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—— Abstract

The Upper Bound Theorem for convex polytopes implies that the p-th Betti number of the Cech
complex of any set of N points in R? and any radius satisfies 8, = O(N™), with m = min{p+1, [d/2]}.
We construct sets in even and odd dimensions that prove this upper bound is asymptotically tight.
For example, we describe a set of N = 2(n + 1) points in R® and two radii such that the first Betti
number of the Cech complex at one radius is (n + 1)® — 1, and the second Betti number of the Cech

complex at the other radius is n?.
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1 Introduction

Given a finite set of points A C R? and a radius r > 0, the Cech complex of A and r consists
of all subsets B C A for which the intersection of the closed balls of radius r centered at the
points in B is non-empty. This is an abstract simplicial complex isomorphic to the nerve of
the balls, and by the Nerve Theorem [5], it has the same homotopy type as the union of the
balls. This property is the reason for the popularity of the Cech complex in topological data
analysis; see e.g. [7, 9]. Of particular interest are the Betti numbers of the union of balls,
which may be interpreted as the numbers of holes of different dimensions. These are intrinsic
properties, but for a space embedded in R?, they describe the connectivity of the space as
well as that of its complement. Most notably, the (reduced) zero-th Betti number, Sy, is one
less than the number of connected components, and the last possibly non-zero Betti number,
Ba—1, is the number of voids (bounded components of the complement). Spaces that have the
same homotopy type—such as a union of balls and the corresponding Cech complex—have
identical Betti numbers. While the Cech complex is not necessarily embedded in R?, the
corresponding union of balls is, which implies that also the Cech complex has no non-zero
Betti numbers beyond dimension d — 1. To gain insight into the statistical behavior of the
Betti numbers of Cech complexes, it is useful to understand how large the numbers can get,
and this is the question we study in this paper.

The question of maximum Betti numbers lies at the crossroads of computational topology
and discrete geometry. Originally inspired by problems in the theory of polytopes [19,
27], optimization [22], robotics, motion planning [23], and molecular modeling [20], many
interesting and surprisingly difficult questions were asked about the complexity of the union
of n geometric objects, as n tends to infinity. For a survey, consult [1]. Particular attention
was given to estimating the number of voids among N simply shaped bodies, e.g., for the
translates of a fixed convex body in RY. In the plane, the answer is typically linear in N (for
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instance, for disks or other fat objects), but for d = 3, the situation is more delicate. The
maximum number of voids among N translates of a convex polytope with a constant number
of faces is ©(IN?), but this number reduces to linear for the cube and other simple shapes [3].
It was conjectured for a long time that similar bounds hold for the translates of a convex
shape that is not necessarily a polytope. However, this turned out to be false: Aronov,
Cheung, Dobbins and Goaoc [2] constructed a convex body in R? for which the number
of voids is Q(N3). This is the largest possible order of magnitude for any arrangement of
convex bodies, even if they are not translates of a fixed one [18]. It is an outstanding open
problem whether there exists a centrally symmetric convex body with this property.

For the special case where the convex body is the unit ball in R3, the maximum number of
voids in a union of N translates is O(NN?). This can be easily derived from the Upper Bound
Theorem for 4-dimensional convex polytopes. It has been open for a long time whether this
bound can be attained. Our main theorem answers this question in the affirmative, in a
more general sense.

» Main Theorem. For everyd>1,0<p<d—1, and N > 1, there is a set of N points in
R? and a radius such that the p-th Betti number of the Cech complex of the points and the
radius is B, = O(N™), with m = min{p + 1, [d/2]}.

For d = 3, the maximum second Betti number is 8, = O(N?), which is equivalent to the
maximum number of voids being ©(N?). In addition to the Cech complex, the proof of the
Main Theorem makes use of three complexes defined for a set of N points, A C R?, in which
the third also depends on a radius r» > 0:

the Voronoi domain of a point a € A, denoted dom(a, A), contains all points = € R? that
are at least as close to a as to any other point in A, and the Voronoi tessellation of A,
denoted Vor(A), is the collection of domains dom(a, A) with a € A [25];

the Delaunay mosaic of A, denoted Del(A), contains the convex hull of ¥ C A if the
common intersection of the dom(a, A), with a € ¥, is non-empty, and no other Voronoi
domain contains this common intersection [8]; it is closed under taking faces and therefore
is a polyhedral complex;

the Alpha complex of A and r, denoted Alf(A,r), is the subcomplex of the Delaunay
mosaic that contains the convex hull of ¥ if the common intersection of the dom(a, A),
with @ € ¥, contains a point at distance at most r from the points in ¥; see [10, 11]. If a
cell in Del(A) satisfies this property, then all its faces satisfy the property, which implies
that Alf(r, A) is a complex, and thus indeed a subcomplex of Del(A).

The Delaunay mosaic is also known as the dual of the Voronoi tessellation, or the Delaunay
triangulation of A. Note that Alf(A,r) C Alf(A, R) whenever r < R, and that for sufficiently
large radius, the Alpha complex is the Delaunay mosaic. Similar to the Cech complex, the
Alpha complex has the same homotopy type as the union of balls with radius r centered
at the points in A, and thus the same Betti numbers. It is instructive to increase r from 0
to oo and to consider the filtration or nested sequence of Alpha complexes. The difference
between an Alpha complex, K, and the next Alpha complex in the filtration, L, consists
of one or more cells. If it is a single cell of dimension p, then either §,(L) = 8,(K) + 1 or
Bp—1(L) = Bp—1(K) — 1, and all other Betti numbers are the same. In the first case, we say
the cell gives birth to a p-cycle, while in the second case, it gives death to a (p — 1)-cycle, and
in both cases we say it is critical. If there are two or more cells in the difference, this may
be a generic event or accidental due to non-generic position of the points. In the simplest
generic case, we simultaneously add two cells (one a face of the other), and the addition is
an anti-collapse, which does not affect the homotopy type of the complex. More elaborate



80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Edelsbrunner, Pach

anti-collapses, such as the simultaneous addition of an edge, two triangles, and a tetrahedron,
can arise generically. The cells in an interval of size 2 or larger cancel each other’s effect on
the homotopy type, so we say these cells are non-critical. We refer to [4] for more details.

With these notions, it is not difficult to prove the upper bounds in the Main Theorem. As
mentioned above, the Cech and alpha complexes for radius 7 have the same Betti numbers.
Since a p-cycle is given birth to by a p-cell in the filtration of Alpha complexes, and every
p-cell gives birth to at most one p-cycle, the number of p-cells is an upper bound on the
number of p-cycles, which are counted by the p-th Betti number. The number of p-cells in the
Alpha complex is at most that number in the Delaunay mosaic, which, by the Upper Bound
Theorem for convex polytopes [19, 27], is at most O(N™), with m = min{p + 1, [d/2]}.

By comparison, to come up with constructions that prove matching lower bounds is delicate
and the main contribution of this paper. Our constructions are multipartite and inspired by
Lenz’ constructions related to Erdés’s celebrated question on repeated distances [13]: “what
is the largest number of point pairs {a,b} in an N-element set in R? with |la —b|| = 1?”
Lenz noticed that in 4 (and higher) dimensions, this maximum is ©(N?). To see this, take
two circles of radius v2/2 centered at the origin, lying in two orthogonal planes, and place
[N/2] and | N/2] points on them. By Pythagoras’ theorem, the distance between any two
points on different circles is 1, so the number of unit distances is roughly N2/4, which is
nearly optimal. For d = 2 and 3, we are far from knowing asymptotically tight bounds. The
current best constructions give Q(N l4c/loglog N ) unit distance pairs in the plane [6, page
191] and Q(N*/31loglog N) in R3, while the corresponding upper bounds are O(N*/3) and
O(N?/?); see [24] and [17, 26]. Even the following, potentially simpler, bipartite repeated
distance question is open in R3: “given N red points and N blue points in R?, such that
the minimum distance between a red and a blue point is 1, what is the largest number of
red-blue point pairs that determine a unit distance?” The best known upper bound, due to
Edelsbrunner and Sharir [12] is O(N*/3), but we have no superlinear lower bound. This last
question is closely related to the subject of our present paper.

It is not difficult to see that the upper bounds in the Main Theorem also hold for the
Betti numbers of the union of N not necessarily congruent balls in R?. This requires the
use of weighted versions of the Voronoi tessellation and the Upper Bound Theorem. In the
lower bound constructions, much of the difficulty stems from the fact that we insist on using
congruent balls. This suggests the analogy to the problem of repeated distances.

Outline. Section 2 proves the Main Theorem for sets in even dimensions. Starting with
Lenz’ constructions, we partition the Delaunay mosaic into finitely many groups of congruent
simplices. We compute the radii of their circumspheres and obtain the Betti numbers by
straightforward counting. In Section 3, we establish the Main Theorem for sets in three
dimensions. The situation is more delicate now, because the simplices of the Delaunay mosaic
no longer fall into a small number of distinct congruence classes. Nevertheless, they can
be divided into groups of nearly congruent simplices, which will be sufficient to carry out
the counting argument. In Section 4, we extend the result to any odd dimension. Again we
require a detailed analysis of the shapes and sizes of the simplices, which now proceeds by
induction on the dimension. Section 5 contains concluding remarks and open questions.

2 Even Dimensions

In this section, we give an answer to the maximum Betti number question for Cech complexes
in even dimensions. To state the result, let n; be the minimum integer such that the edges
of a regular ng-gon inscribed in a circle of radius v/2/2 are strictly shorter than \/2/k. For
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k =1 we have n; = 3, and for kK = 2 we have ny, = 5, because the side length of an inscribed
square is equal to 1.

» Theorem 2.1 (Maximum Betti Numbers in ]R%). For every 2k > 2 and n > ny, there exist
a set A of N = kn points in R?* and radii pg < py < ... < par—o such that

By(Cech(4, pp)) = (1) - 0?71 £0(1), for0<p<k—1; (1)
By(Cech(4, py)) = (,171) -n* £O(1), for k <p <2k —2. (2)

For p =2k — 1, there exist N = k(n + 1) + 2 points in R** and a radius such that the p-th
Betti number of the Cech complex is n* + O(n*~1).

The reason for the condition n > ny will become clear in the proof of Lemma 2.5, which
establishes a particular ordering of the circumradii of the cells in the Delaunay mosaic. The
proof of the cases 0 < p < 2k — 2 is not difficult and uses elementary computations, the
results of which will be instrumental for establishing the more challenging odd-dimensional
statements in Sections 3 and 4. The proof consists of four steps presented in four subsections:
the construction of the point set in Section 2.1, the geometric analysis of the simplices in
the Delaunay mosaic in Section 2.2, the ordering of the circumradii in Section 2.3, and the
final counting in Section 2.4. The proof of the case p = 2k — 1 in R?* readily follows the case
p =2k —2in R?*~1 as we will explain in Section 4.6.

2.1 Construction

Let d = 2k. We construct a set A = Agy(n) of N = kn points in R? using k concentric circles
in mutually orthogonal coordinate planes: for 0 < ¢ < k — 1, the circle Cy with center at the
origin, 0 € R%, is defined by x%zﬂ + 333“_2 = % and x; = 0 for all ¢ # 204+ 1,2¢ + 2. On each

of the k circles, we choose n > 3 points that form a regular n-gon. The length of the edges
V2
2
the condition n > nj implies that the Euclidean distance between consecutive points along

of these n-gons will be denoted by 2s. Obviously, we have s = sin . Assuming k > 2,
the same circle is less than 1, and by Pythagoras’ theorem, the distance between any two
points on different circles is 1. It follows that for r = %, neighboring balls centered on the
same circle overlap, while the balls centered on different circles only touch. Correspondingly,
the first Betti number of the Cech complex for a radius slightly less than % is f1 = k. To get
the first Betti number for r = %, we add all edges of length 1, of which k — 1 connect the k
circles into a single connected component, while the others increase the first Betti number to
Br=k+n?— (k-1 =En2+1

To generalize the analysis beyond the first Betti number, we consider the Delaunay mosaic
and two radii defined for each of its cells. The circumsphere of a p-cell is the unique (p — 1)-
sphere that passes through its vertices, and we call its center and radius the circumcenter
and the circumradius of the cell. To define the second radius, we call a (d — 1)-sphere empty
if all points of A lie on or outside the sphere. The radius function on the Delaunay mosaic,
Rad: Del(A) — R, maps each cell to the radius of the smallest empty (d — 1)-sphere that
passes through the vertices of the cell. By construction, each Alpha complex is a sublevel set
of this function: Alf(A,r) = Rad~'[0,7]. The two radii of a cell may be different, but they
agree for the critical cells as defined in terms of their topological effect in the introduction.
It will be convenient to work with the corresponding geometric characterization of criticality:

» Definition 2.2 (Critical Cell). A critical cell of Rad: Del(A) — R is a cell ¥ € Del(A)
that (1) contains the circumcenter in its interior, and (2) the (d — 1)-sphere centered at the
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circumcenter that passes through the vertices of ¥ is empty and the vertices of ¥ are the only
points of A on this sphere.

There are two conditions for a cell to be critical for a reason. The first guarantees that
its topological effect is not canceled by one of its faces, and the second guarantees that it
does not cancel the topological effect of one of the cells it is a face of. As proved in [4],
the radius function of a generic set, A C R%, is generalized discrete Morse; see Forman [14]
for background on discrete Morse functions. This means that each level set of Rad is a
union of disjoint combinatorial intervals, and a simplex is critical iff it is the only simplex in
its interval. Our set A is not generic because the (d — 1)-sphere with center 0 € R?* and
radius v2/2 passes through all its points. Indeed, Del(A) is really a 2k-dimensional convex
polytope, namely the convex hull of A and all its faces. Nevertheless, the distinction between
critical and non-critical cells is still meaningful, and all cells in the Delaunay mosaic of our
construction will be seen to be critical.

The value of the 2k-polytope under the radius function is v2/2, while the values of its
proper faces are strictly smaller than v2/2. Let ¥, ; be such a face, in which ¢ + 1 is the
number of circles that contain one or two of its vertices, and j + 1 is the number of circles
that contain two. This face is a simplex of dimension dim¥,; = ¢+ 1+ j, and it has j +1
disjoint short edges of length 2s, while the remaining long edges all have unit length. Indeed,
the geometry of the simplex is determined by ¢ and j and does not depend on the circles
from which we pick the vertices or where along these circles we pick them, as long as two
vertices from the same circle are consecutive along this circle. For example, 31 _1, 31,0, and
Y1,1 are the unit length edge, the isosceles triangle with one short and two long edges, and
the tetrahedron with two disjoint short and four long edges, respectively. We call the ¥ ;
ideal simplices. In even dimensions they are precisely the simplices in the Delaunay mosaic
of our construction. However, in odd dimensions, the cells in the Delaunay mosaic only
converge to the ideal simplices. This will be explained in detail in Sections 3 and 4.

2.2 Circumradii of Ideal Simplices

In this section, we compute the sizes of some ideal simplices, beginning in four dimensions.

The ideal 2-simplex or triangle, denoted X o, is the isosceles triangle with one short and two
long edges. We write h(s) for the height of 31 ¢ (the distance between the midpoint of the
short edge and the opposite vertex), and r(s) for the circumradius. There is a unique way
to glue four such triangles to form the boundary of a tetrahedron: the two short edges are
disjoint and their endpoints are connected by four long edges. This is the ideal 3-simplex or
tetrahedron, denoted X1 1. We write H(s) for its height (the distance between the midpoints
of the two short edges), and R(s) for its circumradius.

» Lemma 2.3 (ldeal Triangle and Tetrahedron). The squared heights and circumradii of the
ideal triangle and the ideal tetrahedron in R* satisfy

1
= 1_ 82’ (3)

H?(s) =1 - 25, 4R*(s) = 1+ 25> (4)

h%(s) =1 — 52, 4% (s)

Proof. By Pythagoras’ theorem, the squared height of the ideal triangle is h? = 1 — s2. If
we glue the two halves of a scaled copy of the ideal triangle to the two halves of the short
edge, we get a quadrangle inscribed in the circumcircle of the triangle. One of its diagonals
passes through the center, and its squared length satisfies 47 = 1+ (s/h)? =1+ %

XX:5
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By Pythagoras’ theorem, the squared height of the ideal tetrahedron is H? = h% — 5% =
1 —2s2%. Hence, the squared diameter of the circumsphere is 4R? = H% + (25)? = 1+2s%. <

To generalize the analysis beyond the ideal simplices in four dimensions, we write r, j(s) for
the circumradius of Xy j, so 7 _4(s) = i 710(8) = 7(s), and ry ;(s) = R(s). For two kinds
of ideal simplices, the circumradii are particularly easy to compute, namely for the ¥, _; and
the ¥, ¢, and we will see that knowing their circumradii will be sufficient for our purposes.

» Lemma 2.4 (Further Ideal Simplices). For ¢ > 0, the squared circumradii of Xy _1 and X
satisfy 7 _ (s) = £/(20+2) and 77 ,(s) = (£ +25%)/(2€ + 2).

Proof. Consider the standard ¢-simplex, which is the convex hull of the endpoints of the £+ 1
unit coordinate vectors in R*1. Its squared circumradius is the squared distance between
the barycenter and any one of the vertices, which is easy to compute. By comparison, the
squared circumradius of the regular ¢-simplex with unit length edges is half that of the
standard ¢-simplex:

pole 1 1] ¢
CT o T T v T2ty

()

Since 77 _(s) = R, this proves the first equation in the lemma. Note that the convex hull
of the midpoints of the ¢ + 1 short edges of ¥, is a regular ¢-simplex with edges of squared
length H?(s) = 1 — 2s2. The short edges are orthogonal to this f-simplex, which implies

76-1—232
22U+ 27

3, =H?(s)- Rj + s> = R} + (1 - 2R})s” (6)

which proves the second equation in the lemma. <

2.3 Ordering the Radii

In this subsection, we show that the radii of the circumspheres of the ideal simplices increase
with increasing ¢ and j:

» Lemma 2.5 (Ordering of Radii in R?*). Let 0 < s < 1/v/2k. Then the ideal simplices
satisfy vy o(8) <7Tpyq 1(8) for 0 <L <k—2, andry;(s) <ry; (s) for =1 <j<l<k—1

Proof. To prove the first inequality, we use Lemma 2.4 to compute the difference between
the two squared radii:

2 2 41 (425>  1-25*(0+2)
Te+1,—1(3) _W,e(s) 2012 - 20+ 1) 20+ +1) (7)

Hence, r?’g(s) < r§+1)71(s) iff s2 < 1/(2¢ +4). We need this inequality for 0 < ¢ < k — 2, so
52 < 1/(2k) is sufficient, but this is guaranteed by the assumption.

We prove the second inequality geometrically, without explicit computation of the radii.
Fix an ideal simplex, ¥, ;, and let S~ be the (d — 1)-sphere whose center and radius are
the circumcenter and circumradius of ¥, ;. Assume w.l.o.g. that the circles Cy to C; contain
two vertices of 3, ; each, and the circles Cj 1 to C; contain one vertex of ¥, ; each. For
0 <i< k-1, write P; for the 2-plane that contains C; and z; for the projection of the center
of S9-1 onto P,. Note that ||371H2 is the squared distance to the origin, and for 0 < i < ¢
write 77 for the squared distance between z; and the one or two vertices of ¥, ; in P;. Fixing
i between 0 and /, the squared radius of S9~1 is r? plus the squared distance of the center of
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59=1 from P;, which is the sum of the squared norms other than ||z;]|>. Taking the sum for
0 <i < ¢ and dividing by £+ 1, we get

ORI EED SN (R (TR D o (5)

By construction, ri j (s) is the minimum squared radius of any (d — 1)-sphere that passes
through the vertices of X, ;. Hence, also the right-hand side of (8) is a minimum, but since
the 2-planes are pairwise orthogonal, we can minimize in each 2-plane independently of the

other. For £+ 1 < i < k — 1, this implies ||z;]|*> = 0, so we can drop the last sum in (8).
For j +1 <1 < ¥, x; lies on the line passing through the one vertex in P; and the origin.

This implies that S?~! touches C; at this vertex, and all other points of the circle lie strictly
outside S9!, For 0 < i < j, z; lies on the bisector line of the two vertices, which passes
through the origin. The contribution to (8) for an index between 0 and j is thus strictly
larger than for an index between j + 1 and . This finally implies 77 ;(8) < ri j+1(8) and
completes the proof of the second inequality. <

Recall that 2s is the edge length of a regular n-gon inscribed in a circle of radius v/2/2.

By the definition of ny, the condition s < 1/v/2k in the lemma holds, whenever n > ny.

For the counting argument in the next subsection, we need the ordering of the radii
as defined by the radius function, but it is now easy to see that they are the same as the
circumradii, so Lemma 2.5 applies. Indeed, Rad (X ;) = r, ;(s) if X, ; is a critical simplex of
Rad. To realize that it is, we note that the circumcenter of 3, ; lies in its interior because of
symmetry. To see that also the second condition for criticality in Definition 2.2 is satisfied,
we recall that S9! is the (d — 1)-sphere whose center and radius are the circumcenter and
circumradius of 3, ;. By the argument in the proof of Lemma 2.5, S9=1 is empty, and all
points of A other than the vertices of 3, ; lie strictly outside this sphere.

2.4 Counting the Cycles

To compute the Betti numbers, we make essential use of the structure of the Delaunay mosaic
of A, which consists of as many groups of congruent ideal simplices as there are different
values of the radius function. For each 0 < ¢ < k — 1, we have £ 4 2 groups of simplices that
touch exactly £+ 1 of the k circles. In addition, we have a single 2k-cell, conv A, With radius
v2/2, which gives 1 +2+ ...+ (k+1) = (k+2) groups. We write A, ; = Rad™ [O,TM] for
the Alpha complex that consists of all simplices with circumradii at most Toj =T, ](s) We
prove Theorem 2.1 in two steps, first the relations (1) for 0 < p < k — 1 and second the
relations (2) for k < p < 2k — 2. The case p = 2k — 1 will be settled later, in Section 4.6. To
begin, we study the Alpha complexes whose simplices touch at most ¢ + 1 of the k circles.

» Lemma 2.6 (Constant Homology in R?*). Let k be a constant, A = Agi(n) C R?*, and
0<{¢<k—1. Then B,(Ape) = O(1) for every 0 <p <2k — 1.

Proof. Fix ¢ and a subset of £+ 1 circles. The full subcomplex of A, ¢ defined by the points
of A on these ¢ + 1 circles consists of all cells in Del(A) whose vertices lie on these and not
any of the other circles. Its homotopy type is that of the join of £ 4 1 circles or, equivalently,
that of the (2¢ + 1)-sphere; see [16, pages 9 and 19]. This sphere has only one non-zero

(reduced) Betti number, which is 8241 = 1. There are ( ¥ ) such full subcomplexes. The

e+1)
common intersection of any number of these subcomplexes is a complex of similar type,
namely the full subcomplex of Del(A) defined by the points on the common circles, which

has the homotopy type of the (2i + 1)-sphere, with ¢ < £. By repeated application of the
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Mayer—Vietoris sequence [16, page 149], this implies that the Betti numbers of A, are
bounded by a function of £ and are, thus, independent of n. Since we assume that k is a
constant, we have 8,(Ags) = O(1) for every p. <

Now we are ready to complete the proof of Theorem 2.1 for p < 2k — 2. To establish
relation (1), fix p between 0 and k — 1 and consider A, _; = Rad ™[0, 7, _1), which is the
Alpha complex consisting of all simplices that touch p or fewer circles, together with all
simplices that touch p + 1 circles but each circle in only one point. In other words, A, _; is
Ap_1,p—1 together with all the (p_’f_l)np"’l p-simplices that have no short edges. By Lemma 2.6,
A,_1 p—1 has only a constant number of (p — 1)-cycles. Hence, only a constant number of
the p-simplices can give death to (p — 1)-cycles, while the remaining p-simplices give birth to
p-cycles. This is because every p-simplex either gives birth or death, so if it cannot give death
to a (p — 1)-cycle, then it gives birth to a p-cycle. Hence, 5,(Ap 1) = (;;L)”p“ +0(1), as
claimed. The proof of relation (2) is similar but inductive. The induction hypothesis is

Bp(Ar—1p-1) = (,551,) -0 £ 0(1). )

For p = k — 1, it claims Bx_1(Ak_1,-1) = n¥ £ O(1), which is what we just proved. In
other words, relation (1) furnishes the base case at p = k — 1. A single inductive step
takes us from Ap_1 p—r to Ar—1 p—r+1; that is: we add all simplices that touch all £ circles
and p — k + 2 of them in two vertices to Ap_1,p,—%. The number of such simplices is the
number of ways we can pick a pair of consecutive vertices from p — k 4+ 2 circles and a
single vertex from the remaining 2k — p — 2 circles. Since there are equally many vertices as
there are consecutive pairs, this number is (p_’,z )7 The dimension of these simplices is
(k—=1)+(p—k+1)+1=p+1. Some of these (p+ 1)-simplices give death to p-cycles, while
the others give birth to (p + 1)-cycles in Ag_1 ,—g+1. By the induction hypothesis, there are
(pf;il) -nF £ O(1) p-cycles in Ag—_1 p—r, 50 this is also the number of (p + 1)-simplices that

give death. Since (p7§+2) — (pf;il) = (pﬁ;}ﬂ), this implies

Bp(Ar—1p-ri1) = (,511,) - 0" £O(1), (10)

as required to finish the inductive argument.

3 Three Dimensions

In this section, we answer the maximum Betti number question for Cech complexes in the
smallest odd dimension in which it is non-trivial:

» Theorem 3.1 (Maximum Betti Numbers in R3). For every n > 2, there exist N = 2n + 2
points in R® and two radii such that the Cech complex for the first radius has first Betti

number B1 = (n+1)2 — 1 and for the second radius has second Betti number B = n?.

The proof consists of four steps: the construction of the set in Section 3.1, the analysis of
the circumradii in Section 3.2, the argument that all simplices in the Delaunay mosaic are
critical in Section 3.3, and the final counting of the tunnels and voids in Section 3.4.

3.1 Construction

Given n and 0 < A < 1, we construct the point set, A = A3z(n,A), using two linked circles
in R3: C, with center v, = (—%, 0,0) in the xy-plane defined by (—% + cos g, sin p, 0) for
0 < ¢ < 2w, and Cy, with center v, = (3,0,0) in the zz-plane defined by (3 — cos, 0, sin 1))
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for 0 <4 < 2m; see Figure 1. On each circle, we choose n + 1 points close to the center of
the other circle. To be specific, take the points (0, —A,0) and (0, A, 0), and project them
to C, along the z-axis. The resulting points are denoted by ag = (—% +V1-AZ -A0)
and a, = (—% ++v1— A2 A 0). Divide the arc between them into n equal pieces by placing

the points a1, as,...,a,_1 in this sequence from ag to a,. Symmetrically, project the points
(0,0,—A) and (0,0,A) to by = (3 — V1 — A2,0,—A) and b, = (3 — V1 — A2,0,A) lying on
Cy, and place points b1, ba, ..., b,—1 in this sequence between them, thus dividing the arc

from by to b, into n equal pieces. Let € = £(n, A) be the half-length of the (straight) edge
connecting two consecutive points of either sequence. Clearly, € is a function of n and A,
and it is easy to see that

A/n <e< FA/n and 5A—>_>OA/n. (11)

z

Figure 1: Two linked unit circles in orthogonal coordinate planes of R3, each touching the shaded
sphere centered at the origin and each passing through the center of the other circle. There are n+ 1
points on each circle, on both sides and near the center of the other circle.

A sphere that does not contain a circle intersects it in at most two points. It follows that
the sphere that passes through four points of A is empty if and only if two of the four points
are consecutive on one circle and the other two are consecutive on the other. This determines
the Delaunay mosaic: its N = 2n + 2 vertices are the points a; and b, its 2n+ (n+1)? edges
are of the forms a;a; 41, bjbj 41, and a;bj, its 2n(n + 1) triangles are of the forms a;a;41b;
and a;b;bj41, and its n? tetrahedra of the form a;a;+1b;b;11. Keeping with the terminology

introduced in Section 2, we call the edges a;b; long and the edges a;a;+1 and b;b;11 short.

Hence, every triangle in the Delaunay mosaic has one short and two long edges, and every
tetrahedron has two short and four long edges.

3.2 Divergence from the ldeal

The simplices in Del(A) are not quite ideal, in the sense of Section 2. We, therefore, need
upper and lower bounds on their sizes, as quantified by their circumradii. We will make
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repeated use of the following two inequalities, which both hold for = > —1:

Vitz<1+, (12)
Vitr>1+ 54 (13)

To begin, we rewrite the relations for the ideal triangle and tetrahedron. Setting x = s2/(1—s?)
and y = 252, we get 4r%(s) = 1+ z from (3) and 4R%*(s) = 1 +y from (4). Assuming n is
sufficiently large so that 2 — 2s? > 1.9 and, therefore, 1 + s? < 1.1, we use (12) and (13) to
get lower and upper bounds for the two radii:

1 s2/(1—s?) 52 10
14+ -s2<l4+—L" "7 < 9(s) <1 <1+ 52 14
to < ey S P Sl gTg < g (14)
1+ 02y - <2R(s) <1+ s* (15)
—S S S
117 = T 142 = ’

where we apply (12) and (13) to get the inequalities on the right-hand and left-hand sides,
respectively. These inequalities are instrumental in deriving bounds in R3:

» Lemma 3.2 (Bounds for Long Edges in R3). Let 0 < A <1 and A = A3(n,A) CR3. Then
the half-length of any long edge, E € Del(A), satisfies % < Rg < %(1 + AY).

Proof. To verify the lower bound, let a € C, and consider the sphere with unit radius
centered at a. This sphere intersects the zz-plane in a circle of radius at most 1, whose
center lies on the z-axis. The circle passes through v, € Cy, which implies that the rest of
Cy lies on or outside the circle and, therefore, on or outside the sphere centered at a. Hence,
la—0b|]| > 1 for all b € Cy, which implies the required lower bound.

To establish the upper bound, observe that the distance between a and b is maximized
if the two points are chosen as far as possible from the z-axis, so 4R% < |lag — bo||”. By

construction, ag = (—% +vV1—A2 —A,0) and by = (% —+/1—AZ%0,—A). Hence,

2
AR < |[(=142V1— A2 A A)|| =5—2A% —4y/1 — A2 (16)
A? 2A1
2
<14 2A% (18)

where we used (13) to get (17) from (16), and A? < 1 to obtain the final bound. Applying
(12), wet get 2Rp < 1+ A*] as required. <

Next, we estimate the circumradii of the triangles in Del(A). To avoid the computation
of a constant, we use the big-Oh notation for A, in which we assume that n is fixed.

» Lemma 3.3 (Bounds for Triangles in R3). Let 0 < A < v/2/n, A= Az(n,A) CR3, and e =
e(n, A). Then the circumradius of any triangle, F, satisfies 1 +1e? < Rp < 14+1e24+0(AY).

Proof. To see the lower bound, recall that the short edge of F' has length 2¢ and the two
long edges have lengths at least 1. A circle of radius r(¢) that passes through the endpoints
of the short edge has only one point at distance at least 1 from both endpoints, and it has
distance 1 from both. For any radius smaller than r(¢), there is no such point, which implies
that the circumradius of F satisfies Rp > r(e) > % + ieQ, where the second inequality follows
from (14).

To prove the upper bound, we draw F' in the plane, assuming its circumcircle is the
circle with radius Rp centered at the origin. Let a, b, ¢ be the vertices of F, where a and
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¢ are the endpoints of the short edge. We have 0 € F, since otherwise one of the angles
at a and c is obtuse, in which case the squared lengths of the two long edges differ by at
least 4c2. By assumption, v/2A2% < 2A/n < 2¢, in which we get the second inequality from
(11). But this implies that the difference between the squared lengths of the two long edges
is larger than 2A%, which contradicts Lemma 3.2. Hence, b lies between the antipodes of
the other two vertices, ¢’ = —a and ¢ = —c. By construction, ||a’ — ¢/|| = 2¢. Assuming
[Ib—a'|| < ||b— ||, this implies

[b—a'|| < 2Rparcsin 55— < arcsine = ¢ + O(e?). (19)

Here, the second inequality follows from 2Ry > 1, using the convexity of the arcsin function,
and the final expression using the Taylor expansion arcsinz = x + %x3 + %x‘r’ +.... Now
consider the triangle with vertices a,a’,b. By the Pythagorean theorem,

ARZ = b—al®* + |b—a/||* < 14+ 2A%* + A3 + 2+ O(c*) = 1 + €2 + O(AY), (20)

where we used Lemma 3.2 and (19) to bound [|b — a|® and ||b — /||%, respectively. We get
the final expression using ¢ < A. Applying (12), we obtain 2Rp < 1+ 2 + O(A?), as
claimed. <

Similar to the case of triangles, it is not difficult to establish that the circumradius of any
tetrahedron in the Delaunay mosaic is at least the circumradius of the ideal tetrahedron.

» Lemma 3.4 (Lower Bound for Tetrahedra in R3). Let 0 < A <1, A= Az(n,A) CR3, and
e =e(n,A). Then the circumradius of any tetrahedron T € Del(A) satisfies Ry > % + 15—152.

Proof. By construction, T" has two disjoint short edges, both of length 2¢. Consider a sphere
of radius R(e) that passes through the endpoints of one of the two short edges. The set of
points on this sphere that are at distance at least 1 from both endpoints is the intersection
of two spherical caps whose centers are antipodal to the endpoints. We call this intersection
a spherical bi-gon. Since the two caps have the same size, the two corners of the bi-gon are
further apart than any other two points of the bi-gon. By choice of the radius, R(e), the
edge connecting the two corners has length 2¢. Hence, these corners are the only possible
choice for the remaining two vertices of T, and for a radius smaller than R(e), there is no
choice. Tt follows that the circumradius of T is at least R(¢), and we get the claimed lower
bound from (15). <

3.3 All Simplices are Critical

Since no empty sphere passes through more than four points of A, the Delaunay mosaic of A
is simplicial, and the radius function is a generalized discrete Morse function [4]. We will
argue shortly that all simplices are critical; see Definition 2.2. The point set depends on two
parameters, n and A, and we consider n fixed while we can make A as small as we like.

» Lemma 3.5 (All Critical in R3). Letn > 2, A > 0 sufficiently small, and A = Az(n, A) C R3.
Then every simplex of the Delaunay mosaic of A is critical.

Proof. It is clear that the vertices and the short edges are critical, but the other simplices
in Del(A) require an argument. We begin with the long edges. Fix ¢ and j, and write
S?2(i; j) for the smallest sphere that passes through a; and b;. Its center is the midpoint of
the long edge and, by (18), its squared diameter is between 1 and 1 + 2A%. The distance
between a; and any ay, £ # i, is at least 2e. Assuming a, is on or inside S2(i;5), we thus have
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lae — bj||2 < 1+2A% 42 which, for sufficiently small A > 0, is less than 1. This contradicts
the lower bound in Lemma 3.2, so ay lies outside S2(i; 7). By a symmetric argument, all by,
0 # j, lie outside S?(i; j). Hence, S?(i;j) is strictly empty, for all 0 < i,j < n, which implies
that all edges of Del(A) are critical edges of the radius function.

The fact that all edges of Del(A) are critical implies that all triangles are acute. Indeed,
if a;b;b;41 is not acute, then the midpoint of one long edge is at least as close to the third
vertex as to the endpoints of the edge. Write S2(i; j, j+ 1) for the circumsphere of the triangle
and z for its center. Since a;b;b;1 is acute, z lies in its interior. As illustrated in Figure 2,
the line that passes through a; and z crosses the opposite edge at 2’ and exits the sphere at
x. Let ay be another point, with ¢ # i, and assume it lies on or outside S2(i;5,j + 1). The
angle between the segments that connect ay to a; and z is therefore at least 7, which implies

Iz —aill® > llz — aell® + lla; — ael|” > 1 — € + 4e? = 1 + 32, (21)

because the angle enclosed by the segments connecting 2’ to a, and z is larger than 7, so
|z — ag||? is larger than the squared height of the triangle aeb;b;1, which is at least 1 — &2,
and because ||a; — ag|® > 4¢2. But (21) contradicts ||z — a;[|° < 1 + 2 + O(A%), which
follows from the upper bound on the radius of the triangle in Lemma 3.3. Hence, all triangles

in Del(A) are critical, as claimed.

Figure 2: Two acute triangles sharing the edge that connects b; with bj41 in Del(A). By shrinking

A > 0, the angle at 2’ can be made arbitrarily close to straight and certainly larger than 5-

Since all triangles are critical, all tetrahedra of Del(A4) must also be critical. One can
argue in two ways. Combinatorially: the radius function pairs non-critical tetrahedra with
non-critical triangles, but there are no such triangles. Geometrically: since every triangle
has a non-empty intersection with its dual Voronoi edge, every tetrahedron must contain its
dual Voronoi vertex. <

3.4 Counting the Tunnels and Voids

Before counting the tunnels and voids, we recall that Rad: Del(A) — R maps each simplex
to the radius of its smallest empty sphere that passes through its vertices. By Lemma 3.5,
all simplices of Del(A) are critical, so Rad(E) is equal to the circumradius of E, for every
edge E € Del(A), and similarly for every triangle and every tetrahedron.

» Corollary 3.6 (Ordering of Radii in R?). Let A > 0 be sufficiently small, let A = Az(n,A) C
R3, and let Rad: Del(A) — R be the radius function. Then Rad(E) < Rad(F) < Rad(T)
for every edge E, triangle F, and tetrahedron T in Del(A).

Proof. Using Lemma 3.2 for the edges, Lemma 3.3 for the triangles, and Lemma 3.4 for the
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tetrahedra in the Delaunay mosaic of A, we get

Rad(E) = Rp < 5 + O(A%Y), (22)
14122 <Rad(F) = Rp < 3+ 1e2 + O(AY), (23)
14+ 2% <Rad(T) = Rr, (24)

so for sufficiently small A > 0, the edges precede the triangles, and the triangles precede the
tetrahedra in the filtration of the simplices. <

For the final counting, choose p; to be any number strictly between the maximum radius
of any edge and the minimum radius of any triangle. The existence of such a number
is guaranteed by Corollary 3.6. The corresponding Cech complex is the 1-skeleton of the
Delaunay mosaic. It is connected, with N = 2n+2 vertices and 2n+(n+1)? edges. The number
of independent cycles is the difference plus 1, which implies 81 (Cech(A4, p1)) = (n+1)>—1, as
claimed. Similarly, choose ps between the maximum radius of any triangle and the minimum
radius of any tetrahedron, which is again possible, by Corollary 3.6. The corresponding Cech
complex is the 2-skeleton of the Delaunay mosaic. The number of independent 2-cycles is
the number of missing tetrahedra. This implies Bo(Cech(A, ps)) = n?, as claimed.

4 (Odd Dimensions

In this section, we generalize the 3-dimensional results to odd dimensions and, in Section 4.6,
we prove the outstanding case, p = 2k — 1 and d = 2k, in even dimensions.

» Theorem 4.1 (Maximum Betti Numbers in R2**1). For everyd =2k +1>1,n > 2, and
sufficiently small A > 0, there are a set A= Ag(n,A) CR*+L of N = (k+1)(n + 1) points
and radii pg < p1 < ... < pag such that

B,(Cech(4,p,)) = (11) - (n+ P +£0(1),  for 0 <p<k; (25)
B,(Cech(4, py)) = (,5,) - (n+ D) £ 0(n¥), for k+1<p <2k (26)

The steps in the proof are the same as in Sections 2 and 3: construction of the points, analysis

of the circumradii, argument that all simplices are critical, and final counting of the cycles.

In contrast to the earlier sections, the analytic part of the proof is inductive and distinguishes
between erecting a pyramid or a bi-pyramid on top of a lower-dimensional simplex.

4.1 Construction

Equip R? with Cartesian coordinates, x,, x2, . . ., x4, and consider a regular k-simplex, denoted
by 3, in the k-plane spanned by x1, xs, ..., xk. It is not important where ¥ is located inside
the coordinate k-plane, but we assume for convenience that its barycenter is the origin of
the coordinate system. It is, however, important that all edges of ¥ have unit length. We
will repeatedly need the squared circumradius, height, and in-radius of ¥, for which we state
simple formulas and straightforward consequences for later convenience:

Rj = 2(1@]11)5 D = 2k:(11+1); Hi = 5 (27)
(k+1)Ry = kHy; (k+1)R;_, = (k—1)HE;, (k+1)Dy = Hy, (28)

in which we get the second equation in (27) from D7 = R? — RZ_,. Observe that the angle,
«, between an edge and a height of 3 that meet at a shared vertex satisfies cos @ = Hy. Let
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Ug, U1, . .., ug be the vertices of ¥, and let v, be the barycenter of the (k — 1)-face opposite
to ug. For each 0 < ¢ < k, consider the 2-plane spanned by uy, — v, and the xg,11-axis,
and let Cp be the circle in this 2-plane, centered at vy, that passes through wuy; see Figure 3.
Its radius is the height of the k-simplex: v = Hj. Given a global choice of the parameter,
0 < A < Hy, we cut Cy at xg4¢41 = A into four arcs and place n + 1 point at equal
angles along the arc that passes through u,. Repeating this step for each ¢, we get a set of
N = (k+1)(n+ 1) points, denoted A = Agp11(n, A).

&

Figure 3: The projection of the 5-dimensional construction to R®, in which zs,z4, s are all
mapped to the same, vertical coordinate direction. The circles Cy, C1, C2 touch the shaded sphere in
the vertices of the triangle. In R, the three circles belong to mutually orthogonal 2-planes, so the
two common points of the three circles in the drawing are an artifact of the particular projection.

A (d — 1)-sphere that contains none of the circles Cy intersects the k + 1 circles in at
most two points each. It follows that a sphere that passes through 2k + 2 points of Ay is
empty if and only if it passes through two consecutive points on each of the k + 1 circles.
This determines the Delaunay mosaic, which consists of n**! d-simplices together with all
their faces. It follows that the number of p-simplices in Del(A) is at most some constant
times n™, in which m = min{p+ 1,k + 1} and the constant depends on d = 2k + 1. Building
on the notation introduced in Section 2, we describe each simplex, S € Del(A), with two
integers: £ = ¢(S) is one less than the number of circles C; that each contain one or two
vertices of S, and j = j(5) is one less than the number of circles that each contain two
vertices of S. Hence, S has dimension p = ¢+ 1+ j, and j + 1 of its edges are short. For each
0 < p <k, there are (];ﬂ) (n + 1)P*! p-simplices that touch £+ 1 = p + 1 circles and thus
have j + 1 = 0 short edges. As suggested by a comparison with relation (25) in Theorem 4.1,
these p-simplices will be found responsible for the p-cycles counted by the p-th Betti number.

4.2 Distance from the ldeal

The simplices we work with in odd dimensions are almost but not quite ideal. We quantify
the difference by projecting a vertex orthogonally onto the affine hull of a face and measuring
the distance between the projected vertex and the circumcenter of the face. We will see that
this distance is small provided the face is far from the vertex, by which we mean that all
edges connecting the vertex to the face are long. We prove this by first establishing bound
on the lengths of long edges.
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» Lemma 4.2 (Length of Long Edges in R?**1). Letd =2k + 1,0 < A <1, and A =
Ag(n,A) CRY. Then the squared length of any long edge satisfies 1 < 4R% < 1+ 2A%,

Proof. The length of E is maximized if its endpoints, a and b, are as far as possible from

the affine hull of . We therefore assume that both points have distance A from this plane.

Suppose a € Cy and b € C1, and write @’ and b’ for their projections onto aff . Recall
that wug is the point shared by ¥ and Cy, and note that ||’ —up|| =& =~ — /72 — A2, in
which  is the radius of Cy. Similarly, ||b" — u1]| = €. Let a be the angle enclosed by an edge
of 3 and a height of ¥ that shares a vertex with the edge. Set n = £ cos @ and note that
la" —¥'|| = 1 — 2n. By construction of ¥ as a regular simplex with unit length edges, we
have cosa = 7, so

la—b|]> = (1—2n)%+ A%+ A% = (1 — 292 + 292 — A?)Z + 2A? (29)
= (1-29%)° +4¢° (4% = A%) + (2= 47) 291/77 — AZ 4 2A2 (30)

= (1—49% +89%) — (49* — 2) [AQ + 27@] . (31)

The squared radius of the circles is v? = (k+1)/(2k) > %, which implies 492 —2 > 0. Hence,
we can bound [|a — b||* from below using (12) to get /72 — A2 < ~ [1— A?/(29?)]. Plugging
this inequality into (31) and applying a sequence of elementary algebraic manipulations
gives ||a — b||2 > 1, as claimed. To prove the upper bound, we use (13) to get /2 — A% >
v [1—A?%/(24? — A?)]. Plugging this inequality into (31) gives

9 2,.)/2A2
la—bl" < (1= 47"+ 8%) = (49" - 2) |A% 4 29" = ooy (32)
A4
where we use A < 1 to get the final inequality. <

Applying (12) to the bounds in Lemma 4.2, we get 1 < 2Rp < 1+ A%, Since the length of
every short edge is fixed to 2¢, and the length of every long edge is tightly controlled, all
simplices are almost ideal. The next lemma quantifies this notion.

» Lemma 4.3 (Distance from Ideal in R?*1). Let d = 2k + 1, A > 0 sufficiently small,
A= Ay(n,A) C R, S a simplex in Del(A), u a vertex of S, and Q C S a far face of u.
Then the distance between the orthogonal projection of w onto aff Q and the circumcenter of
Q is at most O(A3).

Proof. We begin with a triangle, .S, with vertices w, v, w, such that the edges connecting
u to v and w are both long. The edge connecting v to w may be long or short. Let ¢ be
the distance of u from the bisector of v and w, which is maximized if |[v — w|| is as small as
possible while the length difference between the edges connecting u to v and w is as large
as possible. Assuming therefore that these two edges have squared lengths 1 and 1 + 2A%,
Pythagoras’ theorem implies (1 4+ 2A%) — (¢ +6)2 = 1 — (¢ — §)2. Canceling 1, £2, and §2 on
both sides, we get A* = 2¢6. Since ne > A, this implies § = A*/(2e) < nA3/2.

In other words, the distance between the projection of the vertex and the midpoint of the
far edge is 6 < nA3/2; see the left panel in Figure 4. As mentioned earlier, A is independent
of m, so we write nA3/2 = O(A3), which settles the claim for the triangles in Del(A).

To generalize beyond triangles, suppose first that the far face of u is i-dimensional and
has no short edges. For each long edge, we construct the slab of points between two parallel
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hyperplanes, each parallel to and at distance nA3/2 from the normal hyperplane that crosses
the edge at its midpoint. As shown above, this slab contains u. The common intersection of
the slabs of all edges of the face contains u, and the further intersection with the affine hull
of the face contains the orthogonal projection of u onto the face. In the ideal case, this is
a centrally symmetric polytope of dimension ¢ with (i + 1)é facets of dimension ¢ — 1. The
angle between any two adjacent facets is 120°. For sufficiently small A > 0, this angle is only
negligibly larger than 120°, so the polytope is contained in a ball of radius at most some
constant times O(A3) centered at the circumcenter of the face. By construction, u belongs
to this ball, which implies the claimed bound for simplices without long edges. Any short
edges are almost orthogonal to each other and to the long edges of the face. Each such edge
defines a slab, and we can repeat the argument while adding these slabs into the mix. <«

4.3 Inductive Analysis

This section continues the analysis with the goals to prove bounds on the circumradii that
are strong enough to separate the Delaunay simplices of different types, and to show that all
simplices are critical. We use induction, with two hypotheses: the first about the circumradius
and the second about the circumcenter. To formulate the second hypothesis, we let .S be a
simplex, and write Dg for the radius of the largest ball contained in S that is concentric
with the circumsphere of S; see the middle panel in Figure 4. If the circumcenter lies outside
S, then Dg is zero, but we will see that this never happens. Recall that € = ¢(n,A) is a
function of n and A that satisfies A/n < e < gA/n We write ¢ + 1 for the number of the
C; touched by S, and j + 1 for the number of short edges.

( 7 ( 7

Figure 4: The ingredients for the analysis of the simplices. Left: each vertex of the equilateral
triangle projects orthogonally to the midpoint of the opposite edge. Middle: the largest disk inside
the equilateral triangle and concentric with the circumcircle is bounded by the inscribed circle.
Right: the tetrahedron with one short edge is a bi-pyramid with two apices and one base edge.

Hypothesis I: R% = R? + (;;:_11)2 e2+0(e%).

N D? £+ 0(£?) if j = —1;

Hypothesis II: D¢ = { ﬁeQﬂ:O(?) F0<j<

in which the big-Oh notation is used to suppress multiplicative constants, as usual. Since A
is independent of n, we write A = O(e). The base case for the induction ascertains that the
two hypotheses hold when S is a vertex (£ =0, j = —1), a short edge (¢ = j = 0), or a long
edge (¢ =1, j = —1). We have R% = 0 if S is a vertex, R% = €% if S is a short edge, and
i <R%,< i + %A‘l if S is a long edge by Lemma 4.2, which verify Hypothesis I in all three
cases. Hypothesis II is also clear. Indeed, the edge itself is the largest 1-ball contained in the
edge and concentric with the circumsphere, so there is nothing to prove.
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We will distinguish between two kinds of inductive steps, one reasoning from (¢ — 1, j) to

(¢,7) and the other from (¢,5 — 1) to (¢, 7). We need some notions to describe the difference.

A facet of a simplex is a face whose dimension is 1 less than that of the simplex. We call a
vertex a of S a twin if it is the endpoint of a short edge, in which case we write a” for the
other endpoint of that edge. If a is not a twin, we write Q = S — a for the opposite facet,
and call the pair (a, Q) a pyramid with apex a and base Q. If a is a twin, then there are two
pyramids, (a, P) and (a”, P) with P =S — a — o, and we call this the bi-pyramid case; see
the right panel in Figure 4.

4.3.1 Inductive Step (Pyramid Case)

The inductive step consists of two lemmas. The first justifies the inductive step from (¢ —1, 5)
to (¢, 7). It handles the transition from the base of a pyramid to the pyramid. Letting S be
a simplex, zg its circumcenter, and (a, Q) be a pyramid of S, we write Hg g and Dg g for
the distances of a and zg from aff ), respectively.

» Lemma 4.4 (Pyramid Step). Let d =2k +1, A > 0 sufficiently small, A = Ag(n,A) C R?,
and e = g(n,A). Furthermore, let S € Del(A), write £ = £(S) and j = j(S), assume j < ¢,
and let (a, Q) be a pyramid of S. Assuming Q satisfies Hypotheses I and II, we have

j+1
H} g =Hj — 7 2 +0(%); (34)
20+ 1)+ 1)
D2 — D2 _ ( 2 + 3.
Q,S 4 62(6-%1)2 € 0(6 )7 (35)
2 2 J+1 3
= :l: .
RS RZ + (€+ 1)25 0(6 )7 (36)

Proof. By construction, £(Q) = £ — 1 and j(Q) = j. Assume first that the projection of a
onto aff Q) is zg, the circumcenter of Q. In this case, all edges connecting a to @) have the
same length, 2Rp. Pythagoras’ theorem implies Hg ¢ = 4R%, — Ry,. Using Lemma 4.2 and
Hypothesis I, we get the bounds for the squared height claimed in (34):

4R%Z =1+ O(A%Y); (37)
j+1
R =R;_ | + 7 2+ 0(%); (38)
j+1
H227S = HZQ 62 52 + 0(53)7 (39)

where (39) follows from (37) and (38), using 1 — RZ , = H7?. This proves (34). Since
(Hq.s — Dq.s)* = Rg and Ry, + DP) 4 = Rg, we get Hp) ¢ —2Dq sHq,s = R Therefore,

H? . — R? 1 1 R?
Q.S Q Q
Dqs = = -5 40
Q.5 2HQ S 2 Q.5 2 HQ,S’ ( )
R H, D 1H + L R2Q (41)
S = Q.S Q.S — 2 Q.S 2Hg. s

Using the formulas for Ry, Hy, Dy in (27), it is easy to prove the corresponding relations for
the regular (-simplex: D, = $H, — 2R | /H, and Ry = £H, + 3R?_|/H,. Starting with
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(39),weuse V1—2z=1-%+...and 1/\/1 -2 =1+5 +... to get

T 3y.
Hst—Hg 202 ZE :EO(& ), (42)
1 1 +1

N e G (43)

Hos H, 202H}
Ry _Ri, [j+1, Ri,G+1)
Hos  Hg (2H, 20217

} 24+ 0(e%), (44)

where we multiply the left-hand sides and right-hand sides of (38) and (43) to get (44). We
plug (42) and (44) into (40) and (41), while using the relations in (27) and (28):

1 LR, [j+1  j+1  RE,(G+1D] , 3
Dos = [QHE 2 H, ] N [4@211@ 22H, ' A2H} }5 £0()
20+ 1)(5+1
—p, - EEVU D 2y sy, (45)

202(0 + 1)2D,

Rsz[mJr “]Jr[ il g+l L )]5%0(53)

2 2 H, CA2H,  20%H, AH}
J+1 3
=R+ e £ O(P). 46
‘TR T 0 (46)

Taking squares, we get (35) and (36), but mind that this is only for the special case in which
the apex projects orthogonally to the circumcenter of the base. To prove the bounds in the
general case, we recall that Lemma 4.3 asserts that the projection of a onto aff @) is at most
O(A3) units of length from zg. Hence, we get an additional error term of O(A3) in all the
above equations, but this does not change any of the bounds as stated. |

Note that Dg is the minimum of the Dg g, over all facets @) of S. Hence, Lemma 4.4
proves Hypothesis IT in the case in which S has no short edges.

4.3.2 Inductive Step (Bi-pyramid Case)

The second kind of inductive step—from (¢, j — 1) to (¢, j)—makes use of a distance function
between affine subspaces of R?. In our case, the function measures the distance from a
p-plane to a (d — 1)-plane, which is linear provided the distance is taken with a sign that is
different on the two sides of the hyperplane.

» Lemma 4.5 (Bi-pyramid Step). Letd = 2k-+1, A > 0 sufficiently small, A = Ag(n,A) C R?,
and € = e(n,A). Furthermore, let S € Del(A), with £ = ¢(S) and j = j(S) > 0, and let
a and a” be the endpoints of a short edge. Assuming Q = S — a” and Q" = S — a satisfy
Hypotheses I and II, we have

1
D} g = 2+ 0(%); 4
Q,S (£+ 1)26 O(E )’ ( 7)
2 2 J+1 3
— + ; 4
R =R; + (€+1)2€ O(e”); (48)

Proof. By construction, £(Q) = £(Q") = ¢, j(Q) = j(Q") = j — 1, and (a,Q — a) and
(a”,Q" — a") are pyramids. We write P = Q —a = Q" — a” for the common base, which has
{(P)={—1and j(P) =j—1. Let M be the bisector of a and a”. It intersects the short edge
orthogonally at its midpoint. Letting ¢ : aff @ — R map each point of aff @) to its distance
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from the nearest point on M, we have 1(a) = € and, by Lemma 4.3, 1)(b) = O(A3), for each
vertex b of P. Let a’ be the projection of a onto aff P. By Hypothesis II and Lemma 4.3,

a’ is closer to zp than the radius of the largest ball centered at zp which is contained in P.

Hence, a’ € P, so 1(a’) = O(A?) by the linearity of the signed version of 1. To compute the
gradient of this linear function, we recall Lemma 4.4, which asserts

J

Hpo=Hi - ?252 + O(e%); (49)
2 _ 2 (2041)5 , 3
Dpr = Dl - W{‘: + 0(5 ) (50)

We compute the length of the gradient as the ratio of the difference in function value, which is
g, and the distance between the points, as given in (49). Using (13) to simplify the expression,
we first get the length of the gradient of 1) and second the value at the circumcenter of Q:

_ € 3y _ € 3y.
V6] = g % 0(A%) = £ 0% 1)
D, -
W(zg) = ;{E‘E L0 = Hil +0(), (52)

in which we exploit that (50) gives a bound on the distance of the circumcenter from P, and
we use (28) to get the right-hand side. Hence, ||zq — zs|| = /(£ + 1) & O(e?), which implies

1
Dy g = (€+1)252i0(53); (53)
+ 1
2 _ p2 24 0(3) = g2 4+ 7 2 4 O3 4
R RQ+(£+1)25 0(e?) Rz+(£+1)25 O(e”), (54)

where we used the inductive assumption for Ré to obtain the bounds for R%. This proves
(47) and (48). <

This completes the inductive argument, establishing Hypotheses I and II. In particular,
the bounds furnished for the Dg g imply the required bound for Dg, which is the minimum
over all facets @ of S.

4.4 All Simplices are Critical

The above analysis implies that for sufficiently small A > 0 the circumcenter of every simplex
in Del(A) is contained in the interior of the simplex. This is half of the proof that all simplices
in Del(A) are critical. The second half of the proof is not difficult.

» Corollary 4.6 (All Critical in R?**1). Let d = 2k + 1, n > 2, A > 0 sufficiently small, and
A= Ayg(n,A) CRL. Then every simplex in Del(A) is a critical simplex of Rad: Del(A4) — R.

Proof. A simplex S € Del(A) is a critical simplex of Rad iff it contains the circumcenter in
its interior, and the (d — 1)-sphere centered at the circumcenter and passing through the
vertices of S does not enclose or pass through any of the other points of A. By Hypothesis II,
the first condition holds. To derive a contradiction, assume the second condition fails for
S € Del(A). In other words, there is a point, b € A, that is not a vertex of S but it is enclosed
by or lies on the said (d — 1)-sphere. If dim .S = d, then the (d — 1)-sphere intersects each
circle in two points; that is: each Cy for 0 < £ < k. But in this case, there is no possibility
for another point to interfere, so we may assume dim S < d.

Since a sphere and a circle intersect in at most two points, we may assume that b lies
on a circle not touched by S, or that b neighbors a vertex of S along its circle, and it is
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the only vertex of S on this circle. Then we can add b as a new vertex to get a simplex
T with dim T = dim S + 1. This simplex also belongs to Del(A) and, by construction, its
circumcenter lies beyond the face S as seen from the new vertex of T. In other words, the
circumcenter does not lie in its interior, which contradicts Hypothesis II. <

4.5 Counting the Cycles

The final counting argument is similar to the one for even dimensions, with a few crucial
differences. Instead of congruent simplices, we have almost congruent simplices in odd
dimensions, but they are similar enough to be separated by their circumradii.

» Corollary 4.7 (Ordering of Radii in R?**1). Let d =2k +1, n > 2, A > 0 sufficiently small,
A= Aggy1(n, A) C R¥*H and Rad: Del(A) — R the radius function. Then the circumradii
of two simplices, S,T € Del(A), satisfy Rad(S) < Rad(T) if £(S) < ¢(T), or £(S) = ¢(T)
and j(S) < 5(T).

Proof. By Corollary 4.6, the circumradii are the values of the simplices under the radius
function, and by Hypothesis I, the circumradii are segregated into groups according to the
number of touched circles and the number of short edges. It follows that the values of Rad
are segregated the same way. |

Let g¢; be a threshold so that Rad(S) < g,,; < Rad(T) for all simplices S and T that
satisfy £(S) < € or £(S) = ¢ and j(S) < j, and £(T) > ¢ or ¢(T) = ¢ and j(T) > j. For
0<?¢<kand —1<j <k, we are interested in three kinds of these thresholds:

0¢—1,¢—1, which separates the simplices that touch at most ¢ circles from those that touch

at least £ + 1 circles;

0¢,—1, which separates the /-simplices without short edges from the other simplices that

touch the same number of circles;

0Ok,j, which separates the (k 4 j + 1)-simplices that touch all k + 1 circles from the

(k + j + 2)-simplices that touch all k + 1 circles.

We begin by studying the Alpha complexes defined by the first type of thresholds, A¢_1 ¢—1 =
Rad ™[0, 0¢—1,¢-1]-

» Lemma 4.8 (Constant Homology in R2**1). Let d = 2k + 1 be a constant, A = A4(n,A) C
R?%F1and 1 < < k. Then Bp(As—1,0-1) = O(1) for every p.

Proof. Pick ¢ of the k + 1 circles used in the construction of A, let A’ C A be the points
on these ¢ circles, and note that the full subcomplex of Del(A) with vertices in A’ has no
non-trivial (reduced) homology. We may collapse this full subcomplex to a single (¢ — 1)-
simplex. A;_1 ¢—1 is the union of (kjl) such full subcomplexes of Del(A), one for each choice
of ¢ circles. The intersections of these subcomplexes are of the same type, namely induced
subcomplexes of Del(A) for the points on ¢ or fewer of the circles. Hence, As_1 ¢—1 has the
homotopy type of the complete (¢ — 1)-dimensional simplicial complex with &+ 1 vertices. Its
(¢ — 1)-st homology group is the only non-trivial homology group, and its rank is a constant

independent of n and A, as required. <

To prove relation (25) of Theorem 4.1, we second consider the Alpha complexes defined
by the second type of thresholds, A, 1 = Rad [0, 0¢,—1)- This complex is Ag_1 ¢—1 together
with all /-simplices without short edges. By Lemma 4.8, only a constant number of them
give death to (¢ — 1)-cycles, while all others give birth to f-cycles. This implies that the rank
of the ¢-th homology group of A, _; is the number of /-simplices without short edges minus
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a constant, which is (lﬁi) (n 4+ 1)1 £ O(1). This construction works for 0 < ¢ < k, which

implies relation (25).

To prove relation (26) inductively, we third consider the Alpha complexes defined by the
third type of thresholds, A ; = Rad [0, 0k,j], for 0 < j < k. The induction hypothesis is

Bp(Akp—rk—1) = (,,Ek) S(n+ 1) £ 0(nh), (55)

and we use the case p = k of relation (25) as the induction basis. The difference between
A p—r—1 and Ay, i are the (p + 1)-simplices with p — k + 1 short edges. Their number is

(pf:il) (n+ 1)2k—Ppp=ktl = (pf:il) S(n4+ 1)+ 0", (56)

This number divides up into the ones that give death and the remaining ones that give birth.

Since (pﬁgj_l) — (pfk) = (p_’;+1), this implies
ﬁp+1(-’4k7z)—k) = (p—Z+1) “(n+ 1)k+1 + O(nk)7 (57)

as needed to finish the inductive argument.

4.6 Voids in Even Dimensions

We return to the one case in d = 2k dimensions that is not covered by the construction in
Section 2, namely the (2k — 1)-st Betti number. It counts the top-dimensional holes, which
we refer to as voids. Notwithstanding that the construction in Section 2 does not provide
any voids, Theorem 2.1 claims the existence of N = k(n + 1) + 2 points in R?* and a radius
such that Bop_1 = n¥F £ O(nk=1).

The set of N points whose Cech complex has that many voids is a straightforward
modification of the construction in 2k — 1 dimensions: place A = Agp_1(n, A) in the (2k — 1)-
dimensional hyperplane zs; = 0 in R?*. Every (2k — 2)-cycle—which corresponds to a void
in 2k — 1 dimensions—is now a pore in the hyperplane that connects the two half-spaces. In
the odd-dimensional construction, all pores arise when the radius is roughly Ry_1 > %, and
they are located in a small neighborhood of the origin. By choosing A > 0 sufficiently small,
we can make this neighborhood arbitrarily small. It is thus easy to add two points, one on
each side of the hyperplane, such that their balls close the pores from both sides and turn
them into voids in R?*. More formally, the two points doubly suspend each (2k — 2)-cycle
into a (2k — 1)-cycle. Hence, Theorem 4.1 for d = 2k — 1 and p = 2k — 2, which gives
By = (n+ 1)k £ O(nk~1), provides the missing case in the proof of Theorem 2.1.

5 Discussion

In this paper, we give asymptotically tight bounds for the maximum p-th Betti number of
the Cech complex of N points in R%. These bounds also apply to the related Alpha complex
and the dual union of equal-size balls in R?. They do not apply to the Vietoris-Rips complex,
which is the flag complex that shares the 1-skeleton with the Cech complex for the same
data. In other words, the Vietoris—Rips complex can be constructed by adding all 2- and
higher-dimensional simplices whose complete set of edges belongs the 1-skeleton of the Cech
complex. This implies 3 (Rips(4,r)) < B1(Cech(A,r)), since adding a triangle may lower
but cannot increase the first Betti number.

As proved by Goff [15], the 1-st Betti number of the Vietoris—Rips complex of N points
is O(N), for all radii and in all dimensions, so also in R?. Compare this with the quadratic
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lower bound for Cech complexes proved in this paper. This implies that the first homology
group of this Cech complex has a basis in which most generators are tri-gons; that is: the
three edges of a triangle. The circumradius of a tri-gon is less than v/2 times the half-length
of its longest edge, which implies that most of the ©(N?) generators exist only for a short
range of radii. In the language of persistent homology [9], most points in the 1-dimensional
persistence diagram represent 1-cycles with small persistence. Similarly, the 2-nd Betti
number of a Vietoris-Rips complex in R? is o(N?) [15], compared to that of a Cech complex,
which can be ©(NN?). Hence, most points in the corresponding persistence diagram represent
2-cycles with small persistence.
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