lie strictly outside this sphere.271

2.4 Counting the Cycles272

To compute the Betti numbers, we make essential use of the structure of the Delaunay mosaic273

of A, which consists of as many groups of congruent ideal simplices as there are different274

values of the radius function. For each 0 ≤ ℓ ≤ k − 1, we have ℓ+ 2 groups of simplices that275

touch exactly ℓ+ 1 of the k circles. In addition, we have a single 2k-cell, convA, with radius276
√

2/2, which gives 1 + 2 + . . . + (k + 1) =
(

k+2
2

)
groups. We write Aℓ,j = Rad−1[0, rℓ,j ] for277

the Alpha complex that consists of all simplices with circumradii at most rℓ,j = rℓ,j(s). We278

prove Theorem 2.1 in two steps, first the relations (1) for 0 ≤ p ≤ k − 1 and second the279

relations (2) for k ≤ p ≤ 2k − 2. The case p = 2k − 1 will be settled later, in Section 4.6. To280

begin, we study the Alpha complexes whose simplices touch at most ℓ+ 1 of the k circles.281

▶ Lemma 2.6 (Constant Homology in R2k). Let k be a constant, A = A2k(n) ⊆ R2k, and282

0 ≤ ℓ ≤ k − 1. Then βp(Aℓ,ℓ) = O(1) for every 0 ≤ p ≤ 2k − 1.283

Proof. Fix ℓ and a subset of ℓ+ 1 circles. The full subcomplex of Aℓ,ℓ defined by the points284

of A on these ℓ+ 1 circles consists of all cells in Del(A) whose vertices lie on these and not285

any of the other circles. Its homotopy type is that of the join of ℓ+ 1 circles or, equivalently,286

that of the (2ℓ + 1)-sphere; see [16, pages 9 and 19]. This sphere has only one non-zero287

(reduced) Betti number, which is β2ℓ+1 = 1. There are
(

k
ℓ+1

)
such full subcomplexes. The288

common intersection of any number of these subcomplexes is a complex of similar type,289

namely the full subcomplex of Del(A) defined by the points on the common circles, which290

has the homotopy type of the (2i + 1)-sphere, with i ≤ ℓ. By repeated application of the291
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Mayer–Vietoris sequence [16, page 149], this implies that the Betti numbers of Aℓ,ℓ are292

bounded by a function of k and are, thus, independent of n. Since we assume that k is a293

constant, we have βp(Aℓ,ℓ) = O(1) for every p. ◀294

Now we are ready to complete the proof of Theorem 2.1 for p ≤ 2k − 2. To establish295

relation (1), fix p between 0 and k − 1 and consider Ap,−1 = Rad−1[0, rp,−1], which is the296

Alpha complex consisting of all simplices that touch p or fewer circles, together with all297

simplices that touch p+ 1 circles but each circle in only one point. In other words, Ap,−1 is298

Ap−1,p−1 together with all the
(

k
p+1

)
np+1 p-simplices that have no short edges. By Lemma 2.6,299

Ap−1,p−1 has only a constant number of (p− 1)-cycles. Hence, only a constant number of300

the p-simplices can give death to (p− 1)-cycles, while the remaining p-simplices give birth to301

p-cycles. This is because every p-simplex either gives birth or death, so if it cannot give death302

to a (p− 1)-cycle, then it gives birth to a p-cycle. Hence, βp(Ap,−1) =
(

k
p+1

)
np+1 ±O(1), as303

claimed. The proof of relation (2) is similar but inductive. The induction hypothesis is304

βp(Ak−1,p−k) =
(

k−1
p−k+1

)
· nk ±O(1). (9)305

For p = k − 1, it claims βk−1(Ak−1,−1) = nk ± O(1), which is what we just proved. In306

other words, relation (1) furnishes the base case at p = k − 1. A single inductive step307

takes us from Ak−1,p−k to Ak−1,p−k+1; that is: we add all simplices that touch all k circles308

and p − k + 2 of them in two vertices to Ak−1,p−k. The number of such simplices is the309

number of ways we can pick a pair of consecutive vertices from p − k + 2 circles and a310

single vertex from the remaining 2k − p− 2 circles. Since there are equally many vertices as311

there are consecutive pairs, this number is
(

k
p−k+2

)
nk. The dimension of these simplices is312

(k− 1) + (p− k+ 1) + 1 = p+ 1. Some of these (p+ 1)-simplices give death to p-cycles, while313

the others give birth to (p+ 1)-cycles in Ak−1,p−k+1. By the induction hypothesis, there are314 (
k−1

p−k+1
)

· nk ±O(1) p-cycles in Ak−1,p−k, so this is also the number of (p+ 1)-simplices that315

give death. Since
(

k
p−k+2

)
−

(
k−1

p−k+1
)

=
(

k−1
p−k+2

)
, this implies316

βp(Ak−1,p−k+1) =
(

k−1
p−k+2

)
· nk ±O(1), (10)317

as required to finish the inductive argument.318

3 Three Dimensions319

In this section, we answer the maximum Betti number question for Čech complexes in the320

smallest odd dimension in which it is non-trivial:321

▶ Theorem 3.1 (Maximum Betti Numbers in R3). For every n ≥ 2, there exist N = 2n+ 2322

points in R3 and two radii such that the Čech complex for the first radius has first Betti323

number β1 = (n+ 1)2 − 1 and for the second radius has second Betti number β2 = n2.324

The proof consists of four steps: the construction of the set in Section 3.1, the analysis of325

the circumradii in Section 3.2, the argument that all simplices in the Delaunay mosaic are326

critical in Section 3.3, and the final counting of the tunnels and voids in Section 3.4.327

3.1 Construction328

Given n and 0 < ∆ < 1, we construct the point set, A = A3(n,∆), using two linked circles329

in R3: Cz with center vz = (− 1
2 , 0, 0) in the xy-plane defined by (− 1

2 + cosφ, sinφ, 0) for330

0 ≤ φ < 2π, and Cy with center vy = ( 1
2 , 0, 0) in the xz-plane defined by ( 1

2 − cosψ, 0, sinψ)331
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for 0 ≤ ψ < 2π; see Figure 1. On each circle, we choose n+ 1 points close to the center of332

the other circle. To be specific, take the points (0,−∆, 0) and (0,∆, 0), and project them333

to Cz along the x-axis. The resulting points are denoted by a0 = (− 1
2 +

√
1 − ∆2,−∆, 0)334

and an = (− 1
2 +

√
1 − ∆2,∆, 0). Divide the arc between them into n equal pieces by placing335

the points a1, a2, . . . , an−1 in this sequence from a0 to an. Symmetrically, project the points336

(0, 0,−∆) and (0, 0,∆) to b0 = ( 1
2 −

√
1 − ∆2, 0,−∆) and bn = ( 1

2 −
√

1 − ∆2, 0,∆) lying on337

Cy, and place points b1, b2, . . . , bn−1 in this sequence between them, thus dividing the arc338

from b0 to bn into n equal pieces. Let ε = ε(n,∆) be the half-length of the (straight) edge339

connecting two consecutive points of either sequence. Clearly, ε is a function of n and ∆,340

and it is easy to see that341

∆/n < ε < π
2 ∆/n and ε

∆→0−→ ∆/n. (11)342

x

Cz

b0
an

a0

Cy

bn

z

y

vz

vy

Figure 1: Two linked unit circles in orthogonal coordinate planes of R3, each touching the shaded
sphere centered at the origin and each passing through the center of the other circle. There are n + 1
points on each circle, on both sides and near the center of the other circle.

343

A sphere that does not contain a circle intersects it in at most two points. It follows that344

the sphere that passes through four points of A is empty if and only if two of the four points345

are consecutive on one circle and the other two are consecutive on the other. This determines346

the Delaunay mosaic: its N = 2n+ 2 vertices are the points ai and bj , its 2n+ (n+ 1)2 edges347

are of the forms aiai+1, bjbj+1, and aibj , its 2n(n + 1) triangles are of the forms aiai+1bj348

and aibjbj+1, and its n2 tetrahedra of the form aiai+1bjbj+1. Keeping with the terminology349

introduced in Section 2, we call the edges aibj long and the edges aiai+1 and bjbj+1 short.350

Hence, every triangle in the Delaunay mosaic has one short and two long edges, and every351

tetrahedron has two short and four long edges.352

3.2 Divergence from the Ideal353

The simplices in Del(A) are not quite ideal, in the sense of Section 2. We, therefore, need354

upper and lower bounds on their sizes, as quantified by their circumradii. We will make355
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repeated use of the following two inequalities, which both hold for x > −1:356

√
1 + x ≤ 1 + x

2 , (12)357
√

1 + x ≥ 1 + x
2+x . (13)358

To begin, we rewrite the relations for the ideal triangle and tetrahedron. Setting x = s2/(1−s2)359

and y = 2s2, we get 4r2(s) = 1 + x from (3) and 4R2(s) = 1 + y from (4). Assuming n is360

sufficiently large so that 2 − 2s2 > 1.9 and, therefore, 1 + s2 < 1.1, we use (12) and (13) to361

get lower and upper bounds for the two radii:362

1 + 1
2s

2 < 1 + s2/(1 − s2)
2 + s2/(1 − s2) ≤ 2r(s) ≤ 1 + s2

2 − 2s2 < 1 + 10
19s

2, (14)363

1 + 10
11s

2 ≤ 1 + s2

1 + s2 ≤ 2R(s) ≤ 1 + s2, (15)364

where we apply (12) and (13) to get the inequalities on the right-hand and left-hand sides,365

respectively. These inequalities are instrumental in deriving bounds in R3:366

▶ Lemma 3.2 (Bounds for Long Edges in R3). Let 0 < ∆ < 1 and A = A3(n,∆) ⊆ R3. Then367

the half-length of any long edge, E ∈ Del(A), satisfies 1
2 ≤ RE ≤ 1

2 (1 + ∆4).368

Proof. To verify the lower bound, let a ∈ Cz and consider the sphere with unit radius369

centered at a. This sphere intersects the xz-plane in a circle of radius at most 1, whose370

center lies on the x-axis. The circle passes through vz ∈ Cy, which implies that the rest of371

Cy lies on or outside the circle and, therefore, on or outside the sphere centered at a. Hence,372

∥a− b∥ ≥ 1 for all b ∈ Cy, which implies the required lower bound.373

To establish the upper bound, observe that the distance between a and b is maximized374

if the two points are chosen as far as possible from the x-axis, so 4R2
E ≤ ∥a0 − b0∥2. By375

construction, a0 = (− 1
2 +

√
1 − ∆2,−∆, 0) and b0 = ( 1

2 −
√

1 − ∆2, 0,−∆). Hence,376

4R2
E ≤ ∥(−1 + 2

√
1 − ∆2,−∆,∆)∥

2
= 5 − 2∆2 − 4

√
1 − ∆2 (16)377

≤ 5 − 2∆2 − 4
(

1 − ∆2

2 − ∆2

)
= 1 + 2∆4

2 − ∆2 (17)378

≤ 1 + 2∆4, (18)379

where we used (13) to get (17) from (16), and ∆2 < 1 to obtain the final bound. Applying380

(12), wet get 2RE ≤ 1 + ∆4, as required. ◀381

Next, we estimate the circumradii of the triangles in Del(A). To avoid the computation382

of a constant, we use the big-Oh notation for ∆, in which we assume that n is fixed.383

▶ Lemma 3.3 (Bounds for Triangles in R3). Let 0 < ∆ <
√

2/n, A = A3(n,∆) ⊆ R3, and ε =384

ε(n,∆). Then the circumradius of any triangle, F , satisfies 1
2 + 1

4ε
2 ≤ RF ≤ 1

2 + 1
4ε

2 +O(∆4).385

Proof. To see the lower bound, recall that the short edge of F has length 2ε and the two386

long edges have lengths at least 1. A circle of radius r(ε) that passes through the endpoints387

of the short edge has only one point at distance at least 1 from both endpoints, and it has388

distance 1 from both. For any radius smaller than r(ε), there is no such point, which implies389

that the circumradius of F satisfies RF ≥ r(ε) ≥ 1
2 + 1

4ε
2, where the second inequality follows390

from (14).391

To prove the upper bound, we draw F in the plane, assuming its circumcircle is the392

circle with radius RF centered at the origin. Let a, b, c be the vertices of F , where a and393
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c are the endpoints of the short edge. We have 0 ∈ F , since otherwise one of the angles394

at a and c is obtuse, in which case the squared lengths of the two long edges differ by at395

least 4ε2. By assumption,
√

2∆2 < 2∆/n ≤ 2ε, in which we get the second inequality from396

(11). But this implies that the difference between the squared lengths of the two long edges397

is larger than 2∆4, which contradicts Lemma 3.2. Hence, b lies between the antipodes of398

the other two vertices, a′ = −a and c′ = −c. By construction, ∥a′ − c′∥ = 2ε. Assuming399

∥b− a′∥ ≤ ∥b− c′∥, this implies400

∥b− a′∥ ≤ 2RF arcsin ε
2RF

≤ arcsin ε = ε+O(ε3). (19)401

Here, the second inequality follows from 2RF ≥ 1, using the convexity of the arcsin function,402

and the final expression using the Taylor expansion arcsin x = x+ 1
6x

3 + 3
40x

5 + . . .. Now403

consider the triangle with vertices a, a′, b. By the Pythagorean theorem,404

4R2
F = ∥b− a∥2 + ∥b− a′∥2

< 1 + 2∆4 + ∆8 + ε2 +O(ε4) = 1 + ε2 +O(∆4), (20)405

where we used Lemma 3.2 and (19) to bound ∥b− a∥2 and ∥b− a′∥2, respectively. We get406

the final expression using ε < ∆. Applying (12), we obtain 2RF ≤ 1 + 1
2ε

2 + O(∆4), as407

claimed. ◀408

Similar to the case of triangles, it is not difficult to establish that the circumradius of any409

tetrahedron in the Delaunay mosaic is at least the circumradius of the ideal tetrahedron.410

▶ Lemma 3.4 (Lower Bound for Tetrahedra in R3). Let 0 < ∆ < 1, A = A3(n,∆) ⊆ R3, and411

ε = ε(n,∆). Then the circumradius of any tetrahedron T ∈ Del(A) satisfies RT ≥ 1
2 + 5

11ε
2.412

Proof. By construction, T has two disjoint short edges, both of length 2ε. Consider a sphere413

of radius R(ε) that passes through the endpoints of one of the two short edges. The set of414

points on this sphere that are at distance at least 1 from both endpoints is the intersection415

of two spherical caps whose centers are antipodal to the endpoints. We call this intersection416

a spherical bi-gon. Since the two caps have the same size, the two corners of the bi-gon are417

further apart than any other two points of the bi-gon. By choice of the radius, R(ε), the418

edge connecting the two corners has length 2ε. Hence, these corners are the only possible419

choice for the remaining two vertices of T , and for a radius smaller than R(ε), there is no420

choice. It follows that the circumradius of T is at least R(ε), and we get the claimed lower421

bound from (15). ◀422

3.3 All Simplices are Critical423

Since no empty sphere passes through more than four points of A, the Delaunay mosaic of A424

is simplicial, and the radius function is a generalized discrete Morse function [4]. We will425

argue shortly that all simplices are critical; see Definition 2.2. The point set depends on two426

parameters, n and ∆, and we consider n fixed while we can make ∆ as small as we like.427

▶ Lemma 3.5 (All Critical in R3). Let n ≥ 2, ∆ > 0 sufficiently small, and A = A3(n,∆) ⊆ R3.428

Then every simplex of the Delaunay mosaic of A is critical.429

Proof. It is clear that the vertices and the short edges are critical, but the other simplices430

in Del(A) require an argument. We begin with the long edges. Fix i and j, and write431

S2(i; j) for the smallest sphere that passes through ai and bj . Its center is the midpoint of432

the long edge and, by (18), its squared diameter is between 1 and 1 + 2∆4. The distance433

between ai and any aℓ, ℓ ̸= i, is at least 2ε. Assuming aℓ is on or inside S2(i; j), we thus have434
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∥aℓ − bj∥2 ≤ 1+2∆4 −4ε2, which, for sufficiently small ∆ > 0, is less than 1. This contradicts435

the lower bound in Lemma 3.2, so aℓ lies outside S2(i; j). By a symmetric argument, all bℓ,436

ℓ ̸= j, lie outside S2(i; j). Hence, S2(i; j) is strictly empty, for all 0 ≤ i, j ≤ n, which implies437

that all edges of Del(A) are critical edges of the radius function.438

The fact that all edges of Del(A) are critical implies that all triangles are acute. Indeed,439

if aibjbj+1 is not acute, then the midpoint of one long edge is at least as close to the third440

vertex as to the endpoints of the edge. Write S2(i; j, j+1) for the circumsphere of the triangle441

and z for its center. Since aibjbj+1 is acute, z lies in its interior. As illustrated in Figure 2,442

the line that passes through ai and z crosses the opposite edge at x′ and exits the sphere at443

x. Let aℓ be another point, with ℓ ̸= i, and assume it lies on or outside S2(i; j, j + 1). The444

angle between the segments that connect aℓ to ai and x is therefore at least π
2 , which implies445

∥x− ai∥2 ≥ ∥x− aℓ∥2 + ∥ai − aℓ∥2 ≥ 1 − ε2 + 4ε2 = 1 + 3ε2, (21)446

because the angle enclosed by the segments connecting x′ to aℓ and x is larger than π
2 , so447

∥x− aℓ∥2 is larger than the squared height of the triangle aℓbjbj+1, which is at least 1 − ε2,448

and because ∥ai − aℓ∥2 ≥ 4ε2. But (21) contradicts ∥x− ai∥2 ≤ 1 + ε2 + O(∆4), which449

follows from the upper bound on the radius of the triangle in Lemma 3.3. Hence, all triangles450

in Del(A) are critical, as claimed.

x

ai

aℓ

bj

bj+1

z
x′

Figure 2: Two acute triangles sharing the edge that connects bj with bj+1 in Del(A). By shrinking
∆ > 0, the angle at x′ can be made arbitrarily close to straight and certainly larger than π

2 .

451

Since all triangles are critical, all tetrahedra of Del(A) must also be critical. One can452

argue in two ways. Combinatorially: the radius function pairs non-critical tetrahedra with453

non-critical triangles, but there are no such triangles. Geometrically: since every triangle454

has a non-empty intersection with its dual Voronoi edge, every tetrahedron must contain its455

dual Voronoi vertex. ◀456

3.4 Counting the Tunnels and Voids457

Before counting the tunnels and voids, we recall that Rad: Del(A) → R maps each simplex458

to the radius of its smallest empty sphere that passes through its vertices. By Lemma 3.5,459

all simplices of Del(A) are critical, so Rad(E) is equal to the circumradius of E, for every460

edge E ∈ Del(A), and similarly for every triangle and every tetrahedron.461

▶ Corollary 3.6 (Ordering of Radii in R3). Let ∆ > 0 be sufficiently small, let A = A3(n,∆) ⊆462

R3, and let Rad: Del(A) → R be the radius function. Then Rad(E) < Rad(F ) < Rad(T )463

for every edge E, triangle F , and tetrahedron T in Del(A).464

Proof. Using Lemma 3.2 for the edges, Lemma 3.3 for the triangles, and Lemma 3.4 for the465
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tetrahedra in the Delaunay mosaic of A, we get466

Rad(E) = RE < 1
2 +O(∆4), (22)467

1
2 + 1

4ε
2 ≤ Rad(F ) = RF < 1

2 + 1
4ε

2 +O(∆4), (23)468

1
2 + 5

11ε
2 ≤ Rad(T ) = RT , (24)469

so for sufficiently small ∆ > 0, the edges precede the triangles, and the triangles precede the470

tetrahedra in the filtration of the simplices. ◀471

For the final counting, choose ρ1 to be any number strictly between the maximum radius472

of any edge and the minimum radius of any triangle. The existence of such a number473

is guaranteed by Corollary 3.6. The corresponding Čech complex is the 1-skeleton of the474

Delaunay mosaic. It is connected, withN = 2n+2 vertices and 2n+(n+1)2 edges. The number475

of independent cycles is the difference plus 1, which implies β1(Čech(A, ρ1)) = (n+1)2 −1, as476

claimed. Similarly, choose ρ2 between the maximum radius of any triangle and the minimum477

radius of any tetrahedron, which is again possible, by Corollary 3.6. The corresponding Čech478

complex is the 2-skeleton of the Delaunay mosaic. The number of independent 2-cycles is479

the number of missing tetrahedra. This implies β2(Čech(A, ρ2)) = n2, as claimed.480

4 Odd Dimensions481

In this section, we generalize the 3-dimensional results to odd dimensions and, in Section 4.6,482

we prove the outstanding case, p = 2k − 1 and d = 2k, in even dimensions.483

▶ Theorem 4.1 (Maximum Betti Numbers in R2k+1). For every d = 2k + 1 ≥ 1, n ≥ 2, and484

sufficiently small ∆ > 0, there are a set A = Ad(n,∆) ⊆ R2k+1 of N = (k + 1)(n+ 1) points485

and radii ρ0 < ρ1 < . . . < ρ2k such that486

βp(Čech(A, ρp)) =
(

k+1
p+1

)
· (n+ 1)p+1 ±O(1), for 0 ≤ p ≤ k; (25)487

βp(Čech(A, ρp)) =
(

k
p−k

)
· (n+ 1)k+1 ±O(nk), for k + 1 ≤ p ≤ 2k. (26)488

The steps in the proof are the same as in Sections 2 and 3: construction of the points, analysis489

of the circumradii, argument that all simplices are critical, and final counting of the cycles.490

In contrast to the earlier sections, the analytic part of the proof is inductive and distinguishes491

between erecting a pyramid or a bi-pyramid on top of a lower-dimensional simplex.492

4.1 Construction493

Equip Rd with Cartesian coordinates, x1, x2, . . . , xd, and consider a regular k-simplex, denoted494

by Σ, in the k-plane spanned by x1, x2, . . . , xk. It is not important where Σ is located inside495

the coordinate k-plane, but we assume for convenience that its barycenter is the origin of496

the coordinate system. It is, however, important that all edges of Σ have unit length. We497

will repeatedly need the squared circumradius, height, and in-radius of Σ, for which we state498

simple formulas and straightforward consequences for later convenience:499

R2
k = k

2(k+1) ; D2
k = 1

2k(k+1) ; H2
k = k+1

2k ; (27)500

(k + 1)Rk = kHk; (k + 1)R2
k−1 = (k − 1)H2

k ; (k + 1)Dk = Hk, (28)501

in which we get the second equation in (27) from D2
k = R2

k −R2
k−1. Observe that the angle,502

α, between an edge and a height of Σ that meet at a shared vertex satisfies cosα = Hk. Let503
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u0, u1, . . . , uk be the vertices of Σ, and let vℓ be the barycenter of the (k − 1)-face opposite504

to uℓ. For each 0 ≤ ℓ ≤ k, consider the 2-plane spanned by uℓ − vℓ and the xk+ℓ+1-axis,505

and let Cℓ be the circle in this 2-plane, centered at vℓ, that passes through uℓ; see Figure 3.506

Its radius is the height of the k-simplex: γ = Hk. Given a global choice of the parameter,507

0 < ∆ < Hk, we cut Cℓ at xk+ℓ+1 = ±∆ into four arcs and place n + 1 point at equal508

angles along the arc that passes through uℓ. Repeating this step for each ℓ, we get a set of509

N = (k + 1)(n+ 1) points, denoted A = A2k+1(n,∆).

v2
u0

C1

C2

C0

u2

v0

u1

v1

Figure 3: The projection of the 5-dimensional construction to R3, in which x3, x4, x5 are all
mapped to the same, vertical coordinate direction. The circles C0, C1, C2 touch the shaded sphere in
the vertices of the triangle. In R5, the three circles belong to mutually orthogonal 2-planes, so the
two common points of the three circles in the drawing are an artifact of the particular projection.

510

A (d − 1)-sphere that contains none of the circles Cℓ intersects the k + 1 circles in at511

most two points each. It follows that a sphere that passes through 2k + 2 points of Ad is512

empty if and only if it passes through two consecutive points on each of the k + 1 circles.513

This determines the Delaunay mosaic, which consists of nk+1 d-simplices together with all514

their faces. It follows that the number of p-simplices in Del(A) is at most some constant515

times nm, in which m = min{p+ 1, k+ 1} and the constant depends on d = 2k+ 1. Building516

on the notation introduced in Section 2, we describe each simplex, S ∈ Del(A), with two517

integers: ℓ = ℓ(S) is one less than the number of circles Cℓ that each contain one or two518

vertices of S, and j = j(S) is one less than the number of circles that each contain two519

vertices of S. Hence, S has dimension p = ℓ+ 1 + j, and j+ 1 of its edges are short. For each520

0 ≤ p ≤ k, there are
(

k+1
p+1

)
(n+ 1)p+1 p-simplices that touch ℓ+ 1 = p+ 1 circles and thus521

have j + 1 = 0 short edges. As suggested by a comparison with relation (25) in Theorem 4.1,522

these p-simplices will be found responsible for the p-cycles counted by the p-th Betti number.523

4.2 Distance from the Ideal524

The simplices we work with in odd dimensions are almost but not quite ideal. We quantify525

the difference by projecting a vertex orthogonally onto the affine hull of a face and measuring526

the distance between the projected vertex and the circumcenter of the face. We will see that527

this distance is small provided the face is far from the vertex, by which we mean that all528

edges connecting the vertex to the face are long. We prove this by first establishing bound529

on the lengths of long edges.530
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▶ Lemma 4.2 (Length of Long Edges in R2k+1). Let d = 2k + 1, 0 < ∆ < 1, and A =531

Ad(n,∆) ⊆ Rd. Then the squared length of any long edge satisfies 1 ≤ 4R2
E ≤ 1 + 2∆4.532

Proof. The length of E is maximized if its endpoints, a and b, are as far as possible from533

the affine hull of Σ. We therefore assume that both points have distance ∆ from this plane.534

Suppose a ∈ C0 and b ∈ C1, and write a′ and b′ for their projections onto aff Σ. Recall535

that u0 is the point shared by Σ and C0, and note that ∥a′ − u0∥ = ξ = γ −
√
γ2 − ∆2, in536

which γ is the radius of C0. Similarly, ∥b′ − u1∥ = ξ. Let α be the angle enclosed by an edge537

of Σ and a height of Σ that shares a vertex with the edge. Set η = ξ cosα and note that538

∥a′ − b′∥ = 1 − 2η. By construction of Σ as a regular simplex with unit length edges, we539

have cosα = γ, so540

∥a− b∥2 = (1 − 2η)2 + ∆2 + ∆2 =
(

1 − 2γ2 + 2γ
√
γ2 − ∆2

)2
+ 2∆2 (29)541

=
(
1 − 2γ2)2 + 4γ2 (

γ2 − ∆2)
+

(
2 − 4γ2)

2γ
√
γ2 − ∆2 + 2∆2 (30)542

=
(
1 − 4γ2 + 8γ4)

−
(
4γ2 − 2

) [
∆2 + 2γ

√
γ2 − ∆2

]
. (31)543

The squared radius of the circles is γ2 = (k+ 1)/(2k) > 1
2 , which implies 4γ2 − 2 > 0. Hence,544

we can bound ∥a− b∥2 from below using (12) to get
√
γ2 − ∆2 ≤ γ

[
1 − ∆2/(2γ2)

]
. Plugging545

this inequality into (31) and applying a sequence of elementary algebraic manipulations546

gives ∥a− b∥2 ≥ 1, as claimed. To prove the upper bound, we use (13) to get
√
γ2 − ∆2 ≥547

γ
[
1 − ∆2/(2γ2 − ∆2)

]
. Plugging this inequality into (31) gives548

∥a− b∥2 ≤
(
1 − 4γ2 + 8γ4)

−
(
4γ2 − 2

) [
∆2 + 2γ2 − 2γ2∆2

2γ2 − ∆2

]
(32)549

= 1 +
(
4γ2 − 2

) ∆4

2γ2 − ∆2 ≤ 1 + 2∆4, (33)550

where we use ∆ < 1 to get the final inequality. ◀551

Applying (12) to the bounds in Lemma 4.2, we get 1 ≤ 2RE ≤ 1 + ∆4. Since the length of552

every short edge is fixed to 2ε, and the length of every long edge is tightly controlled, all553

simplices are almost ideal. The next lemma quantifies this notion.554

▶ Lemma 4.3 (Distance from Ideal in R2k+1). Let d = 2k + 1, ∆ > 0 sufficiently small,555

A = Ad(n,∆) ⊆ Rd, S a simplex in Del(A), u a vertex of S, and Q ⊆ S a far face of u.556

Then the distance between the orthogonal projection of u onto aff Q and the circumcenter of557

Q is at most O(∆3).558

Proof. We begin with a triangle, S, with vertices u, v, w, such that the edges connecting559

u to v and w are both long. The edge connecting v to w may be long or short. Let δ be560

the distance of u from the bisector of v and w, which is maximized if ∥v − w∥ is as small as561

possible while the length difference between the edges connecting u to v and w is as large562

as possible. Assuming therefore that these two edges have squared lengths 1 and 1 + 2∆4,563

Pythagoras’ theorem implies (1 + 2∆4) − (ε+ δ)2 = 1 − (ε− δ)2. Canceling 1, ε2, and δ2 on564

both sides, we get ∆4 = 2εδ. Since nε ≥ ∆, this implies δ = ∆4/(2ε) ≤ n∆3/2.565

In other words, the distance between the projection of the vertex and the midpoint of the566

far edge is δ ≤ n∆3/2; see the left panel in Figure 4. As mentioned earlier, ∆ is independent567

of n, so we write n∆3/2 = O(∆3), which settles the claim for the triangles in Del(A).568

To generalize beyond triangles, suppose first that the far face of u is i-dimensional and569

has no short edges. For each long edge, we construct the slab of points between two parallel570
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hyperplanes, each parallel to and at distance n∆3/2 from the normal hyperplane that crosses571

the edge at its midpoint. As shown above, this slab contains u. The common intersection of572

the slabs of all edges of the face contains u, and the further intersection with the affine hull573

of the face contains the orthogonal projection of u onto the face. In the ideal case, this is574

a centrally symmetric polytope of dimension i with (i+ 1)i facets of dimension i− 1. The575

angle between any two adjacent facets is 120◦. For sufficiently small ∆ > 0, this angle is only576

negligibly larger than 120◦, so the polytope is contained in a ball of radius at most some577

constant times O(∆3) centered at the circumcenter of the face. By construction, u belongs578

to this ball, which implies the claimed bound for simplices without long edges. Any short579

edges are almost orthogonal to each other and to the long edges of the face. Each such edge580

defines a slab, and we can repeat the argument while adding these slabs into the mix. ◀581

4.3 Inductive Analysis582

This section continues the analysis with the goals to prove bounds on the circumradii that583

are strong enough to separate the Delaunay simplices of different types, and to show that all584

simplices are critical. We use induction, with two hypotheses: the first about the circumradius585

and the second about the circumcenter. To formulate the second hypothesis, we let S be a586

simplex, and write DS for the radius of the largest ball contained in S that is concentric587

with the circumsphere of S; see the middle panel in Figure 4. If the circumcenter lies outside588

S, then DS is zero, but we will see that this never happens. Recall that ε = ε(n,∆) is a589

function of n and ∆ that satisfies ∆/n ≤ ε ≤ π
2 ∆/n. We write ℓ+ 1 for the number of the590

Ci touched by S, and j + 1 for the number of short edges.

Figure 4: The ingredients for the analysis of the simplices. Left: each vertex of the equilateral
triangle projects orthogonally to the midpoint of the opposite edge. Middle: the largest disk inside
the equilateral triangle and concentric with the circumcircle is bounded by the inscribed circle.
Right: the tetrahedron with one short edge is a bi-pyramid with two apices and one base edge.

591

Hypothesis I: R2
S = R2

ℓ + j+1
(ℓ+1)2 ε

2 ±O(ε3).592

Hypothesis II: D2
S =

{
D2

ℓ ±O(ε2) if j = −1;
1

(ℓ+1)2 ε
2 ±O(ε3) if 0 ≤ j ≤ ℓ,

593

in which the big-Oh notation is used to suppress multiplicative constants, as usual. Since ∆594

is independent of n, we write ∆ = O(ε). The base case for the induction ascertains that the595

two hypotheses hold when S is a vertex (ℓ = 0, j = −1), a short edge (ℓ = j = 0), or a long596

edge (ℓ = 1, j = −1). We have R2
S = 0 if S is a vertex, R2

S = ε2 if S is a short edge, and597

1
4 ≤ R2

S ≤ 1
4 + 1

2 ∆4 if S is a long edge by Lemma 4.2, which verify Hypothesis I in all three598

cases. Hypothesis II is also clear. Indeed, the edge itself is the largest 1-ball contained in the599

edge and concentric with the circumsphere, so there is nothing to prove.600
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We will distinguish between two kinds of inductive steps, one reasoning from (ℓ− 1, j) to601

(ℓ, j) and the other from (ℓ, j − 1) to (ℓ, j). We need some notions to describe the difference.602

A facet of a simplex is a face whose dimension is 1 less than that of the simplex. We call a603

vertex a of S a twin if it is the endpoint of a short edge, in which case we write a′′ for the604

other endpoint of that edge. If a is not a twin, we write Q = S − a for the opposite facet,605

and call the pair (a,Q) a pyramid with apex a and base Q. If a is a twin, then there are two606

pyramids, (a, P ) and (a′′, P ) with P = S − a− a′′, and we call this the bi-pyramid case; see607

the right panel in Figure 4.608

4.3.1 Inductive Step (Pyramid Case)609

The inductive step consists of two lemmas. The first justifies the inductive step from (ℓ− 1, j)610

to (ℓ, j). It handles the transition from the base of a pyramid to the pyramid. Letting S be611

a simplex, zS its circumcenter, and (a,Q) be a pyramid of S, we write HQ,S and DQ,S for612

the distances of a and zS from aff Q, respectively.613

▶ Lemma 4.4 (Pyramid Step). Let d = 2k+ 1, ∆ > 0 sufficiently small, A = Ad(n,∆) ⊆ Rd,614

and ε = ε(n,∆). Furthermore, let S ∈ Del(A), write ℓ = ℓ(S) and j = j(S), assume j < ℓ,615

and let (a,Q) be a pyramid of S. Assuming Q satisfies Hypotheses I and II, we have616

H2
Q,S = H2

ℓ − j + 1
ℓ2 ε2 ±O(ε3); (34)617

D2
Q,S = D2

ℓ − (2ℓ+ 1)(j + 1)
ℓ2(ℓ+ 1)2 ε2 ±O(ε3); (35)618

R2
S = R2

ℓ + j + 1
(ℓ+ 1)2 ε

2 ±O(ε3); (36)619

Proof. By construction, ℓ(Q) = ℓ− 1 and j(Q) = j. Assume first that the projection of a620

onto aff Q is zQ, the circumcenter of Q. In this case, all edges connecting a to Q have the621

same length, 2RE . Pythagoras’ theorem implies H2
Q,S = 4R2

E −R2
Q. Using Lemma 4.2 and622

Hypothesis I, we get the bounds for the squared height claimed in (34):623

4R2
E = 1 ±O(∆4); (37)624

R2
Q = R2

ℓ−1 + j + 1
ℓ2 ε2 ±O(ε3); (38)625

H2
Q,S = H2

ℓ − j + 1
ℓ2 ε2 ±O(ε3), (39)626

where (39) follows from (37) and (38), using 1 − R2
ℓ−1 = H2

ℓ . This proves (34). Since627

(HQ,S −DQ,S)2 = R2
S and R2

Q +D2
Q,S = R2

S , we get H2
Q,S − 2DQ,SHQ,S = R2

Q. Therefore,628

DQ,S =
H2

Q,S −R2
Q

2HQ,S
= 1

2HQ,S − 1
2
R2

Q

HQ,S
; (40)629

RS = HQ,S −DQ,S = 1
2HQ,S + 1

2
R2

Q

HQ,S
. (41)630

Using the formulas for Rℓ, Hℓ, Dℓ in (27), it is easy to prove the corresponding relations for631

the regular ℓ-simplex: Dℓ = 1
2Hℓ − 1

2R
2
ℓ−1/Hℓ and Rℓ = 1

2Hℓ + 1
2R

2
ℓ−1/Hℓ. Starting with632
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(39), we use
√

1 − x = 1 − x
2 + . . . and 1/

√
1 − x = 1 + x

2 + . . . to get633

HQ,S = Hℓ − j + 1
2ℓ2Hℓ

ε2 ±O(ε3); (42)634

1
HQ,S

= 1
Hℓ

+ j + 1
2ℓ2H3

ℓ

ε2 ±O(ε3); (43)635

R2
Q

HQ,S
=
R2

ℓ−1
Hℓ

+
[
j + 1
ℓ2Hℓ

+
R2

ℓ−1(j + 1)
2ℓ2H3

ℓ

]
ε2 ±O(ε3), (44)636

where we multiply the left-hand sides and right-hand sides of (38) and (43) to get (44). We637

plug (42) and (44) into (40) and (41), while using the relations in (27) and (28):638

DQ,S =
[

1
2Hℓ − 1

2
R2

ℓ−1
Hℓ

]
−

[
j + 1
4ℓ2Hℓ

+ j + 1
2ℓ2Hℓ

+
R2

ℓ−1(j + 1)
4ℓ2H3

ℓ

]
ε2 ±O(ε3)639

= Dℓ − (2ℓ+ 1)(j + 1)
2ℓ2(ℓ+ 1)2Dℓ

ε2 ±O(ε3); (45)640

RS =
[

1
2Hℓ + 1

2
R2

ℓ−1
Hℓ

]
+

[
− j + 1

4ℓ2Hℓ
+ j + 1

2ℓ2Hℓ
+
R2

ℓ−1(j + 1)
4ℓ2H3

ℓ

]
ε2 ±O(ε3)641

= Rℓ + j + 1
2(ℓ+ 1)2Rℓ

ε2 ±O(ε3). (46)642

Taking squares, we get (35) and (36), but mind that this is only for the special case in which643

the apex projects orthogonally to the circumcenter of the base. To prove the bounds in the644

general case, we recall that Lemma 4.3 asserts that the projection of a onto aff Q is at most645

O(∆3) units of length from zQ. Hence, we get an additional error term of O(∆3) in all the646

above equations, but this does not change any of the bounds as stated. ◀647

Note that DS is the minimum of the DQ,S , over all facets Q of S. Hence, Lemma 4.4648

proves Hypothesis II in the case in which S has no short edges.649

4.3.2 Inductive Step (Bi-pyramid Case)650

The second kind of inductive step—from (ℓ, j − 1) to (ℓ, j)—makes use of a distance function651

between affine subspaces of Rd. In our case, the function measures the distance from a652

p-plane to a (d− 1)-plane, which is linear provided the distance is taken with a sign that is653

different on the two sides of the hyperplane.654

▶ Lemma 4.5 (Bi-pyramid Step). Let d = 2k+1, ∆ > 0 sufficiently small, A = Ad(n,∆) ⊆ Rd,655

and ε = ε(n,∆). Furthermore, let S ∈ Del(A), with ℓ = ℓ(S) and j = j(S) ≥ 0, and let656

a and a′′ be the endpoints of a short edge. Assuming Q = S − a′′ and Q′′ = S − a satisfy657

Hypotheses I and II, we have658

D2
Q,S = 1

(ℓ+ 1)2 ε
2 ±O(ε3); (47)659

R2
S = R2

ℓ + j + 1
(ℓ+ 1)2 ε

2 ±O(ε3); (48)660

Proof. By construction, ℓ(Q) = ℓ(Q′′) = ℓ, j(Q) = j(Q′′) = j − 1, and (a,Q − a) and661

(a′′, Q′′ − a′′) are pyramids. We write P = Q− a = Q′′ − a′′ for the common base, which has662

ℓ(P ) = ℓ−1 and j(P ) = j−1. Let M be the bisector of a and a′′. It intersects the short edge663

orthogonally at its midpoint. Letting ψ : aff Q → R map each point of aff Q to its distance664
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from the nearest point on M , we have ψ(a) = ε and, by Lemma 4.3, ψ(b) = O(∆3), for each665

vertex b of P . Let a′ be the projection of a onto aff P . By Hypothesis II and Lemma 4.3,666

a′ is closer to zP than the radius of the largest ball centered at zP which is contained in P .667

Hence, a′ ∈ P , so ψ(a′) = O(∆3) by the linearity of the signed version of ψ. To compute the668

gradient of this linear function, we recall Lemma 4.4, which asserts669

H2
P,Q = H2

ℓ − j

ℓ2 ε
2 ±O(ε3); (49)670

D2
P,Q = D2

ℓ − (2ℓ+ 1)j
ℓ2(ℓ+ 1)2 ε

2 ±O(ε3). (50)671

We compute the length of the gradient as the ratio of the difference in function value, which is672

ε, and the distance between the points, as given in (49). Using (13) to simplify the expression,673

we first get the length of the gradient of ψ and second the value at the circumcenter of Q:674

∥∇ψ∥ = ε

HP,Q
±O(∆3) = ε

Hℓ
±O(ε3); (51)675

ψ(zQ) = Dℓ · ε
Hℓ

±O(ε3) = ε

ℓ+ 1 ±O(ε3), (52)676

in which we exploit that (50) gives a bound on the distance of the circumcenter from P , and677

we use (28) to get the right-hand side. Hence, ∥zQ − zS∥ = ε/(ℓ+ 1) ±O(ε3), which implies678

D2
Q,S = 1

(ℓ+ 1)2 ε
2 ±O(ε3); (53)679

R2
S = R2

Q + 1
(ℓ+ 1)2 ε

2 ±O(ε3) = R2
ℓ + j + 1

(ℓ+ 1)2 ε
2 ±O(ε3), (54)680

where we used the inductive assumption for R2
Q to obtain the bounds for R2

S . This proves681

(47) and (48). ◀682

This completes the inductive argument, establishing Hypotheses I and II. In particular,683

the bounds furnished for the DQ,S imply the required bound for DS , which is the minimum684

over all facets Q of S.685

4.4 All Simplices are Critical686

The above analysis implies that for sufficiently small ∆ > 0 the circumcenter of every simplex687

in Del(A) is contained in the interior of the simplex. This is half of the proof that all simplices688

in Del(A) are critical. The second half of the proof is not difficult.689

▶ Corollary 4.6 (All Critical in R2k+1). Let d = 2k + 1, n ≥ 2, ∆ > 0 sufficiently small, and690

A = Ad(n,∆) ⊆ Rd. Then every simplex in Del(A) is a critical simplex of Rad: Del(A) → R.691

Proof. A simplex S ∈ Del(A) is a critical simplex of Rad iff it contains the circumcenter in692

its interior, and the (d − 1)-sphere centered at the circumcenter and passing through the693

vertices of S does not enclose or pass through any of the other points of A. By Hypothesis II,694

the first condition holds. To derive a contradiction, assume the second condition fails for695

S ∈ Del(A). In other words, there is a point, b ∈ A, that is not a vertex of S but it is enclosed696

by or lies on the said (d− 1)-sphere. If dimS = d, then the (d− 1)-sphere intersects each697

circle in two points; that is: each Cℓ for 0 ≤ ℓ ≤ k. But in this case, there is no possibility698

for another point to interfere, so we may assume dimS < d.699

Since a sphere and a circle intersect in at most two points, we may assume that b lies700

on a circle not touched by S, or that b neighbors a vertex of S along its circle, and it is701
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the only vertex of S on this circle. Then we can add b as a new vertex to get a simplex702

T with dimT = dimS + 1. This simplex also belongs to Del(A) and, by construction, its703

circumcenter lies beyond the face S as seen from the new vertex of T . In other words, the704

circumcenter does not lie in its interior, which contradicts Hypothesis II. ◀705

4.5 Counting the Cycles706

The final counting argument is similar to the one for even dimensions, with a few crucial707

differences. Instead of congruent simplices, we have almost congruent simplices in odd708

dimensions, but they are similar enough to be separated by their circumradii.709

▶ Corollary 4.7 (Ordering of Radii in R2k+1). Let d = 2k+ 1, n ≥ 2, ∆ > 0 sufficiently small,710

A = A2k+1(n,∆) ⊆ R2k+1, and Rad: Del(A) → R the radius function. Then the circumradii711

of two simplices, S, T ∈ Del(A), satisfy Rad(S) < Rad(T ) if ℓ(S) < ℓ(T ), or ℓ(S) = ℓ(T )712

and j(S) < j(T ).713

Proof. By Corollary 4.6, the circumradii are the values of the simplices under the radius714

function, and by Hypothesis I, the circumradii are segregated into groups according to the715

number of touched circles and the number of short edges. It follows that the values of Rad716

are segregated the same way. ◀717

Let ϱℓ,j be a threshold so that Rad(S) < ϱℓ,j < Rad(T ) for all simplices S and T that718

satisfy ℓ(S) < ℓ or ℓ(S) = ℓ and j(S) ≤ j, and ℓ(T ) > ℓ or ℓ(T ) = ℓ and j(T ) > j. For719

0 ≤ ℓ ≤ k and −1 ≤ j ≤ k, we are interested in three kinds of these thresholds:720

ϱℓ−1,ℓ−1, which separates the simplices that touch at most ℓ circles from those that touch721

at least ℓ+ 1 circles;722

ϱℓ,−1, which separates the ℓ-simplices without short edges from the other simplices that723

touch the same number of circles;724

ϱk,j , which separates the (k + j + 1)-simplices that touch all k + 1 circles from the725

(k + j + 2)-simplices that touch all k + 1 circles.726

We begin by studying the Alpha complexes defined by the first type of thresholds, Aℓ−1,ℓ−1 =727

Rad−1[0, ϱℓ−1,ℓ−1].728

▶ Lemma 4.8 (Constant Homology in R2k+1). Let d = 2k+ 1 be a constant, A = Ad(n,∆) ⊆729

R2k+1, and 1 ≤ ℓ ≤ k. Then βp(Aℓ−1,ℓ−1) = O(1) for every p.730

Proof. Pick ℓ of the k + 1 circles used in the construction of A, let A′ ⊆ A be the points731

on these ℓ circles, and note that the full subcomplex of Del(A) with vertices in A′ has no732

non-trivial (reduced) homology. We may collapse this full subcomplex to a single (ℓ− 1)-733

simplex. Aℓ−1,ℓ−1 is the union of
(

k+1
ℓ

)
such full subcomplexes of Del(A), one for each choice734

of ℓ circles. The intersections of these subcomplexes are of the same type, namely induced735

subcomplexes of Del(A) for the points on ℓ or fewer of the circles. Hence, Aℓ−1,ℓ−1 has the736

homotopy type of the complete (ℓ− 1)-dimensional simplicial complex with k+ 1 vertices. Its737

(ℓ− 1)-st homology group is the only non-trivial homology group, and its rank is a constant738

independent of n and ∆, as required. ◀739

To prove relation (25) of Theorem 4.1, we second consider the Alpha complexes defined740

by the second type of thresholds, Aℓ,−1 = Rad−1[0, ϱℓ,−1]. This complex is Aℓ−1,ℓ−1 together741

with all ℓ-simplices without short edges. By Lemma 4.8, only a constant number of them742

give death to (ℓ− 1)-cycles, while all others give birth to ℓ-cycles. This implies that the rank743

of the ℓ-th homology group of Aℓ,−1 is the number of ℓ-simplices without short edges minus744
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a constant, which is
(

k+1
ℓ+1

)
(n+ 1)ℓ+1 ±O(1). This construction works for 0 ≤ ℓ ≤ k, which745

implies relation (25).746

To prove relation (26) inductively, we third consider the Alpha complexes defined by the747

third type of thresholds, Ak,j = Rad−1[0, ϱk,j ], for 0 ≤ j ≤ k. The induction hypothesis is748

βp(Ak,p−k−1) =
(

k
p−k

)
· (n+ 1)k+1 ±O(nk), (55)749

and we use the case p = k of relation (25) as the induction basis. The difference between750

Ak,p−k−1 and Ak,p−k are the (p+ 1)-simplices with p− k + 1 short edges. Their number is751 (
k+1

p−k+1
)

· (n+ 1)2k−pnp−k+1 =
(

k+1
p−k+1

)
· (n+ 1)k+1 ±O(nk), (56)752

This number divides up into the ones that give death and the remaining ones that give birth.753

Since
(

k+1
p−k+1

)
−

(
k

p−k

)
=

(
k

p−k+1
)
, this implies754

βp+1(Ak,p−k) =
(

k
p−k+1

)
· (n+ 1)k+1 ±O(nk), (57)755

as needed to finish the inductive argument.756

4.6 Voids in Even Dimensions757

We return to the one case in d = 2k dimensions that is not covered by the construction in758

Section 2, namely the (2k − 1)-st Betti number. It counts the top-dimensional holes, which759

we refer to as voids. Notwithstanding that the construction in Section 2 does not provide760

any voids, Theorem 2.1 claims the existence of N = k(n+ 1) + 2 points in R2k and a radius761

such that β2k−1 = nk ±O(nk−1).762

The set of N points whose Čech complex has that many voids is a straightforward763

modification of the construction in 2k− 1 dimensions: place A = A2k−1(n,∆) in the (2k− 1)-764

dimensional hyperplane x2k = 0 in R2k. Every (2k − 2)-cycle—which corresponds to a void765

in 2k − 1 dimensions—is now a pore in the hyperplane that connects the two half-spaces. In766

the odd-dimensional construction, all pores arise when the radius is roughly Rk−1 ≥ 1
2 , and767

they are located in a small neighborhood of the origin. By choosing ∆ > 0 sufficiently small,768

we can make this neighborhood arbitrarily small. It is thus easy to add two points, one on769

each side of the hyperplane, such that their balls close the pores from both sides and turn770

them into voids in R2k. More formally, the two points doubly suspend each (2k − 2)-cycle771

into a (2k − 1)-cycle. Hence, Theorem 4.1 for d = 2k − 1 and p = 2k − 2, which gives772

βp = (n+ 1)k ±O(nk−1), provides the missing case in the proof of Theorem 2.1.773

5 Discussion774

In this paper, we give asymptotically tight bounds for the maximum p-th Betti number of775

the Čech complex of N points in Rd. These bounds also apply to the related Alpha complex776

and the dual union of equal-size balls in Rd. They do not apply to the Vietoris–Rips complex,777

which is the flag complex that shares the 1-skeleton with the Čech complex for the same778

data. In other words, the Vietoris–Rips complex can be constructed by adding all 2- and779

higher-dimensional simplices whose complete set of edges belongs the 1-skeleton of the Čech780

complex. This implies β1(Rips(A, r)) ≤ β1(Čech(A, r)), since adding a triangle may lower781

but cannot increase the first Betti number.782

As proved by Goff [15], the 1-st Betti number of the Vietoris–Rips complex of N points783

is O(N), for all radii and in all dimensions, so also in R3. Compare this with the quadratic784



XX:22 Maximum Betti Numbers of Čech Complexes

lower bound for Čech complexes proved in this paper. This implies that the first homology785

group of this Čech complex has a basis in which most generators are tri-gons; that is: the786

three edges of a triangle. The circumradius of a tri-gon is less than
√

2 times the half-length787

of its longest edge, which implies that most of the Θ(N2) generators exist only for a short788

range of radii. In the language of persistent homology [9], most points in the 1-dimensional789

persistence diagram represent 1-cycles with small persistence. Similarly, the 2-nd Betti790

number of a Vietoris–Rips complex in R3 is o(N2) [15], compared to that of a Čech complex,791

which can be Θ(N2). Hence, most points in the corresponding persistence diagram represent792

2-cycles with small persistence.793
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