

Maximum Betti Numbers of Čech Complexes

Herbert Edelsbrunner

ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria

János Pach

Rényi Institute of Mathematics, Budapest, Hungary and ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria

1 — **Abstract** —

2 The Upper Bound Theorem for convex polytopes implies that the p -th Betti number of the Čech
 3 complex of any set of N points in \mathbb{R}^d and any radius satisfies $\beta_p = O(N^m)$, with $m = \min\{p+1, \lceil d/2 \rceil\}$.
 4 We construct sets in even and odd dimensions that prove this upper bound is asymptotically tight.
 5 For example, we describe a set of $N = 2(n+1)$ points in \mathbb{R}^3 and two radii such that the first Betti
 6 number of the Čech complex at one radius is $(n+1)^2 - 1$, and the second Betti number of the Čech
 7 complex at the other radius is n^2 .

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Discrete geometry, computational topology, Čech complexes, Delaunay mosaics, Alpha complexes, Betti numbers, extremal questions.

Funding The first author is supported by the European Research Council (ERC), grant no. 788183, and by the DFG Collaborative Research Center TRR 109, Austrian Science Fund (FWF), grant no. I 02979-N35. The second author is supported by the European Research Council (ERC), grant “GeoScape” and by the Hungarian Science Foundation (NKFIH), grant K-131529. Both authors are supported by the Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-N31.

8 **1 Introduction**

9 Given a finite set of points $A \subseteq \mathbb{R}^d$ and a radius $r \geq 0$, the *Čech complex* of A and r consists
 10 of all subsets $B \subseteq A$ for which the intersection of the closed balls of radius r centered at the
 11 points in B is non-empty. This is an abstract simplicial complex isomorphic to the nerve of
 12 the balls, and by the Nerve Theorem [5], it has the same homotopy type as the union of the
 13 balls. This property is the reason for the popularity of the Čech complex in topological data
 14 analysis; see e.g. [7, 9]. Of particular interest are the *Betti numbers* of the union of balls,
 15 which may be interpreted as the numbers of holes of different dimensions. These are intrinsic
 16 properties, but for a space embedded in \mathbb{R}^d , they describe the connectivity of the space as
 17 well as that of its complement. Most notably, the (reduced) zero-th Betti number, β_0 , is one
 18 less than the number of *connected components*, and the last possibly non-zero Betti number,
 19 β_{d-1} , is the number of *voids* (bounded components of the complement). Spaces that have the
 20 same homotopy type—such as a union of balls and the corresponding Čech complex—have
 21 identical Betti numbers. While the Čech complex is not necessarily embedded in \mathbb{R}^d , the
 22 corresponding union of balls is, which implies that also the Čech complex has no non-zero
 23 Betti numbers beyond dimension $d-1$. To gain insight into the statistical behavior of the
 24 Betti numbers of Čech complexes, it is useful to understand how large the numbers can get,
 25 and this is the question we study in this paper.

26 The question of maximum Betti numbers lies at the crossroads of computational topology
 27 and discrete geometry. Originally inspired by problems in the theory of polytopes [19,
 28 27], optimization [22], robotics, motion planning [23], and molecular modeling [20], many
 29 interesting and surprisingly difficult questions were asked about the complexity of the union
 30 of n geometric objects, as n tends to infinity. For a survey, consult [1]. Particular attention
 31 was given to estimating the number of voids among N simply shaped bodies, e.g., for the
 32 translates of a fixed convex body in \mathbb{R}^d . In the plane, the answer is typically linear in N (for

© Edelsbrunner, Pach;

licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics

LIPICS

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

XX:2 Maximum Betti Numbers of Čech Complexes

33 instance, for disks or other fat objects), but for $d = 3$, the situation is more delicate. The
34 maximum number of voids among N translates of a convex polytope with a constant number
35 of faces is $\Theta(N^2)$, but this number reduces to linear for the cube and other simple shapes [3].
36 It was conjectured for a long time that similar bounds hold for the translates of a convex
37 shape that is not necessarily a polytope. However, this turned out to be false: Aronov,
38 Cheung, Dobbins and Goaoc [2] constructed a convex body in \mathbb{R}^3 for which the number
39 of voids is $\Omega(N^3)$. This is the largest possible order of magnitude for any arrangement of
40 convex bodies, even if they are not translates of a fixed one [18]. It is an outstanding open
41 problem whether there exists a *centrally symmetric* convex body with this property.

42 For the special case where the convex body is the *unit ball* in \mathbb{R}^3 , the maximum number of
43 voids in a union of N translates is $O(N^2)$. This can be easily derived from the Upper Bound
44 Theorem for 4-dimensional convex polytopes. It has been open for a long time whether this
45 bound can be attained. Our main theorem answers this question in the affirmative, in a
46 more general sense.

47 ▶ **Main Theorem.** *For every $d \geq 1$, $0 \leq p \leq d - 1$, and $N \geq 1$, there is a set of N points in
48 \mathbb{R}^d and a radius such that the p -th Betti number of the Čech complex of the points and the
49 radius is $\beta_p = \Theta(N^m)$, with $m = \min\{p + 1, \lceil d/2 \rceil\}$.*

50 For $d = 3$, the maximum second Betti number is $\beta_2 = \Theta(N^2)$, which is equivalent to the
51 maximum number of voids being $\Theta(N^2)$. In addition to the Čech complex, the proof of the
52 Main Theorem makes use of three complexes defined for a set of N points, $A \subseteq \mathbb{R}^d$, in which
53 the third also depends on a radius $r \geq 0$:

- 54 ■ the *Voronoi domain* of a point $a \in A$, denoted $\text{dom}(a, A)$, contains all points $x \in \mathbb{R}^d$ that
55 are at least as close to a as to any other point in A , and the *Voronoi tessellation* of A ,
56 denoted $\text{Vor}(A)$, is the collection of domains $\text{dom}(a, A)$ with $a \in A$ [25];
- 57 ■ the *Delaunay mosaic* of A , denoted $\text{Del}(A)$, contains the convex hull of $\Sigma \subseteq A$ if the
58 common intersection of the $\text{dom}(a, A)$, with $a \in \Sigma$, is non-empty, and no other Voronoi
59 domain contains this common intersection [8]; it is closed under taking faces and therefore
60 is a polyhedral complex;
- 61 ■ the *Alpha complex* of A and r , denoted $\text{Alf}(A, r)$, is the subcomplex of the Delaunay
62 mosaic that contains the convex hull of Σ if the common intersection of the $\text{dom}(a, A)$,
63 with $a \in \Sigma$, contains a point at distance at most r from the points in Σ ; see [10, 11]. If a
64 cell in $\text{Del}(A)$ satisfies this property, then all its faces satisfy the property, which implies
65 that $\text{Alf}(r, A)$ is a complex, and thus indeed a subcomplex of $\text{Del}(A)$.

66 The Delaunay mosaic is also known as the *dual* of the Voronoi tessellation, or the *Delaunay*
67 *triangulation* of A . Note that $\text{Alf}(A, r) \subseteq \text{Alf}(A, R)$ whenever $r \leq R$, and that for sufficiently
68 large radius, the Alpha complex is the Delaunay mosaic. Similar to the Čech complex, the
69 Alpha complex has the same homotopy type as the union of balls with radius r centered
70 at the points in A , and thus the same Betti numbers. It is instructive to increase r from 0
71 to ∞ and to consider the *filtration* or nested sequence of Alpha complexes. The difference
72 between an Alpha complex, K , and the next Alpha complex in the filtration, L , consists
73 of one or more cells. If it is a single cell of dimension p , then either $\beta_p(L) = \beta_p(K) + 1$ or
74 $\beta_{p-1}(L) = \beta_{p-1}(K) - 1$, and all other Betti numbers are the same. In the first case, we say
75 the cell gives *birth* to a p -cycle, while in the second case, it gives *death* to a $(p-1)$ -cycle, and
76 in both cases we say it is *critical*. If there are two or more cells in the difference, this may
77 be a generic event or accidental due to non-generic position of the points. In the simplest
78 generic case, we simultaneously add two cells (one a face of the other), and the addition is
79 an anti-collapse, which does not affect the homotopy type of the complex. More elaborate

80 anti-collapses, such as the simultaneous addition of an edge, two triangles, and a tetrahedron,
 81 can arise generically. The cells in an interval of size 2 or larger cancel each other's effect on
 82 the homotopy type, so we say these cells are *non-critical*. We refer to [4] for more details.

83 With these notions, it is not difficult to prove the upper bounds in the Main Theorem. As
 84 mentioned above, the Čech and alpha complexes for radius r have the same Betti numbers.
 85 Since a p -cycle is given birth to by a p -cell in the filtration of Alpha complexes, and every
 86 p -cell gives birth to at most one p -cycle, the number of p -cells is an upper bound on the
 87 number of p -cycles, which are counted by the p -th Betti number. The number of p -cells in the
 88 Alpha complex is at most that number in the Delaunay mosaic, which, by the Upper Bound
 89 Theorem for convex polytopes [19, 27], is at most $O(N^m)$, with $m = \min\{p + 1, \lceil d/2 \rceil\}$.

90 By comparison, to come up with constructions that prove matching lower bounds is delicate
 91 and the main contribution of this paper. Our constructions are multipartite and inspired by
 92 Lenz' constructions related to Erdős's celebrated question on repeated distances [13]: "what
 93 is the largest number of point pairs $\{a, b\}$ in an N -element set in \mathbb{R}^d with $\|a - b\| = 1$?"
 94 Lenz noticed that in 4 (and higher) dimensions, this maximum is $\Theta(N^2)$. To see this, take
 95 two circles of radius $\sqrt{2}/2$ centered at the origin, lying in two orthogonal planes, and place
 96 $\lceil N/2 \rceil$ and $\lfloor N/2 \rfloor$ points on them. By Pythagoras' theorem, the distance between any two
 97 points on different circles is 1, so the number of unit distances is roughly $N^2/4$, which is
 98 nearly optimal. For $d = 2$ and 3, we are far from knowing asymptotically tight bounds. The
 99 current best constructions give $\Omega(N^{1+c/\log\log N})$ unit distance pairs in the plane [6, page
 100 191] and $\Omega(N^{4/3}\log\log N)$ in \mathbb{R}^3 , while the corresponding upper bounds are $O(N^{4/3})$ and
 101 $O(N^{3/2})$; see [24] and [17, 26]. Even the following, potentially simpler, bipartite repeated
 102 distance question is open in \mathbb{R}^3 : "given N red points and N blue points in \mathbb{R}^3 , such that
 103 the minimum distance between a red and a blue point is 1, what is the largest number of
 104 red-blue point pairs that determine a unit distance?" The best known upper bound, due to
 105 Edelsbrunner and Sharir [12] is $O(N^{4/3})$, but we have no superlinear lower bound. This last
 106 question is closely related to the subject of our present paper.

107 It is not difficult to see that the upper bounds in the Main Theorem also hold for the
 108 Betti numbers of the union of N *not necessarily congruent* balls in \mathbb{R}^d . This requires the
 109 use of weighted versions of the Voronoi tessellation and the Upper Bound Theorem. In the
 110 lower bound constructions, much of the difficulty stems from the fact that we insist on using
 111 congruent balls. This suggests the analogy to the problem of repeated distances.

112 **Outline.** Section 2 proves the Main Theorem for sets in *even* dimensions. Starting with
 113 Lenz' constructions, we partition the Delaunay mosaic into finitely many groups of *congruent*
 114 simplices. We compute the radii of their circumspheres and obtain the Betti numbers by
 115 straightforward counting. In Section 3, we establish the Main Theorem for sets in *three*
 116 dimensions. The situation is more delicate now, because the simplices of the Delaunay mosaic
 117 no longer fall into a small number of distinct congruence classes. Nevertheless, they can
 118 be divided into groups of nearly congruent simplices, which will be sufficient to carry out
 119 the counting argument. In Section 4, we extend the result to any *odd* dimension. Again we
 120 require a detailed analysis of the shapes and sizes of the simplices, which now proceeds by
 121 induction on the dimension. Section 5 contains concluding remarks and open questions.

122 2 Even Dimensions

123 In this section, we give an answer to the maximum Betti number question for Čech complexes
 124 in even dimensions. To state the result, let n_k be the minimum integer such that the edges
 125 of a regular n_k -gon inscribed in a circle of radius $\sqrt{2}/2$ are strictly shorter than $\sqrt{2/k}$. For

XX:4 Maximum Betti Numbers of Čech Complexes

126 $k = 1$ we have $n_1 = 3$, and for $k = 2$ we have $n_2 = 5$, because the side length of an inscribed
127 square is equal to 1.

128 ► **Theorem 2.1** (Maximum Betti Numbers in \mathbb{R}^{2k}). *For every $2k \geq 2$ and $n \geq n_k$, there exist
129 a set A of $N = kn$ points in \mathbb{R}^{2k} and radii $\rho_0 < \rho_1 < \dots < \rho_{2k-2}$ such that*

$$130 \quad \beta_p(\check{\text{Cech}}(A, \rho_p)) = \binom{k}{p+1} \cdot n^{p+1} \pm O(1), \quad \text{for } 0 \leq p \leq k-1; \quad (1)$$

$$131 \quad \beta_p(\check{\text{Cech}}(A, \rho_p)) = \binom{k-1}{p+1-k} \cdot n^k \pm O(1), \quad \text{for } k \leq p \leq 2k-2. \quad (2)$$

132 For $p = 2k-1$, there exist $N = k(n+1) + 2$ points in \mathbb{R}^{2k} and a radius such that the p -th
133 Betti number of the Čech complex is $n^k \pm O(n^{k-1})$.

134 The reason for the condition $n \geq n_k$ will become clear in the proof of Lemma 2.5, which
135 establishes a particular ordering of the circumradii of the cells in the Delaunay mosaic. The
136 proof of the cases $0 \leq p \leq 2k-2$ is not difficult and uses elementary computations, the
137 results of which will be instrumental for establishing the more challenging odd-dimensional
138 statements in Sections 3 and 4. The proof consists of four steps presented in four subsections:
139 the construction of the point set in Section 2.1, the geometric analysis of the simplices in
140 the Delaunay mosaic in Section 2.2, the ordering of the circumradii in Section 2.3, and the
141 final counting in Section 2.4. The proof of the case $p = 2k-1$ in \mathbb{R}^{2k} readily follows the case
142 $p = 2k-2$ in \mathbb{R}^{2k-1} , as we will explain in Section 4.6.

143 2.1 Construction

144 Let $d = 2k$. We construct a set $A = A_{2k}(n)$ of $N = kn$ points in \mathbb{R}^d using k concentric circles
145 in mutually orthogonal coordinate planes: for $0 \leq \ell \leq k-1$, the circle C_ℓ with center at the
146 origin, $0 \in \mathbb{R}^d$, is defined by $x_{2\ell+1}^2 + x_{2\ell+2}^2 = \frac{1}{2}$ and $x_i = 0$ for all $i \neq 2\ell+1, 2\ell+2$. On each
147 of the k circles, we choose $n \geq 3$ points that form a regular n -gon. The length of the edges
148 of these n -gons will be denoted by $2s$. Obviously, we have $s = \frac{\sqrt{2}}{2} \sin \frac{\pi}{n}$. Assuming $k \geq 2$,
149 the condition $n \geq n_k$ implies that the Euclidean distance between consecutive points along
150 the same circle is less than 1, and by Pythagoras' theorem, the distance between any two
151 points on different circles is 1. It follows that for $r = \frac{1}{2}$, neighboring balls centered on the
152 same circle overlap, while the balls centered on different circles only touch. Correspondingly,
153 the first Betti number of the Čech complex for a radius slightly less than $\frac{1}{2}$ is $\beta_1 = k$. To get
154 the first Betti number for $r = \frac{1}{2}$, we add all edges of length 1, of which $k-1$ connect the k
155 circles into a single connected component, while the others increase the first Betti number to
156 $\beta_1 = k + \binom{k}{2}n^2 - (k-1) = \binom{k}{2}n^2 + 1$.

157 To generalize the analysis beyond the first Betti number, we consider the Delaunay mosaic
158 and two radii defined for each of its cells. The *circumsphere* of a p -cell is the unique $(p-1)$ -
159 sphere that passes through its vertices, and we call its center and radius the *circumcenter*
160 and the *circumradius* of the cell. To define the second radius, we call a $(d-1)$ -sphere *empty*
161 if all points of A lie on or outside the sphere. The *radius function* on the Delaunay mosaic,
162 $\text{Rad}: \text{Del}(A) \rightarrow \mathbb{R}$, maps each cell to the radius of the smallest empty $(d-1)$ -sphere that
163 passes through the vertices of the cell. By construction, each Alpha complex is a sublevel set
164 of this function: $\text{Alf}(A, r) = \text{Rad}^{-1}[0, r]$. The two radii of a cell may be different, but they
165 agree for the critical cells as defined in terms of their topological effect in the introduction.
166 It will be convenient to work with the corresponding geometric characterization of criticality:

167 ► **Definition 2.2** (Critical Cell). *A critical cell of $\text{Rad}: \text{Del}(A) \rightarrow \mathbb{R}$ is a cell $\Sigma \in \text{Del}(A)$
168 that (1) contains the circumcenter in its interior, and (2) the $(d-1)$ -sphere centered at the*

169 *circumcenter that passes through the vertices of Σ is empty and the vertices of Σ are the only*
 170 *points of A on this sphere.*

171 There are two conditions for a cell to be critical for a reason. The first guarantees that
 172 its topological effect is not canceled by one of its faces, and the second guarantees that it
 173 does not cancel the topological effect of one of the cells it is a face of. As proved in [4],
 174 the radius function of a generic set, $A \subseteq \mathbb{R}^d$, is *generalized discrete Morse*; see Forman [14]
 175 for background on discrete Morse functions. This means that each level set of Rad is a
 176 union of disjoint combinatorial intervals, and a simplex is critical iff it is the only simplex in
 177 its interval. Our set A is not generic because the $(d-1)$ -sphere with center $0 \in \mathbb{R}^{2k}$ and
 178 radius $\sqrt{2}/2$ passes through all its points. Indeed, $\text{Del}(A)$ is really a $2k$ -dimensional convex
 179 polytope, namely the convex hull of A and all its faces. Nevertheless, the distinction between
 180 critical and non-critical cells is still meaningful, and all cells in the Delaunay mosaic of our
 181 construction will be seen to be critical.

182 The value of the $2k$ -polytope under the radius function is $\sqrt{2}/2$, while the values of its
 183 proper faces are strictly smaller than $\sqrt{2}/2$. Let $\Sigma_{\ell,j}$ be such a face, in which $\ell+1$ is the
 184 number of circles that contain one or two of its vertices, and $j+1$ is the number of circles
 185 that contain two. This face is a simplex of dimension $\dim \Sigma_{\ell,j} = \ell+1+j$, and it has $j+1$
 186 disjoint *short* edges of length $2s$, while the remaining *long* edges all have unit length. Indeed,
 187 the geometry of the simplex is determined by ℓ and j and does not depend on the circles
 188 from which we pick the vertices or where along these circles we pick them, as long as two
 189 vertices from the same circle are consecutive along this circle. For example, $\Sigma_{1,-1}$, $\Sigma_{1,0}$, and
 190 $\Sigma_{1,1}$ are the unit length edge, the isosceles triangle with one short and two long edges, and
 191 the tetrahedron with two disjoint short and four long edges, respectively. We call the $\Sigma_{\ell,j}$
 192 *ideal simplices*. In even dimensions they are *precisely* the simplices in the Delaunay mosaic
 193 of our construction. However, in odd dimensions, the cells in the Delaunay mosaic only
 194 converge to the ideal simplices. This will be explained in detail in Sections 3 and 4.

195 2.2 Circumradii of Ideal Simplices

196 In this section, we compute the sizes of some ideal simplices, beginning in four dimensions.
 197 The *ideal 2-simplex* or *triangle*, denoted $\Sigma_{1,0}$, is the isosceles triangle with one short and two
 198 long edges. We write $h(s)$ for the *height* of $\Sigma_{1,0}$ (the distance between the midpoint of the
 199 short edge and the opposite vertex), and $r(s)$ for the circumradius. There is a unique way
 200 to glue four such triangles to form the boundary of a tetrahedron: the two short edges are
 201 disjoint and their endpoints are connected by four long edges. This is the *ideal 3-simplex* or
 202 *tetrahedron*, denoted $\Sigma_{1,1}$. We write $H(s)$ for its *height* (the distance between the midpoints
 203 of the two short edges), and $R(s)$ for its circumradius.

204 ▶ **Lemma 2.3** (Ideal Triangle and Tetrahedron). *The squared heights and circumradii of the*
 205 *ideal triangle and the ideal tetrahedron in \mathbb{R}^4 satisfy*

$$206 \quad h^2(s) = 1 - s^2, \quad 4r^2(s) = \frac{1}{1 - s^2}, \quad (3)$$

$$207 \quad H^2(s) = 1 - 2s^2, \quad 4R^2(s) = 1 + 2s^2. \quad (4)$$

208 **Proof.** By Pythagoras' theorem, the squared height of the ideal triangle is $h^2 = 1 - s^2$. If
 209 we glue the two halves of a scaled copy of the ideal triangle to the two halves of the short
 210 edge, we get a quadrangle inscribed in the circumcircle of the triangle. One of its diagonals
 211 passes through the center, and its squared length satisfies $4r^2 = 1 + (s/h)^2 = 1 + \frac{s^2}{1-s^2}$.

XX:6 Maximum Betti Numbers of Čech Complexes

212 By Pythagoras' theorem, the squared height of the ideal tetrahedron is $H^2 = h^2 - s^2 =$
 213 $1 - 2s^2$. Hence, the squared diameter of the circumsphere is $4R^2 = H^2 + (2s)^2 = 1 + 2s^2$. \blacktriangleleft

214 To generalize the analysis beyond the ideal simplices in four dimensions, we write $r_{\ell,j}(s)$ for
 215 the circumradius of $\Sigma_{\ell,j}$, so $r_{1,-1}(s) = \frac{1}{2}$, $r_{1,0}(s) = r(s)$, and $r_{1,1}(s) = R(s)$. For two kinds
 216 of ideal simplices, the circumradii are particularly easy to compute, namely for the $\Sigma_{\ell,-1}$ and
 217 the $\Sigma_{\ell,\ell}$, and we will see that knowing their circumradii will be sufficient for our purposes.

218 **► Lemma 2.4 (Further Ideal Simplices).** *For $\ell \geq 0$, the squared circumradii of $\Sigma_{\ell,-1}$ and $\Sigma_{\ell,\ell}$
 219 satisfy $r_{\ell,-1}^2(s) = \ell/(2\ell + 2)$ and $r_{\ell,\ell}^2(s) = (\ell + 2s^2)/(2\ell + 2)$.*

220 **Proof.** Consider the standard ℓ -simplex, which is the convex hull of the endpoints of the $\ell + 1$
 221 unit coordinate vectors in $\mathbb{R}^{\ell+1}$. Its squared circumradius is the squared distance between
 222 the barycenter and any one of the vertices, which is easy to compute. By comparison, the
 223 squared circumradius of the regular ℓ -simplex with unit length edges is half that of the
 224 standard ℓ -simplex:

$$225 \quad R_\ell^2 = \frac{1}{2} \left[\frac{\ell^2}{(\ell+1)^2} + \frac{1}{(\ell+1)^2} + \dots + \frac{1}{(\ell+1)^2} \right] = \frac{\ell}{2(\ell+1)}, \quad (5)$$

226 Since $r_{\ell,-1}^2(s) = R_\ell^2$, this proves the first equation in the lemma. Note that the convex hull
 227 of the midpoints of the $\ell + 1$ short edges of $\Sigma_{\ell,\ell}$ is a regular ℓ -simplex with edges of squared
 228 length $H^2(s) = 1 - 2s^2$. The short edges are orthogonal to this ℓ -simplex, which implies

$$229 \quad r_{\ell,\ell}^2 = H^2(s) \cdot R_\ell^2 + s^2 = R_\ell^2 + (1 - 2R_\ell^2)s^2 = \frac{\ell + 2s^2}{2\ell + 2}, \quad (6)$$

230 which proves the second equation in the lemma. \blacktriangleleft

231 2.3 Ordering the Radii

232 In this subsection, we show that the radii of the circumspheres of the ideal simplices increase
 233 with increasing ℓ and j :

234 **► Lemma 2.5 (Ordering of Radii in \mathbb{R}^{2k}).** *Let $0 < s < 1/\sqrt{2k}$. Then the ideal simplices
 235 satisfy $r_{\ell,\ell}(s) < r_{\ell+1,-1}(s)$ for $0 \leq \ell \leq k - 2$, and $r_{\ell,j}(s) < r_{\ell,j+1}(s)$ for $-1 \leq j < \ell \leq k - 1$.*

236 **Proof.** To prove the first inequality, we use Lemma 2.4 to compute the difference between
 237 the two squared radii:

$$238 \quad r_{\ell+1,-1}^2(s) - r_{\ell,\ell}^2(s) = \frac{\ell + 1}{2(\ell + 2)} - \frac{\ell + 2s^2}{2(\ell + 1)} = \frac{1 - 2s^2(\ell + 2)}{2(\ell + 2)(\ell + 1)}. \quad (7)$$

239 Hence, $r_{\ell,\ell}^2(s) < r_{\ell+1,-1}^2(s)$ iff $s^2 < 1/(2\ell + 4)$. We need this inequality for $0 \leq \ell \leq k - 2$, so
 240 $s^2 < 1/(2k)$ is sufficient, but this is guaranteed by the assumption.

241 We prove the second inequality geometrically, without explicit computation of the radii.
 242 Fix an ideal simplex, $\Sigma_{\ell,j}$, and let S^{d-1} be the $(d - 1)$ -sphere whose center and radius are
 243 the circumcenter and circumradius of $\Sigma_{\ell,j}$. Assume w.l.o.g. that the circles C_0 to C_j contain
 244 two vertices of $\Sigma_{\ell,j}$ each, and the circles C_{j+1} to C_ℓ contain one vertex of $\Sigma_{\ell,j}$ each. For
 245 $0 \leq i \leq k - 1$, write P_i for the 2-plane that contains C_i and x_i for the projection of the center
 246 of S^{d-1} onto P_i . Note that $\|x_i\|^2$ is the squared distance to the origin, and for $0 \leq i \leq \ell$
 247 write r_i^2 for the squared distance between x_i and the one or two vertices of $\Sigma_{\ell,j}$ in P_i . Fixing
 248 i between 0 and ℓ , the squared radius of S^{d-1} is r_i^2 plus the squared distance of the center of

249 S^{d-1} from P_i , which is the sum of the squared norms other than $\|x_i\|^2$. Taking the sum for
 250 $0 \leq i \leq \ell$ and dividing by $\ell + 1$, we get

$$251 \quad r_{\ell,j}^2(s) = \frac{1}{\ell + 1} \left[\sum_{i=0}^{\ell} r_i^2 + \ell \cdot \sum_{i=0}^{\ell} \|x_i\|^2 + (\ell + 1) \cdot \sum_{i=\ell+1}^{k-1} \|x_i\|^2 \right]. \quad (8)$$

252 By construction, $r_{\ell,j}^2(s)$ is the minimum squared radius of any $(d-1)$ -sphere that passes
 253 through the vertices of $\Sigma_{\ell,j}$. Hence, also the right-hand side of (8) is a minimum, but since
 254 the 2-planes are pairwise orthogonal, we can minimize in each 2-plane independently of the
 255 other. For $\ell + 1 \leq i \leq k - 1$, this implies $\|x_i\|^2 = 0$, so we can drop the last sum in (8).
 256 For $j + 1 \leq i \leq \ell$, x_i lies on the line passing through the one vertex in P_i and the origin.
 257 This implies that S^{d-1} touches C_i at this vertex, and all other points of the circle lie strictly
 258 outside S^{d-1} . For $0 \leq i \leq j$, x_i lies on the bisector line of the two vertices, which passes
 259 through the origin. The contribution to (8) for an index between 0 and j is thus strictly
 260 larger than for an index between $j + 1$ and ℓ . This finally implies $r_{\ell,j}^2(s) < r_{\ell,j+1}^2(s)$ and
 261 completes the proof of the second inequality. \blacktriangleleft

262 Recall that $2s$ is the edge length of a regular n -gon inscribed in a circle of radius $\sqrt{2}/2$.
 263 By the definition of n_k , the condition $s < 1/\sqrt{2k}$ in the lemma holds, whenever $n \geq n_k$.

264 For the counting argument in the next subsection, we need the ordering of the radii
 265 as defined by the radius function, but it is now easy to see that they are the same as the
 266 circumradii, so Lemma 2.5 applies. Indeed, $\text{Rad}(\Sigma_{\ell,j}) = r_{\ell,j}(s)$ if $\Sigma_{\ell,j}$ is a critical simplex of
 267 Rad . To realize that it is, we note that the circumcenter of $\Sigma_{\ell,j}$ lies in its interior because of
 268 symmetry. To see that also the second condition for criticality in Definition 2.2 is satisfied,
 269 we recall that S^{d-1} is the $(d-1)$ -sphere whose center and radius are the circumcenter and
 270 circumradius of $\Sigma_{\ell,j}$. By the argument in the proof of Lemma 2.5, S^{d-1} is empty, and all
 271 points of A other than the vertices of $\Sigma_{\ell,j}$ lie strictly outside this sphere.

272 2.4 Counting the Cycles

273 To compute the Betti numbers, we make essential use of the structure of the Delaunay mosaic
 274 of A , which consists of as many groups of congruent ideal simplices as there are different
 275 values of the radius function. For each $0 \leq \ell \leq k - 1$, we have $\ell + 2$ groups of simplices that
 276 touch exactly $\ell + 1$ of the k circles. In addition, we have a single $2k$ -cell, $\text{conv } A$, with radius
 277 $\sqrt{2}/2$, which gives $1 + 2 + \dots + (k + 1) = \binom{k+1}{2}$ groups. We write $\mathcal{A}_{\ell,j} = \text{Rad}^{-1}[0, r_{\ell,j}]$ for
 278 the Alpha complex that consists of all simplices with circumradii at most $r_{\ell,j} = r_{\ell,j}(s)$. We
 279 prove Theorem 2.1 in two steps, first the relations (1) for $0 \leq p \leq k - 1$ and second the
 280 relations (2) for $k \leq p \leq 2k - 2$. The case $p = 2k - 1$ will be settled later, in Section 4.6. To
 281 begin, we study the Alpha complexes whose simplices touch at most $\ell + 1$ of the k circles.

282 **► Lemma 2.6 (Constant Homology in \mathbb{R}^{2k}).** *Let k be a constant, $A = A_{2k}(n) \subseteq \mathbb{R}^{2k}$, and
 283 $0 \leq \ell \leq k - 1$. Then $\beta_p(\mathcal{A}_{\ell,\ell}) = O(1)$ for every $0 \leq p \leq 2k - 1$.*

284 **Proof.** Fix ℓ and a subset of $\ell + 1$ circles. The full subcomplex of $\mathcal{A}_{\ell,\ell}$ defined by the points
 285 of A on these $\ell + 1$ circles consists of all cells in $\text{Del}(A)$ whose vertices lie on these and not
 286 any of the other circles. Its homotopy type is that of the join of $\ell + 1$ circles or, equivalently,
 287 that of the $(2\ell + 1)$ -sphere; see [16, pages 9 and 19]. This sphere has only one non-zero
 288 (reduced) Betti number, which is $\beta_{2\ell+1} = 1$. There are $\binom{k}{\ell+1}$ such full subcomplexes. The
 289 common intersection of any number of these subcomplexes is a complex of similar type,
 290 namely the full subcomplex of $\text{Del}(A)$ defined by the points on the common circles, which
 291 has the homotopy type of the $(2i + 1)$ -sphere, with $i \leq \ell$. By repeated application of the

XX:8 Maximum Betti Numbers of Čech Complexes

292 Mayer–Vietoris sequence [16, page 149], this implies that the Betti numbers of $\mathcal{A}_{\ell,\ell}$ are
 293 bounded by a function of k and are, thus, independent of n . Since we assume that k is a
 294 constant, we have $\beta_p(\mathcal{A}_{\ell,\ell}) = O(1)$ for every p . \blacktriangleleft

295 Now we are ready to complete the proof of Theorem 2.1 for $p \leq 2k - 2$. To establish
 296 relation (1), fix p between 0 and $k - 1$ and consider $\mathcal{A}_{p,-1} = \text{Rad}^{-1}[0, r_{p,-1}]$, which is the
 297 Alpha complex consisting of all simplices that touch p or fewer circles, together with all
 298 simplices that touch $p + 1$ circles but each circle in only one point. In other words, $\mathcal{A}_{p,-1}$ is
 299 $\mathcal{A}_{p-1,p-1}$ together with all the $\binom{k}{p+1} n^{p+1}$ p -simplices that have no short edges. By Lemma 2.6,
 300 $\mathcal{A}_{p-1,p-1}$ has only a constant number of $(p - 1)$ -cycles. Hence, only a constant number of
 301 the p -simplices can give death to $(p - 1)$ -cycles, while the remaining p -simplices give birth to
 302 p -cycles. This is because every p -simplex either gives birth or death, so if it cannot give death
 303 to a $(p - 1)$ -cycle, then it gives birth to a p -cycle. Hence, $\beta_p(\mathcal{A}_{p,-1}) = \binom{k}{p+1} n^{p+1} \pm O(1)$, as
 304 claimed. The proof of relation (2) is similar but inductive. The induction hypothesis is

$$305 \quad \beta_p(\mathcal{A}_{k-1,p-k}) = \binom{k-1}{p-k+1} \cdot n^k \pm O(1). \quad (9)$$

306 For $p = k - 1$, it claims $\beta_{k-1}(\mathcal{A}_{k-1,-1}) = n^k \pm O(1)$, which is what we just proved. In
 307 other words, relation (1) furnishes the base case at $p = k - 1$. A single inductive step
 308 takes us from $\mathcal{A}_{k-1,p-k}$ to $\mathcal{A}_{k-1,p-k+1}$; that is: we add all simplices that touch all k circles
 309 and $p - k + 2$ of them in two vertices to $\mathcal{A}_{k-1,p-k}$. The number of such simplices is the
 310 number of ways we can pick a pair of consecutive vertices from $p - k + 2$ circles and a
 311 single vertex from the remaining $2k - p - 2$ circles. Since there are equally many vertices as
 312 there are consecutive pairs, this number is $\binom{k}{p-k+2} n^k$. The dimension of these simplices is
 313 $(k - 1) + (p - k + 1) + 1 = p + 1$. Some of these $(p + 1)$ -simplices give death to p -cycles, while
 314 the others give birth to $(p + 1)$ -cycles in $\mathcal{A}_{k-1,p-k+1}$. By the induction hypothesis, there are
 315 $\binom{k-1}{p-k+1} \cdot n^k \pm O(1)$ p -cycles in $\mathcal{A}_{k-1,p-k}$, so this is also the number of $(p + 1)$ -simplices that
 316 give death. Since $\binom{k}{p-k+2} - \binom{k-1}{p-k+1} = \binom{k-1}{p-k+2}$, this implies

$$317 \quad \beta_p(\mathcal{A}_{k-1,p-k+1}) = \binom{k-1}{p-k+2} \cdot n^k \pm O(1), \quad (10)$$

318 as required to finish the inductive argument.

3 Three Dimensions

320 In this section, we answer the maximum Betti number question for Čech complexes in the
 321 smallest odd dimension in which it is non-trivial:

322 \blacktriangleright **Theorem 3.1** (Maximum Betti Numbers in \mathbb{R}^3). *For every $n \geq 2$, there exist $N = 2n + 2$
 323 points in \mathbb{R}^3 and two radii such that the Čech complex for the first radius has first Betti
 324 number $\beta_1 = (n + 1)^2 - 1$ and for the second radius has second Betti number $\beta_2 = n^2$.*

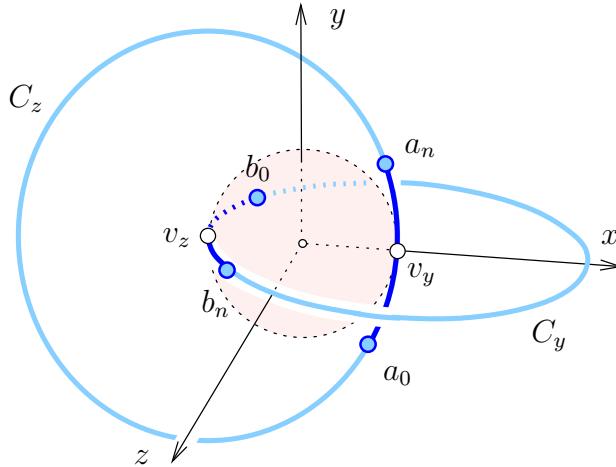
325 The proof consists of four steps: the construction of the set in Section 3.1, the analysis of
 326 the circumradii in Section 3.2, the argument that all simplices in the Delaunay mosaic are
 327 critical in Section 3.3, and the final counting of the tunnels and voids in Section 3.4.

3.1 Construction

328 Given n and $0 < \Delta < 1$, we construct the point set, $A = A_3(n, \Delta)$, using two linked circles
 329 in \mathbb{R}^3 : C_z with center $v_z = (-\frac{1}{2}, 0, 0)$ in the xy -plane defined by $(-\frac{1}{2} + \cos \varphi, \sin \varphi, 0)$ for
 330 $0 \leq \varphi < 2\pi$, and C_y with center $v_y = (\frac{1}{2}, 0, 0)$ in the xz -plane defined by $(\frac{1}{2} - \cos \psi, 0, \sin \psi)$

332 for $0 \leq \psi < 2\pi$; see Figure 1. On each circle, we choose $n + 1$ points close to the center of
 333 the other circle. To be specific, take the points $(0, -\Delta, 0)$ and $(0, \Delta, 0)$, and project them
 334 to C_z along the x -axis. The resulting points are denoted by $a_0 = (-\frac{1}{2} + \sqrt{1 - \Delta^2}, -\Delta, 0)$
 335 and $a_n = (-\frac{1}{2} + \sqrt{1 - \Delta^2}, \Delta, 0)$. Divide the arc between them into n equal pieces by placing
 336 the points a_1, a_2, \dots, a_{n-1} in this sequence from a_0 to a_n . Symmetrically, project the points
 337 $(0, 0, -\Delta)$ and $(0, 0, \Delta)$ to $b_0 = (\frac{1}{2} - \sqrt{1 - \Delta^2}, 0, -\Delta)$ and $b_n = (\frac{1}{2} - \sqrt{1 - \Delta^2}, 0, \Delta)$ lying on
 338 C_y , and place points b_1, b_2, \dots, b_{n-1} in this sequence between them, thus dividing the arc
 339 from b_0 to b_n into n equal pieces. Let $\varepsilon = \varepsilon(n, \Delta)$ be the half-length of the (straight) edge
 340 connecting two consecutive points of either sequence. Clearly, ε is a function of n and Δ ,
 341 and it is easy to see that

$$342 \quad \Delta/n < \varepsilon < \frac{\pi}{2}\Delta/n \quad \text{and} \quad \varepsilon \xrightarrow{\Delta \rightarrow 0} \Delta/n. \quad (11)$$



■ Figure 1: Two linked unit circles in orthogonal coordinate planes of \mathbb{R}^3 , each touching the shaded sphere centered at the origin and each passing through the center of the other circle. There are $n + 1$ points on each circle, on both sides and near the center of the other circle.

343
 344 A sphere that does not contain a circle intersects it in at most two points. It follows that
 345 the sphere that passes through four points of A is empty if and only if two of the four points
 346 are consecutive on one circle and the other two are consecutive on the other. This determines
 347 the Delaunay mosaic: its $N = 2n + 2$ vertices are the points a_i and b_j , its $2n + (n + 1)^2$ edges
 348 are of the forms $a_i a_{i+1}$, $b_j b_{j+1}$, and $a_i b_j$, its $2n(n + 1)$ triangles are of the forms $a_i a_{i+1} b_j$
 349 and $a_i b_j b_{j+1}$, and its n^2 tetrahedra of the form $a_i a_{i+1} b_j b_{j+1}$. Keeping with the terminology
 350 introduced in Section 2, we call the edges $a_i b_j$ *long* and the edges $a_i a_{i+1}$ and $b_j b_{j+1}$ *short*.
 351 Hence, every triangle in the Delaunay mosaic has one short and two long edges, and every
 352 tetrahedron has two short and four long edges.

353 3.2 Divergence from the Ideal

354 The simplices in $\text{Del}(A)$ are not quite ideal, in the sense of Section 2. We, therefore, need
 355 upper and lower bounds on their sizes, as quantified by their circumradii. We will make

XX:10 Maximum Betti Numbers of Čech Complexes

356 repeated use of the following two inequalities, which both hold for $x > -1$:

$$357 \quad \sqrt{1+x} \leq 1 + \frac{x}{2}, \quad (12)$$

$$358 \quad \sqrt{1+x} \geq 1 + \frac{x}{2+x}. \quad (13)$$

359 To begin, we rewrite the relations for the ideal triangle and tetrahedron. Setting $x = s^2/(1-s^2)$
360 and $y = 2s^2$, we get $4r^2(s) = 1+x$ from (3) and $4R^2(s) = 1+y$ from (4). Assuming n is
361 sufficiently large so that $2-2s^2 > 1.9$ and, therefore, $1+s^2 < 1.1$, we use (12) and (13) to
362 get lower and upper bounds for the two radii:

$$363 \quad 1 + \frac{1}{2}s^2 < 1 + \frac{s^2/(1-s^2)}{2+s^2/(1-s^2)} \leq 2r(s) \leq 1 + \frac{s^2}{2-2s^2} < 1 + \frac{10}{19}s^2, \quad (14)$$

$$364 \quad 1 + \frac{10}{11}s^2 \leq 1 + \frac{s^2}{1+s^2} \leq 2R(s) \leq 1 + s^2, \quad (15)$$

365 where we apply (12) and (13) to get the inequalities on the right-hand and left-hand sides,
366 respectively. These inequalities are instrumental in deriving bounds in \mathbb{R}^3 :

367 **► Lemma 3.2 (Bounds for Long Edges in \mathbb{R}^3).** *Let $0 < \Delta < 1$ and $A = A_3(n, \Delta) \subseteq \mathbb{R}^3$. Then
368 the half-length of any long edge, $E \in \text{Del}(A)$, satisfies $\frac{1}{2} \leq R_E \leq \frac{1}{2}(1 + \Delta^4)$.*

369 **Proof.** To verify the lower bound, let $a \in C_z$ and consider the sphere with unit radius
370 centered at a . This sphere intersects the xz -plane in a circle of radius at most 1, whose
371 center lies on the x -axis. The circle passes through $v_z \in C_y$, which implies that the rest of
372 C_y lies on or outside the circle and, therefore, on or outside the sphere centered at a . Hence,
373 $\|a - b\| \geq 1$ for all $b \in C_y$, which implies the required lower bound.

374 To establish the upper bound, observe that the distance between a and b is maximized
375 if the two points are chosen as far as possible from the x -axis, so $4R_E^2 \leq \|a_0 - b_0\|^2$. By
376 construction, $a_0 = (-\frac{1}{2} + \sqrt{1 - \Delta^2}, -\Delta, 0)$ and $b_0 = (\frac{1}{2} - \sqrt{1 - \Delta^2}, 0, -\Delta)$. Hence,

$$377 \quad 4R_E^2 \leq \|(-1 + 2\sqrt{1 - \Delta^2}, -\Delta, \Delta)\|^2 = 5 - 2\Delta^2 - 4\sqrt{1 - \Delta^2} \quad (16)$$

$$378 \quad \leq 5 - 2\Delta^2 - 4 \left(1 - \frac{\Delta^2}{2 - \Delta^2}\right) = 1 + \frac{2\Delta^4}{2 - \Delta^2} \quad (17)$$

$$379 \quad \leq 1 + 2\Delta^4, \quad (18)$$

380 where we used (13) to get (17) from (16), and $\Delta^2 < 1$ to obtain the final bound. Applying
381 (12), we get $2R_E \leq 1 + \Delta^4$, as required. \blacktriangleleft

382 Next, we estimate the circumradii of the triangles in $\text{Del}(A)$. To avoid the computation
383 of a constant, we use the big-Oh notation for Δ , in which we assume that n is fixed.

384 **► Lemma 3.3 (Bounds for Triangles in \mathbb{R}^3).** *Let $0 < \Delta < \sqrt{2}/n$, $A = A_3(n, \Delta) \subseteq \mathbb{R}^3$, and $\varepsilon = \varepsilon(n, \Delta)$. Then the circumradius of any triangle, F , satisfies $\frac{1}{2} + \frac{1}{4}\varepsilon^2 \leq R_F \leq \frac{1}{2} + \frac{1}{4}\varepsilon^2 + O(\Delta^4)$.*

385 **Proof.** To see the lower bound, recall that the short edge of F has length 2ε and the two
386 long edges have lengths at least 1. A circle of radius $r(\varepsilon)$ that passes through the endpoints
387 of the short edge has only one point at distance at least 1 from both endpoints, and it has
388 distance 1 from both. For any radius smaller than $r(\varepsilon)$, there is no such point, which implies
389 that the circumradius of F satisfies $R_F \geq r(\varepsilon) \geq \frac{1}{2} + \frac{1}{4}\varepsilon^2$, where the second inequality follows
390 from (14).

391 To prove the upper bound, we draw F in the plane, assuming its circumcircle is the
392 circle with radius R_F centered at the origin. Let a, b, c be the vertices of F , where a and

394 c are the endpoints of the short edge. We have $0 \in F$, since otherwise one of the angles
 395 at a and c is obtuse, in which case the squared lengths of the two long edges differ by at
 396 least $4\epsilon^2$. By assumption, $\sqrt{2}\Delta^2 < 2\Delta/n \leq 2\epsilon$, in which we get the second inequality from
 397 (11). But this implies that the difference between the squared lengths of the two long edges
 398 is larger than $2\Delta^4$, which contradicts Lemma 3.2. Hence, b lies between the antipodes of
 399 the other two vertices, $a' = -a$ and $c' = -c$. By construction, $\|a' - c'\| = 2\epsilon$. Assuming
 400 $\|b - a'\| \leq \|b - c'\|$, this implies

$$401 \quad \|b - a'\| \leq 2R_F \arcsin \frac{\epsilon}{2R_F} \leq \arcsin \epsilon = \epsilon + O(\epsilon^3). \quad (19)$$

402 Here, the second inequality follows from $2R_F \geq 1$, using the convexity of the arcsin function,
 403 and the final expression using the Taylor expansion $\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots$. Now
 404 consider the triangle with vertices a, a', b . By the Pythagorean theorem,

$$405 \quad 4R_F^2 = \|b - a\|^2 + \|b - a'\|^2 < 1 + 2\Delta^4 + \Delta^8 + \epsilon^2 + O(\epsilon^4) = 1 + \epsilon^2 + O(\Delta^4), \quad (20)$$

406 where we used Lemma 3.2 and (19) to bound $\|b - a\|^2$ and $\|b - a'\|^2$, respectively. We get
 407 the final expression using $\epsilon < \Delta$. Applying (12), we obtain $2R_F \leq 1 + \frac{1}{2}\epsilon^2 + O(\Delta^4)$, as
 408 claimed. \blacktriangleleft

409 Similar to the case of triangles, it is not difficult to establish that the circumradius of any
 410 tetrahedron in the Delaunay mosaic is at least the circumradius of the ideal tetrahedron.

411 **► Lemma 3.4** (Lower Bound for Tetrahedra in \mathbb{R}^3). *Let $0 < \Delta < 1$, $A = A_3(n, \Delta) \subseteq \mathbb{R}^3$, and
 412 $\epsilon = \epsilon(n, \Delta)$. Then the circumradius of any tetrahedron $T \in \text{Del}(A)$ satisfies $R_T \geq \frac{1}{2} + \frac{5}{11}\epsilon^2$.*

413 **Proof.** By construction, T has two disjoint short edges, both of length 2ϵ . Consider a sphere
 414 of radius $R(\epsilon)$ that passes through the endpoints of one of the two short edges. The set of
 415 points on this sphere that are at distance at least 1 from both endpoints is the intersection
 416 of two spherical caps whose centers are antipodal to the endpoints. We call this intersection
 417 a *spherical bi-gon*. Since the two caps have the same size, the two corners of the bi-gon are
 418 further apart than any other two points of the bi-gon. By choice of the radius, $R(\epsilon)$, the
 419 edge connecting the two corners has length 2ϵ . Hence, these corners are the only possible
 420 choice for the remaining two vertices of T , and for a radius smaller than $R(\epsilon)$, there is no
 421 choice. It follows that the circumradius of T is at least $R(\epsilon)$, and we get the claimed lower
 422 bound from (15). \blacktriangleleft

423 3.3 All Simplices are Critical

424 Since no empty sphere passes through more than four points of A , the Delaunay mosaic of A
 425 is simplicial, and the radius function is a generalized discrete Morse function [4]. We will
 426 argue shortly that all simplices are critical; see Definition 2.2. The point set depends on two
 427 parameters, n and Δ , and we consider n fixed while we can make Δ as small as we like.

428 **► Lemma 3.5** (All Critical in \mathbb{R}^3). *Let $n \geq 2$, $\Delta > 0$ sufficiently small, and $A = A_3(n, \Delta) \subseteq \mathbb{R}^3$.
 429 Then every simplex of the Delaunay mosaic of A is critical.*

430 **Proof.** It is clear that the vertices and the short edges are critical, but the other simplices
 431 in $\text{Del}(A)$ require an argument. We begin with the long edges. Fix i and j , and write
 432 $S^2(i; j)$ for the smallest sphere that passes through a_i and b_j . Its center is the midpoint of
 433 the long edge and, by (18), its squared diameter is between 1 and $1 + 2\Delta^4$. The distance
 434 between a_i and any a_ℓ , $\ell \neq i$, is at least 2ϵ . Assuming a_ℓ is on or inside $S^2(i; j)$, we thus have

XX:12 Maximum Betti Numbers of Čech Complexes

435 $\|a_\ell - b_j\|^2 \leq 1 + 2\Delta^4 - 4\epsilon^2$, which, for sufficiently small $\Delta > 0$, is less than 1. This contradicts
436 the lower bound in Lemma 3.2, so a_ℓ lies outside $S^2(i; j)$. By a symmetric argument, all b_ℓ ,
437 $\ell \neq j$, lie outside $S^2(i; j)$. Hence, $S^2(i; j)$ is strictly empty, for all $0 \leq i, j \leq n$, which implies
438 that all edges of $\text{Del}(A)$ are critical edges of the radius function.

439 The fact that all edges of $\text{Del}(A)$ are critical implies that all triangles are acute. Indeed,
440 if $a_i b_j b_{j+1}$ is not acute, then the midpoint of one long edge is at least as close to the third
441 vertex as to the endpoints of the edge. Write $S^2(i; j, j+1)$ for the circumsphere of the triangle
442 and z for its center. Since $a_i b_j b_{j+1}$ is acute, z lies in its interior. As illustrated in Figure 2,
443 the line that passes through a_i and z crosses the opposite edge at x' and exits the sphere at
444 x . Let a_ℓ be another point, with $\ell \neq i$, and assume it lies on or outside $S^2(i; j, j+1)$. The
445 angle between the segments that connect a_ℓ to a_i and x is therefore at least $\frac{\pi}{2}$, which implies

$$446 \|x - a_i\|^2 \geq \|x - a_\ell\|^2 + \|a_i - a_\ell\|^2 \geq 1 - \epsilon^2 + 4\epsilon^2 = 1 + 3\epsilon^2, \quad (21)$$

447 because the angle enclosed by the segments connecting x' to a_ℓ and x is larger than $\frac{\pi}{2}$, so
448 $\|x - a_\ell\|^2$ is larger than the squared height of the triangle $a_\ell b_j b_{j+1}$, which is at least $1 - \epsilon^2$,
449 and because $\|a_i - a_\ell\|^2 \geq 4\epsilon^2$. But (21) contradicts $\|x - a_i\|^2 \leq 1 + \epsilon^2 + O(\Delta^4)$, which
450 follows from the upper bound on the radius of the triangle in Lemma 3.3. Hence, all triangles
in $\text{Del}(A)$ are critical, as claimed.

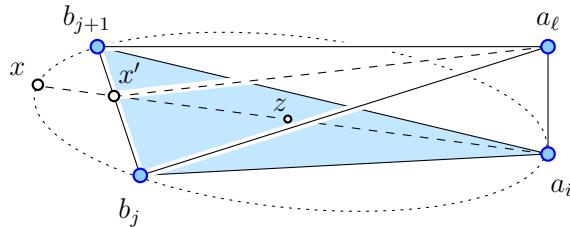


Figure 2: Two acute triangles sharing the edge that connects b_j with b_{j+1} in $\text{Del}(A)$. By shrinking $\Delta > 0$, the angle at x' can be made arbitrarily close to straight and certainly larger than $\frac{\pi}{2}$.

451
452 Since all triangles are critical, all tetrahedra of $\text{Del}(A)$ must also be critical. One can
453 argue in two ways. Combinatorially: the radius function pairs non-critical tetrahedra with
454 non-critical triangles, but there are no such triangles. Geometrically: since every triangle
455 has a non-empty intersection with its dual Voronoi edge, every tetrahedron must contain its
456 dual Voronoi vertex. \blacktriangleleft

457 3.4 Counting the Tunnels and Voids

458 Before counting the tunnels and voids, we recall that $\text{Rad}: \text{Del}(A) \rightarrow \mathbb{R}$ maps each simplex
459 to the radius of its smallest empty sphere that passes through its vertices. By Lemma 3.5,
460 all simplices of $\text{Del}(A)$ are critical, so $\text{Rad}(E)$ is equal to the circumradius of E , for every
461 edge $E \in \text{Del}(A)$, and similarly for every triangle and every tetrahedron.

462 \blacktriangleright **Corollary 3.6 (Ordering of Radii in \mathbb{R}^3).** *Let $\Delta > 0$ be sufficiently small, let $A = A_3(n, \Delta) \subseteq \mathbb{R}^3$, and let $\text{Rad}: \text{Del}(A) \rightarrow \mathbb{R}$ be the radius function. Then $\text{Rad}(E) < \text{Rad}(F) < \text{Rad}(T)$ for every edge E , triangle F , and tetrahedron T in $\text{Del}(A)$.*

465 **Proof.** Using Lemma 3.2 for the edges, Lemma 3.3 for the triangles, and Lemma 3.4 for the

466 tetrahedra in the Delaunay mosaic of A , we get

$$467 \quad \text{Rad}(E) = R_E < \frac{1}{2} + O(\Delta^4), \quad (22)$$

$$468 \quad \frac{1}{2} + \frac{1}{4}\varepsilon^2 \leq \text{Rad}(F) = R_F < \frac{1}{2} + \frac{1}{4}\varepsilon^2 + O(\Delta^4), \quad (23)$$

$$469 \quad \frac{1}{2} + \frac{5}{11}\varepsilon^2 \leq \text{Rad}(T) = R_T, \quad (24)$$

470 so for sufficiently small $\Delta > 0$, the edges precede the triangles, and the triangles precede the
471 tetrahedra in the filtration of the simplices. \blacktriangleleft

472 For the final counting, choose ρ_1 to be any number strictly between the maximum radius
473 of any edge and the minimum radius of any triangle. The existence of such a number
474 is guaranteed by Corollary 3.6. The corresponding Čech complex is the 1-skeleton of the
475 Delaunay mosaic. It is connected, with $N = 2n+2$ vertices and $2n+(n+1)^2$ edges. The number
476 of independent cycles is the difference plus 1, which implies $\beta_1(\text{Čech}(A, \rho_1)) = (n+1)^2 - 1$, as
477 claimed. Similarly, choose ρ_2 between the maximum radius of any triangle and the minimum
478 radius of any tetrahedron, which is again possible, by Corollary 3.6. The corresponding Čech
479 complex is the 2-skeleton of the Delaunay mosaic. The number of independent 2-cycles is
480 the number of missing tetrahedra. This implies $\beta_2(\text{Čech}(A, \rho_2)) = n^2$, as claimed.

481 4 Odd Dimensions

482 In this section, we generalize the 3-dimensional results to odd dimensions and, in Section 4.6,
483 we prove the outstanding case, $p = 2k - 1$ and $d = 2k$, in even dimensions.

484 **Theorem 4.1** (Maximum Betti Numbers in \mathbb{R}^{2k+1}). *For every $d = 2k + 1 \geq 1$, $n \geq 2$, and
485 sufficiently small $\Delta > 0$, there are a set $A = A_d(n, \Delta) \subseteq \mathbb{R}^{2k+1}$ of $N = (k+1)(n+1)$ points
486 and radii $\rho_0 < \rho_1 < \dots < \rho_{2k}$ such that*

$$487 \quad \beta_p(\text{Čech}(A, \rho_p)) = \binom{k+1}{p+1} \cdot (n+1)^{p+1} \pm O(1), \quad \text{for } 0 \leq p \leq k; \quad (25)$$

$$488 \quad \beta_p(\text{Čech}(A, \rho_p)) = \binom{k}{p-k} \cdot (n+1)^{k+1} \pm O(n^k), \quad \text{for } k+1 \leq p \leq 2k. \quad (26)$$

489 The steps in the proof are the same as in Sections 2 and 3: construction of the points, analysis
490 of the circumradii, argument that all simplices are critical, and final counting of the cycles.
491 In contrast to the earlier sections, the analytic part of the proof is inductive and distinguishes
492 between erecting a pyramid or a bi-pyramid on top of a lower-dimensional simplex.

493 4.1 Construction

494 Equip \mathbb{R}^d with Cartesian coordinates, x_1, x_2, \dots, x_d , and consider a regular k -simplex, denoted
495 by Σ , in the k -plane spanned by x_1, x_2, \dots, x_k . It is not important where Σ is located inside
496 the coordinate k -plane, but we assume for convenience that its barycenter is the origin of
497 the coordinate system. It is, however, important that all edges of Σ have unit length. We
498 will repeatedly need the squared circumradius, height, and in-radius of Σ , for which we state
499 simple formulas and straightforward consequences for later convenience:

$$500 \quad R_k^2 = \frac{k}{2(k+1)}; \quad D_k^2 = \frac{1}{2k(k+1)}; \quad H_k^2 = \frac{k+1}{2k}; \quad (27)$$

$$501 \quad (k+1)R_k = kH_k; \quad (k+1)R_{k-1}^2 = (k-1)H_k^2; \quad (k+1)D_k = H_k, \quad (28)$$

502 in which we get the second equation in (27) from $D_k^2 = R_k^2 - R_{k-1}^2$. Observe that the angle,
503 α , between an edge and a height of Σ that meet at a shared vertex satisfies $\cos \alpha = H_k$. Let

XX:14 Maximum Betti Numbers of Čech Complexes

504 u_0, u_1, \dots, u_k be the vertices of Σ , and let v_ℓ be the barycenter of the $(k-1)$ -face opposite
 505 to u_ℓ . For each $0 \leq \ell \leq k$, consider the 2-plane spanned by $u_\ell - v_\ell$ and the $x_{k+\ell+1}$ -axis,
 506 and let C_ℓ be the circle in this 2-plane, centered at v_ℓ , that passes through u_ℓ ; see Figure 3.
 507 Its radius is the height of the k -simplex: $\gamma = H_k$. Given a global choice of the parameter,
 508 $0 < \Delta < H_k$, we cut C_ℓ at $x_{k+\ell+1} = \pm\Delta$ into four arcs and place $n+1$ points at equal
 509 angles along the arc that passes through u_ℓ . Repeating this step for each ℓ , we get a set of
 $N = (k+1)(n+1)$ points, denoted $A = A_{2k+1}(n, \Delta)$.

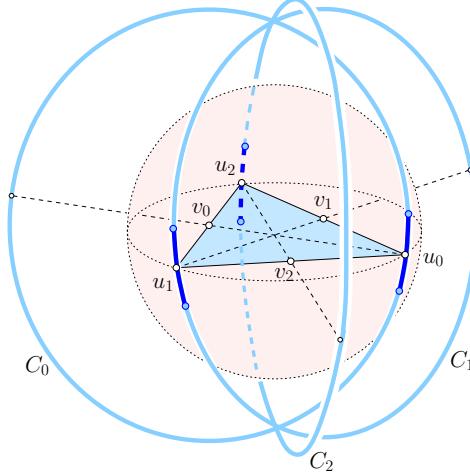


Figure 3: The projection of the 5-dimensional construction to \mathbb{R}^3 , in which x_3, x_4, x_5 are all mapped to the same, vertical coordinate direction. The circles C_0, C_1, C_2 touch the shaded sphere in the vertices of the triangle. In \mathbb{R}^5 , the three circles belong to mutually orthogonal 2-planes, so the two common points of the three circles in the drawing are an artifact of the particular projection.

510
 511 A $(d-1)$ -sphere that contains none of the circles C_ℓ intersects the $k+1$ circles in at
 512 most two points each. It follows that a sphere that passes through $2k+2$ points of A_d is
 513 empty if and only if it passes through two consecutive points on each of the $k+1$ circles.
 514 This determines the Delaunay mosaic, which consists of n^{k+1} d -simplices together with all
 515 their faces. It follows that the number of p -simplices in $\text{Del}(A)$ is at most some constant
 516 times n^m , in which $m = \min\{p+1, k+1\}$ and the constant depends on $d = 2k+1$. Building
 517 on the notation introduced in Section 2, we describe each simplex, $S \in \text{Del}(A)$, with two
 518 integers: $\ell = \ell(S)$ is one less than the number of circles C_ℓ that each contain one or two
 519 vertices of S , and $j = j(S)$ is one less than the number of circles that each contain two
 520 vertices of S . Hence, S has dimension $p = \ell+1+j$, and $j+1$ of its edges are short. For each
 521 $0 \leq p \leq k$, there are $\binom{k+1}{p+1}(n+1)^{p+1}$ p -simplices that touch $\ell+1 = p+1$ circles and thus
 522 have $j+1 = 0$ short edges. As suggested by a comparison with relation (25) in Theorem 4.1,
 523 these p -simplices will be found responsible for the p -cycles counted by the p -th Betti number.

524 4.2 Distance from the Ideal

525 The simplices we work with in odd dimensions are almost but not quite ideal. We quantify
 526 the difference by projecting a vertex orthogonally onto the affine hull of a face and measuring
 527 the distance between the projected vertex and the circumcenter of the face. We will see that
 528 this distance is small provided the face is *far* from the vertex, by which we mean that all
 529 edges connecting the vertex to the face are long. We prove this by first establishing bound
 530 on the lengths of long edges.

531 ► **Lemma 4.2** (Length of Long Edges in \mathbb{R}^{2k+1}). *Let $d = 2k + 1$, $0 < \Delta < 1$, and $A = A_d(n, \Delta) \subseteq \mathbb{R}^d$. Then the squared length of any long edge satisfies $1 \leq 4R_E^2 \leq 1 + 2\Delta^4$.*

533 **Proof.** The length of E is maximized if its endpoints, a and b , are as far as possible from
 534 the affine hull of Σ . We therefore assume that both points have distance Δ from this plane.
 535 Suppose $a \in C_0$ and $b \in C_1$, and write a' and b' for their projections onto $\text{aff } \Sigma$. Recall
 536 that u_0 is the point shared by Σ and C_0 , and note that $\|a' - u_0\| = \xi = \gamma - \sqrt{\gamma^2 - \Delta^2}$, in
 537 which γ is the radius of C_0 . Similarly, $\|b' - u_1\| = \xi$. Let α be the angle enclosed by an edge
 538 of Σ and a height of Σ that shares a vertex with the edge. Set $\eta = \xi \cos \alpha$ and note that
 539 $\|a' - b'\| = 1 - 2\eta$. By construction of Σ as a regular simplex with unit length edges, we
 540 have $\cos \alpha = \gamma$, so

$$541 \quad \|a - b\|^2 = (1 - 2\eta)^2 + \Delta^2 + \Delta^2 = \left(1 - 2\gamma^2 + 2\gamma\sqrt{\gamma^2 - \Delta^2}\right)^2 + 2\Delta^2 \quad (29)$$

$$542 \quad = (1 - 2\gamma^2)^2 + 4\gamma^2(\gamma^2 - \Delta^2) + (2 - 4\gamma^2)2\gamma\sqrt{\gamma^2 - \Delta^2} + 2\Delta^2 \quad (30)$$

$$543 \quad = (1 - 4\gamma^2 + 8\gamma^4) - (4\gamma^2 - 2) \left[\Delta^2 + 2\gamma\sqrt{\gamma^2 - \Delta^2} \right]. \quad (31)$$

544 The squared radius of the circles is $\gamma^2 = (k+1)/(2k) > \frac{1}{2}$, which implies $4\gamma^2 - 2 > 0$. Hence,
 545 we can bound $\|a - b\|^2$ from below using (12) to get $\sqrt{\gamma^2 - \Delta^2} \leq \gamma [1 - \Delta^2/(2\gamma^2)]$. Plugging
 546 this inequality into (31) and applying a sequence of elementary algebraic manipulations
 547 gives $\|a - b\|^2 \geq 1$, as claimed. To prove the upper bound, we use (13) to get $\sqrt{\gamma^2 - \Delta^2} \geq$
 548 $\gamma [1 - \Delta^2/(2\gamma^2 - \Delta^2)]$. Plugging this inequality into (31) gives

$$549 \quad \|a - b\|^2 \leq (1 - 4\gamma^2 + 8\gamma^4) - (4\gamma^2 - 2) \left[\Delta^2 + 2\gamma^2 - \frac{2\gamma^2\Delta^2}{2\gamma^2 - \Delta^2} \right] \quad (32)$$

$$550 \quad = 1 + (4\gamma^2 - 2) \frac{\Delta^4}{2\gamma^2 - \Delta^2} \leq 1 + 2\Delta^4, \quad (33)$$

551 where we use $\Delta < 1$ to get the final inequality. ◀

552 Applying (12) to the bounds in Lemma 4.2, we get $1 \leq 2R_E \leq 1 + \Delta^4$. Since the length of
 553 every short edge is fixed to 2ϵ , and the length of every long edge is tightly controlled, all
 554 simplices are almost ideal. The next lemma quantifies this notion.

555 ► **Lemma 4.3** (Distance from Ideal in \mathbb{R}^{2k+1}). *Let $d = 2k + 1$, $\Delta > 0$ sufficiently small,
 556 $A = A_d(n, \Delta) \subseteq \mathbb{R}^d$, S a simplex in $\text{Del}(A)$, u a vertex of S , and $Q \subseteq S$ a far face of u .
 557 Then the distance between the orthogonal projection of u onto $\text{aff } Q$ and the circumcenter of
 558 Q is at most $O(\Delta^3)$.*

559 **Proof.** We begin with a triangle, S , with vertices u, v, w , such that the edges connecting
 560 u to v and w are both long. The edge connecting v to w may be long or short. Let δ be
 561 the distance of u from the bisector of v and w , which is maximized if $\|v - w\|$ is as small as
 562 possible while the length difference between the edges connecting u to v and w is as large
 563 as possible. Assuming therefore that these two edges have squared lengths 1 and $1 + 2\Delta^4$,
 564 Pythagoras' theorem implies $(1 + 2\Delta^4) - (\epsilon + \delta)^2 = 1 - (\epsilon - \delta)^2$. Canceling 1, ϵ^2 , and δ^2 on
 565 both sides, we get $\Delta^4 = 2\epsilon\delta$. Since $n\epsilon \geq \Delta$, this implies $\delta = \Delta^4/(2\epsilon) \leq n\Delta^3/2$.

566 In other words, the distance between the projection of the vertex and the midpoint of the
 567 far edge is $\delta \leq n\Delta^3/2$; see the left panel in Figure 4. As mentioned earlier, Δ is independent
 568 of n , so we write $n\Delta^3/2 = O(\Delta^3)$, which settles the claim for the triangles in $\text{Del}(A)$.

569 To generalize beyond triangles, suppose first that the far face of u is i -dimensional and
 570 has no short edges. For each long edge, we construct the slab of points between two parallel

XX:16 Maximum Betti Numbers of Čech Complexes

571 hyperplanes, each parallel to and at distance $n\Delta^3/2$ from the normal hyperplane that crosses
 572 the edge at its midpoint. As shown above, this slab contains u . The common intersection of
 573 the slabs of all edges of the face contains u , and the further intersection with the affine hull
 574 of the face contains the orthogonal projection of u onto the face. In the ideal case, this is
 575 a centrally symmetric polytope of dimension i with $(i+1)i$ facets of dimension $i-1$. The
 576 angle between any two adjacent facets is 120° . For sufficiently small $\Delta > 0$, this angle is only
 577 negligibly larger than 120° , so the polytope is contained in a ball of radius at most some
 578 constant times $O(\Delta^3)$ centered at the circumcenter of the face. By construction, u belongs
 579 to this ball, which implies the claimed bound for simplices without long edges. Any short
 580 edges are almost orthogonal to each other and to the long edges of the face. Each such edge
 581 defines a slab, and we can repeat the argument while adding these slabs into the mix. \blacktriangleleft

582 4.3 Inductive Analysis

583 This section continues the analysis with the goals to prove bounds on the circumradii that
 584 are strong enough to separate the Delaunay simplices of different types, and to show that all
 585 simplices are critical. We use induction, with two hypotheses: the first about the circumradius
 586 and the second about the circumcenter. To formulate the second hypothesis, we let S be a
 587 simplex, and write D_S for the radius of the largest ball contained in S that is concentric
 588 with the circumsphere of S ; see the middle panel in Figure 4. If the circumcenter lies outside
 589 S , then D_S is zero, but we will see that this never happens. Recall that $\varepsilon = \varepsilon(n, \Delta)$ is a
 590 function of n and Δ that satisfies $\Delta/n \leq \varepsilon \leq \frac{\pi}{2}\Delta/n$. We write $\ell+1$ for the number of the
 591 C_i touched by S , and $j+1$ for the number of short edges.

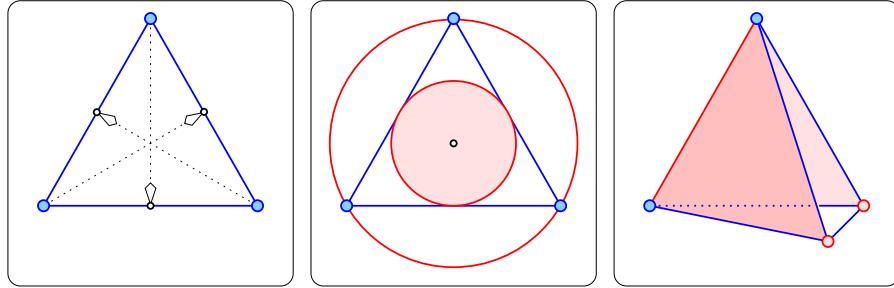


Figure 4: The ingredients for the analysis of the simplices. *Left*: each vertex of the equilateral triangle projects orthogonally to the midpoint of the opposite edge. *Middle*: the largest disk inside the equilateral triangle and concentric with the circumcircle is bounded by the inscribed circle. *Right*: the tetrahedron with one short edge is a bi-pyramid with two apices and one base edge.

591

592 **Hypothesis I:** $R_S^2 = R_\ell^2 + \frac{j+1}{(\ell+1)^2} \varepsilon^2 \pm O(\varepsilon^3)$.

593 **Hypothesis II:** $D_S^2 = \begin{cases} D_\ell^2 \pm O(\varepsilon^2) & \text{if } j = -1; \\ \frac{1}{(\ell+1)^2} \varepsilon^2 \pm O(\varepsilon^3) & \text{if } 0 \leq j \leq \ell, \end{cases}$

594 in which the big-Oh notation is used to suppress multiplicative constants, as usual. Since Δ
 595 is independent of n , we write $\Delta = O(\varepsilon)$. The base case for the induction ascertains that the
 596 two hypotheses hold when S is a vertex ($\ell = 0, j = -1$), a short edge ($\ell = j = 0$), or a long
 597 edge ($\ell = 1, j = -1$). We have $R_S^2 = 0$ if S is a vertex, $R_S^2 = \varepsilon^2$ if S is a short edge, and
 598 $\frac{1}{4} \leq R_S^2 \leq \frac{1}{4} + \frac{1}{2}\Delta^4$ if S is a long edge by Lemma 4.2, which verify Hypothesis I in all three
 599 cases. Hypothesis II is also clear. Indeed, the edge itself is the largest 1-ball contained in the
 600 edge and concentric with the circumsphere, so there is nothing to prove.

601 We will distinguish between two kinds of inductive steps, one reasoning from $(\ell - 1, j)$ to
 602 (ℓ, j) and the other from $(\ell, j - 1)$ to (ℓ, j) . We need some notions to describe the difference.
 603 A *facet* of a simplex is a face whose dimension is 1 less than that of the simplex. We call a
 604 vertex a of S a *twin* if it is the endpoint of a short edge, in which case we write a'' for the
 605 other endpoint of that edge. If a is not a twin, we write $Q = S - a$ for the opposite facet,
 606 and call the pair (a, Q) a *pyramid* with *apex* a and *base* Q . If a is a twin, then there are two
 607 pyramids, (a, P) and (a'', P) with $P = S - a - a''$, and we call this the *bi-pyramid case*; see
 608 the right panel in Figure 4.

609 **4.3.1 Inductive Step (Pyramid Case)**

610 The inductive step consists of two lemmas. The first justifies the inductive step from $(\ell - 1, j)$ to
 611 (ℓ, j) . It handles the transition from the base of a pyramid to the pyramid. Letting S be
 612 a simplex, z_S its circumcenter, and (a, Q) be a pyramid of S , we write $H_{Q,S}$ and $D_{Q,S}$ for
 613 the distances of a and z_S from $\text{aff } Q$, respectively.

614 ► **Lemma 4.4** (Pyramid Step). *Let $d = 2k + 1$, $\Delta > 0$ sufficiently small, $A = A_d(n, \Delta) \subseteq \mathbb{R}^d$,
 615 and $\varepsilon = \varepsilon(n, \Delta)$. Furthermore, let $S \in \text{Del}(A)$, write $\ell = \ell(S)$ and $j = j(S)$, assume $j < \ell$,
 616 and let (a, Q) be a pyramid of S . Assuming Q satisfies Hypotheses I and II, we have*

$$617 \quad H_{Q,S}^2 = H_\ell^2 - \frac{j+1}{\ell^2} \varepsilon^2 \pm O(\varepsilon^3); \quad (34)$$

$$618 \quad D_{Q,S}^2 = D_\ell^2 - \frac{(2\ell+1)(j+1)}{\ell^2(\ell+1)^2} \varepsilon^2 \pm O(\varepsilon^3); \quad (35)$$

$$619 \quad R_S^2 = R_\ell^2 + \frac{j+1}{(\ell+1)^2} \varepsilon^2 \pm O(\varepsilon^3); \quad (36)$$

620 **Proof.** By construction, $\ell(Q) = \ell - 1$ and $j(Q) = j$. Assume first that the projection of a
 621 onto $\text{aff } Q$ is z_Q , the circumcenter of Q . In this case, all edges connecting a to Q have the
 622 same length, $2R_E$. Pythagoras' theorem implies $H_{Q,S}^2 = 4R_E^2 - R_Q^2$. Using Lemma 4.2 and
 623 Hypothesis I, we get the bounds for the squared height claimed in (34):

$$624 \quad 4R_E^2 = 1 \pm O(\Delta^4); \quad (37)$$

$$625 \quad R_Q^2 = R_{\ell-1}^2 + \frac{j+1}{\ell^2} \varepsilon^2 \pm O(\varepsilon^3); \quad (38)$$

$$626 \quad H_{Q,S}^2 = H_\ell^2 - \frac{j+1}{\ell^2} \varepsilon^2 \pm O(\varepsilon^3), \quad (39)$$

627 where (39) follows from (37) and (38), using $1 - R_{\ell-1}^2 = H_\ell^2$. This proves (34). Since
 628 $(H_{Q,S} - D_{Q,S})^2 = R_S^2$ and $R_S^2 + D_{Q,S}^2 = R_Q^2$, we get $H_{Q,S}^2 - 2D_{Q,S}H_{Q,S} = R_Q^2$. Therefore,

$$629 \quad D_{Q,S} = \frac{H_{Q,S}^2 - R_Q^2}{2H_{Q,S}} = \frac{1}{2} H_{Q,S} - \frac{1}{2} \frac{R_Q^2}{H_{Q,S}}; \quad (40)$$

$$630 \quad R_S = H_{Q,S} - D_{Q,S} = \frac{1}{2} H_{Q,S} + \frac{1}{2} \frac{R_Q^2}{H_{Q,S}}. \quad (41)$$

631 Using the formulas for R_ℓ , H_ℓ , D_ℓ in (27), it is easy to prove the corresponding relations for
 632 the regular ℓ -simplex: $D_\ell = \frac{1}{2}H_\ell - \frac{1}{2}R_{\ell-1}^2/H_\ell$ and $R_\ell = \frac{1}{2}H_\ell + \frac{1}{2}R_{\ell-1}^2/H_\ell$. Starting with

XX:18 Maximum Betti Numbers of Čech Complexes

633 (39), we use $\sqrt{1-x} = 1 - \frac{x}{2} + \dots$ and $1/\sqrt{1-x} = 1 + \frac{x}{2} + \dots$ to get

$$634 \quad H_{Q,S} = H_\ell - \frac{j+1}{2\ell^2 H_\ell} \varepsilon^2 \pm O(\varepsilon^3); \quad (42)$$

$$635 \quad \frac{1}{H_{Q,S}} = \frac{1}{H_\ell} + \frac{j+1}{2\ell^2 H_\ell^3} \varepsilon^2 \pm O(\varepsilon^3); \quad (43)$$

$$636 \quad \frac{R_Q^2}{H_{Q,S}} = \frac{R_{\ell-1}^2}{H_\ell} + \left[\frac{j+1}{\ell^2 H_\ell} + \frac{R_{\ell-1}^2(j+1)}{2\ell^2 H_\ell^3} \right] \varepsilon^2 \pm O(\varepsilon^3), \quad (44)$$

637 where we multiply the left-hand sides and right-hand sides of (38) and (43) to get (44). We
638 plug (42) and (44) into (40) and (41), while using the relations in (27) and (28):

$$639 \quad D_{Q,S} = \left[\frac{1}{2} H_\ell - \frac{1}{2} \frac{R_{\ell-1}^2}{H_\ell} \right] - \left[\frac{j+1}{4\ell^2 H_\ell} + \frac{j+1}{2\ell^2 H_\ell} + \frac{R_{\ell-1}^2(j+1)}{4\ell^2 H_\ell^3} \right] \varepsilon^2 \pm O(\varepsilon^3) \\ 640 \quad = D_\ell - \frac{(2\ell+1)(j+1)}{2\ell^2(\ell+1)^2 D_\ell} \varepsilon^2 \pm O(\varepsilon^3); \quad (45)$$

$$641 \quad R_S = \left[\frac{1}{2} H_\ell + \frac{1}{2} \frac{R_{\ell-1}^2}{H_\ell} \right] + \left[-\frac{j+1}{4\ell^2 H_\ell} + \frac{j+1}{2\ell^2 H_\ell} + \frac{R_{\ell-1}^2(j+1)}{4\ell^2 H_\ell^3} \right] \varepsilon^2 \pm O(\varepsilon^3) \\ 642 \quad = R_\ell + \frac{j+1}{2(\ell+1)^2 R_\ell} \varepsilon^2 \pm O(\varepsilon^3). \quad (46)$$

643 Taking squares, we get (35) and (36), but mind that this is only for the special case in which
644 the apex projects orthogonally to the circumcenter of the base. To prove the bounds in the
645 general case, we recall that Lemma 4.3 asserts that the projection of a onto $\text{aff } Q$ is at most
646 $O(\Delta^3)$ units of length from z_Q . Hence, we get an additional error term of $O(\Delta^3)$ in all the
647 above equations, but this does not change any of the bounds as stated. \blacktriangleleft

648 Note that D_S is the minimum of the $D_{Q,S}$, over all facets Q of S . Hence, Lemma 4.4
649 proves Hypothesis II in the case in which S has no short edges.

650 4.3.2 Inductive Step (Bi-pyramid Case)

651 The second kind of inductive step—from $(\ell, j-1)$ to (ℓ, j) —makes use of a distance function
652 between affine subspaces of \mathbb{R}^d . In our case, the function measures the distance from a
653 p -plane to a $(d-1)$ -plane, which is linear provided the distance is taken with a sign that is
654 different on the two sides of the hyperplane.

655 **Lemma 4.5 (Bi-pyramid Step).** *Let $d = 2k+1$, $\Delta > 0$ sufficiently small, $A = A_d(n, \Delta) \subseteq \mathbb{R}^d$,
656 and $\varepsilon = \varepsilon(n, \Delta)$. Furthermore, let $S \in \text{Del}(A)$, with $\ell = \ell(S)$ and $j = j(S) \geq 0$, and let
657 a and a'' be the endpoints of a short edge. Assuming $Q = S - a''$ and $Q'' = S - a$ satisfy
658 Hypotheses I and II, we have*

$$659 \quad D_{Q,S}^2 = \frac{1}{(\ell+1)^2} \varepsilon^2 \pm O(\varepsilon^3); \quad (47)$$

$$660 \quad R_S^2 = R_\ell^2 + \frac{j+1}{(\ell+1)^2} \varepsilon^2 \pm O(\varepsilon^3); \quad (48)$$

661 **Proof.** By construction, $\ell(Q) = \ell(Q'') = \ell$, $j(Q) = j(Q'') = j-1$, and $(a, Q-a)$ and
662 $(a'', Q''-a'')$ are pyramids. We write $P = Q-a = Q''-a''$ for the common base, which has
663 $\ell(P) = \ell-1$ and $j(P) = j-1$. Let M be the bisector of a and a'' . It intersects the short edge
664 orthogonally at its midpoint. Letting $\psi: \text{aff } Q \rightarrow \mathbb{R}$ map each point of $\text{aff } Q$ to its distance

from the nearest point on M , we have $\psi(a) = \varepsilon$ and, by Lemma 4.3, $\psi(b) = O(\Delta^3)$, for each vertex b of P . Let a' be the projection of a onto $\text{aff } P$. By Hypothesis II and Lemma 4.3, a' is closer to z_P than the radius of the largest ball centered at z_P which is contained in P . Hence, $a' \in P$, so $\psi(a') = O(\Delta^3)$ by the linearity of the signed version of ψ . To compute the gradient of this linear function, we recall Lemma 4.4, which asserts

$$H_{P,Q}^2 = H_\ell^2 - \frac{j}{\ell^2} \varepsilon^2 \pm O(\varepsilon^3); \quad (49)$$

$$D_{P,Q}^2 = D_\ell^2 - \frac{(2\ell+1)j}{\ell^2(\ell+1)^2} \varepsilon^2 \pm O(\varepsilon^3). \quad (50)$$

We compute the length of the gradient as the ratio of the difference in function value, which is ε , and the distance between the points, as given in (49). Using (13) to simplify the expression, we first get the length of the gradient of ψ and second the value at the circumcenter of Q :

$$\|\nabla\psi\| = \frac{\varepsilon}{H_{P,Q}} \pm O(\Delta^3) = \frac{\varepsilon}{H_\ell} \pm O(\varepsilon^3); \quad (51)$$

$$\psi(z_Q) = \frac{D_\ell \cdot \varepsilon}{H_\ell} \pm O(\varepsilon^3) = \frac{\varepsilon}{\ell+1} \pm O(\varepsilon^3), \quad (52)$$

in which we exploit that (50) gives a bound on the distance of the circumcenter from P , and we use (28) to get the right-hand side. Hence, $\|z_Q - z_S\| = \varepsilon/(\ell+1) \pm O(\varepsilon^3)$, which implies

$$D_{Q,S}^2 = \frac{1}{(\ell+1)^2} \varepsilon^2 \pm O(\varepsilon^3); \quad (53)$$

$$R_S^2 = R_Q^2 + \frac{1}{(\ell+1)^2} \varepsilon^2 \pm O(\varepsilon^3) = R_\ell^2 + \frac{j+1}{(\ell+1)^2} \varepsilon^2 \pm O(\varepsilon^3), \quad (54)$$

where we used the inductive assumption for R_Q^2 to obtain the bounds for R_S^2 . This proves (47) and (48). \blacktriangleleft

This completes the inductive argument, establishing Hypotheses I and II. In particular, the bounds furnished for the $D_{Q,S}$ imply the required bound for D_S , which is the minimum over all facets Q of S .

4.4 All Simplices are Critical

The above analysis implies that for sufficiently small $\Delta > 0$ the circumcenter of every simplex in $\text{Del}(A)$ is contained in the interior of the simplex. This is half of the proof that all simplices in $\text{Del}(A)$ are critical. The second half of the proof is not difficult.

► **Corollary 4.6** (All Critical in \mathbb{R}^{2k+1}). *Let $d = 2k+1$, $n \geq 2$, $\Delta > 0$ sufficiently small, and $A = A_d(n, \Delta) \subseteq \mathbb{R}^d$. Then every simplex in $\text{Del}(A)$ is a critical simplex of $\text{Rad}: \text{Del}(A) \rightarrow \mathbb{R}$.*

Proof. A simplex $S \in \text{Del}(A)$ is a critical simplex of Rad iff it contains the circumcenter in its interior, and the $(d-1)$ -sphere centered at the circumcenter and passing through the vertices of S does not enclose or pass through any of the other points of A . By Hypothesis II, the first condition holds. To derive a contradiction, assume the second condition fails for $S \in \text{Del}(A)$. In other words, there is a point, $b \in A$, that is not a vertex of S but it is enclosed by or lies on the said $(d-1)$ -sphere. If $\dim S = d$, then the $(d-1)$ -sphere intersects each circle in two points; that is: each C_ℓ for $0 \leq \ell \leq k$. But in this case, there is no possibility for another point to interfere, so we may assume $\dim S < d$.

Since a sphere and a circle intersect in at most two points, we may assume that b lies on a circle not touched by S , or that b neighbors a vertex of S along its circle, and it is

XX:20 Maximum Betti Numbers of Čech Complexes

702 the only vertex of S on this circle. Then we can add b as a new vertex to get a simplex
 703 T with $\dim T = \dim S + 1$. This simplex also belongs to $\text{Del}(A)$ and, by construction, its
 704 circumcenter lies beyond the face S as seen from the new vertex of T . In other words, the
 705 circumcenter does not lie in its interior, which contradicts Hypothesis II. \blacktriangleleft

706 4.5 Counting the Cycles

707 The final counting argument is similar to the one for even dimensions, with a few crucial
 708 differences. Instead of congruent simplices, we have almost congruent simplices in odd
 709 dimensions, but they are similar enough to be separated by their circumradii.

710 **► Corollary 4.7** (Ordering of Radii in \mathbb{R}^{2k+1}). *Let $d = 2k + 1$, $n \geq 2$, $\Delta > 0$ sufficiently small,
 711 $A = A_{2k+1}(n, \Delta) \subseteq \mathbb{R}^{2k+1}$, and $\text{Rad}: \text{Del}(A) \rightarrow \mathbb{R}$ the radius function. Then the circumradii
 712 of two simplices, $S, T \in \text{Del}(A)$, satisfy $\text{Rad}(S) < \text{Rad}(T)$ if $\ell(S) < \ell(T)$, or $\ell(S) = \ell(T)$
 713 and $j(S) < j(T)$.*

714 **Proof.** By Corollary 4.6, the circumradii are the values of the simplices under the radius
 715 function, and by Hypothesis I, the circumradii are segregated into groups according to the
 716 number of touched circles and the number of short edges. It follows that the values of Rad
 717 are segregated the same way. \blacktriangleleft

718 Let $\varrho_{\ell,j}$ be a threshold so that $\text{Rad}(S) < \varrho_{\ell,j} < \text{Rad}(T)$ for all simplices S and T that
 719 satisfy $\ell(S) < \ell$ or $\ell(S) = \ell$ and $j(S) \leq j$, and $\ell(T) > \ell$ or $\ell(T) = \ell$ and $j(T) > j$. For
 720 $0 \leq \ell \leq k$ and $-1 \leq j \leq k$, we are interested in three kinds of these thresholds:

- 721 ■ $\varrho_{\ell-1,\ell-1}$, which separates the simplices that touch at most ℓ circles from those that touch
 722 at least $\ell + 1$ circles;
- 723 ■ $\varrho_{\ell,-1}$, which separates the ℓ -simplices without short edges from the other simplices that
 724 touch the same number of circles;
- 725 ■ $\varrho_{k,j}$, which separates the $(k + j + 1)$ -simplices that touch all $k + 1$ circles from the
 726 $(k + j + 2)$ -simplices that touch all $k + 1$ circles.

727 We begin by studying the Alpha complexes defined by the first type of thresholds, $\mathcal{A}_{\ell-1,\ell-1} =$
 728 $\text{Rad}^{-1}[0, \varrho_{\ell-1,\ell-1}]$.

729 **► Lemma 4.8** (Constant Homology in \mathbb{R}^{2k+1}). *Let $d = 2k + 1$ be a constant, $A = A_d(n, \Delta) \subseteq$
 730 \mathbb{R}^{2k+1} , and $1 \leq \ell \leq k$. Then $\beta_p(\mathcal{A}_{\ell-1,\ell-1}) = O(1)$ for every p .*

731 **Proof.** Pick ℓ of the $k + 1$ circles used in the construction of A , let $A' \subseteq A$ be the points
 732 on these ℓ circles, and note that the full subcomplex of $\text{Del}(A)$ with vertices in A' has no
 733 non-trivial (reduced) homology. We may collapse this full subcomplex to a single $(\ell - 1)$ -
 734 simplex. $\mathcal{A}_{\ell-1,\ell-1}$ is the union of $\binom{k+1}{\ell}$ such full subcomplexes of $\text{Del}(A)$, one for each choice
 735 of ℓ circles. The intersections of these subcomplexes are of the same type, namely induced
 736 subcomplexes of $\text{Del}(A)$ for the points on ℓ or fewer of the circles. Hence, $\mathcal{A}_{\ell-1,\ell-1}$ has the
 737 homotopy type of the complete $(\ell - 1)$ -dimensional simplicial complex with $k + 1$ vertices. Its
 738 $(\ell - 1)$ -st homology group is the only non-trivial homology group, and its rank is a constant
 739 independent of n and Δ , as required. \blacktriangleleft

740 To prove relation (25) of Theorem 4.1, we second consider the Alpha complexes defined
 741 by the second type of thresholds, $\mathcal{A}_{\ell,-1} = \text{Rad}^{-1}[0, \varrho_{\ell,-1}]$. This complex is $\mathcal{A}_{\ell-1,\ell-1}$ together
 742 with all ℓ -simplices without short edges. By Lemma 4.8, only a constant number of them
 743 give death to $(\ell - 1)$ -cycles, while all others give birth to ℓ -cycles. This implies that the rank
 744 of the ℓ -th homology group of $\mathcal{A}_{\ell,-1}$ is the number of ℓ -simplices without short edges minus

745 a constant, which is $\binom{k+1}{\ell+1}(n+1)^{\ell+1} \pm O(1)$. This construction works for $0 \leq \ell \leq k$, which
746 implies relation (25).

747 To prove relation (26) inductively, we third consider the Alpha complexes defined by the
748 third type of thresholds, $\mathcal{A}_{k,j} = \text{Rad}^{-1}[0, \varrho_{k,j}]$, for $0 \leq j \leq k$. The induction hypothesis is

$$749 \quad \beta_p(\mathcal{A}_{k,p-k-1}) = \binom{k}{p-k} \cdot (n+1)^{k+1} \pm O(n^k), \quad (55)$$

750 and we use the case $p = k$ of relation (25) as the induction basis. The difference between
751 $\mathcal{A}_{k,p-k-1}$ and $\mathcal{A}_{k,p-k}$ are the $(p+1)$ -simplices with $p-k+1$ short edges. Their number is

$$752 \quad \binom{k+1}{p-k+1} \cdot (n+1)^{2k-p} n^{p-k+1} = \binom{k+1}{p-k+1} \cdot (n+1)^{k+1} \pm O(n^k), \quad (56)$$

753 This number divides up into the ones that give death and the remaining ones that give birth.
754 Since $\binom{k+1}{p-k+1} - \binom{k}{p-k} = \binom{k}{p-k+1}$, this implies

$$755 \quad \beta_{p+1}(\mathcal{A}_{k,p-k}) = \binom{k}{p-k+1} \cdot (n+1)^{k+1} \pm O(n^k), \quad (57)$$

756 as needed to finish the inductive argument.

4.6 Voids in Even Dimensions

757 We return to the one case in $d = 2k$ dimensions that is not covered by the construction in
758 Section 2, namely the $(2k-1)$ -st Betti number. It counts the top-dimensional holes, which
759 we refer to as *voids*. Notwithstanding that the construction in Section 2 does not provide
760 any voids, Theorem 2.1 claims the existence of $N = k(n+1) + 2$ points in \mathbb{R}^{2k} and a radius
761 such that $\beta_{2k-1} = n^k \pm O(n^{k-1})$.

762 The set of N points whose Čech complex has that many voids is a straightforward
763 modification of the construction in $2k-1$ dimensions: place $A = A_{2k-1}(n, \Delta)$ in the $(2k-1)$ -
764 dimensional hyperplane $x_{2k} = 0$ in \mathbb{R}^{2k} . Every $(2k-2)$ -cycle—which corresponds to a void
765 in $2k-1$ dimensions—is now a pore in the hyperplane that connects the two half-spaces. In
766 the odd-dimensional construction, all pores arise when the radius is roughly $R_{k-1} \geq \frac{1}{2}$, and
767 they are located in a small neighborhood of the origin. By choosing $\Delta > 0$ sufficiently small,
768 we can make this neighborhood arbitrarily small. It is thus easy to add two points, one on
769 each side of the hyperplane, such that their balls close the pores from both sides and turn
770 them into voids in \mathbb{R}^{2k} . More formally, the two points doubly suspend each $(2k-2)$ -cycle
771 into a $(2k-1)$ -cycle. Hence, Theorem 4.1 for $d = 2k-1$ and $p = 2k-2$, which gives
772 $\beta_p = (n+1)^k \pm O(n^{k-1})$, provides the missing case in the proof of Theorem 2.1.

5 Discussion

773 In this paper, we give asymptotically tight bounds for the maximum p -th Betti number of
774 the Čech complex of N points in \mathbb{R}^d . These bounds also apply to the related Alpha complex
775 and the dual union of equal-size balls in \mathbb{R}^d . They do not apply to the Vietoris–Rips complex,
776 which is the flag complex that shares the 1-skeleton with the Čech complex for the same
777 data. In other words, the Vietoris–Rips complex can be constructed by adding all 2- and
778 higher-dimensional simplices whose complete set of edges belongs the 1-skeleton of the Čech
779 complex. This implies $\beta_1(\text{Rips}(A, r)) \leq \beta_1(\text{Čech}(A, r))$, since adding a triangle may lower
780 but cannot increase the first Betti number.

781 As proved by Goff [15], the 1-st Betti number of the Vietoris–Rips complex of N points
782 is $O(N)$, for all radii and in all dimensions, so also in \mathbb{R}^3 . Compare this with the quadratic

785 lower bound for Čech complexes proved in this paper. This implies that the first homology
 786 group of this Čech complex has a basis in which most generators are tri-gons; that is: the
 787 three edges of a triangle. The circumradius of a tri-gon is less than $\sqrt{2}$ times the half-length
 788 of its longest edge, which implies that most of the $\Theta(N^2)$ generators exist only for a short
 789 range of radii. In the language of persistent homology [9], most points in the 1-dimensional
 790 persistence diagram represent 1-cycles with small persistence. Similarly, the 2-nd Betti
 791 number of a Vietoris–Rips complex in \mathbb{R}^3 is $o(N^2)$ [15], compared to that of a Čech complex,
 792 which can be $\Theta(N^2)$. Hence, most points in the corresponding persistence diagram represent
 793 2-cycles with small persistence.

794 Acknowledgments

795 The authors thank Matt Kahle for communicating the question about extremal Čech complexes, Ben
 796 Schweinhart for early discussions on the linked circles construction in three dimensions, Gábor Tardos
 797 for helpful remarks and suggestions, and two anonymous reviewers for their constructive criticism on an
 798 earlier version of this paper.

799 References

- 800 1 P.K. AGARWAL, J. PACH AND M. SHARIR. State of the union (of geometric objects). In: *Proc. Joint Summer Research Conf. on Discrete and Computational Geometry: 20 Years Later*. Contemp. Math. Vol. **452**, 9–48, Amer. Math. Soc., Providence, Rhode Island, 2008.
- 803 2 B. ARONOV, O. CHEONG, M. DOBBINS AND X. GOAOC. The number of holes in the union of translates of a convex set in three dimensions. *Discrete Comput. Geom.* **57** (2017), 104–124.
- 805 3 B. ARONOV AND M. SHARIR. On translational motion planning of a convex polyhedron in 3-space. *SIAM J. Comput.* **26** (1997), 1785–1803.
- 807 4 U. BAUER AND H. EDELSBRUNNER. The Morse theory of Čech and Delaunay complexes. *Trans. Amer. Math. Soc.* **369** (2017), 3741–3762.
- 809 5 K. BORSUK. On the imbedding of systems of compacta in simplicial complexes. *Fund. Math.* **35** (1948), 217–234.
- 811 6 P. BRASS, W. MOSER AND J. PACH. *Research Problems in Discrete Geometry*. Springer, New York, New York, 2005.
- 813 7 G. CARLSSON. Topology and data. *Bull. Amer. Math. Soc.* **46** (2009), 255–308.
- 814 8 B. DELAUNAY. Sur la sphère vide. *Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennykh Nauk* **7** (1934), 793–800.
- 816 9 H. EDELSBRUNNER AND J.L. HARER. *Computational Topology. An Introduction*. Amer. Math. Soc., Providence, Rhode Island, 2010.
- 818 10 H. EDELSBRUNNER, D.G. KIRKPATRICK AND R. SEIDEL. On the shape of a set of points in the plane. *IEEE Trans. Inform. Theory* **IT-29** (1983), 551–559.
- 820 11 H. EDELSBRUNNER AND E.P. MÜCKE. Three-dimensional alpha shapes. *ACM Trans. Graphics* **13** (1994), 43–72.
- 822 12 H. EDELSBRUNNER AND M. SHARIR. A hyperplane incidence problem with applications to counting distances. In *Applied Geometry and Discrete Mathematics. The Victor Klee Festschrift*, eds.: P. Gritzmann and B. Sturmfels, DIMACS Series in Discrete Math. Comput. Sci., 1991, 253–263.
- 825 13 P. ERDŐS. On sets of distances of n points in Euclidean space. *Magyar Tud. Akad. Mat. Kutató Int. Közl.* **5** (1960), 165–169.
- 827 14 R. FORMAN. Morse theory for cell complexes. *Adv. Math.* **134** (1998), 90–145.
- 828 15 M. GOFF. Extremal Betti numbers of Vietoris–Rips complexes. *Discrete Comput. Geom.* **46** (2011), 132–155.
- 830 16 A. HATCHER. *Algebraic Topology*. Cambridge Univ. Press, Cambridge, England, 2002.
- 831 17 H. KAPLAN, J. MATOUŠEK, Z. SAFERNOVÁ AND M. SHARIR. Unit distances in three dimensions. *Comb. Probab. Comput.* **21** (2012), 597–610.
- 833 18 M.D. KOVALEV. Svoistvo vypuklykh mnozhestv i ego prilozhenie (A property of convex sets and its application). *Mat. Zametki* **44** (1988), 89–99, English trans. in *Math. Notes* **44** (1988), 537–543.

835 19 P. McMULLEN. On the upper-bound conjecture for convex polytopes. *J. Combinat. Theory, Ser. B*
836 **10** (1971), 187–200.

837 20 P.G. MEZEY. Molecular surfaces. In: *Reviews in Computational Chemistry, Volume 1*, eds.: K.B.
838 Lipkowitz and D.B. Boyd, John Wiley and Sons, 1990.

839 21 O.A. OLEINIK AND I.B. PETROVSKII. On the topology of real algebraic surfaces. *Izv. Akad. Nauk
840 SSSR* **13** (1949), 389–402.

841 22 M. PADBERG. *Linear Optimization and Extensions*. 2nd edition, Algorithms and Combinatorics **12**,
842 Springer-Verlag, Berlin, Germany, 1999.

843 23 J.T. SCHWARTZ AND M. SHARIR. A survey of motion planning and related geometric algorithms.
844 *Artificial Intelligence* **37** (1988), 157–169.

845 24 J. SPENCER, E. SZEMERÉDI AND W.T. TROTTER. Unit distances in the Euclidean plane. In: *Graph
846 Theory and Combinatorics: Proc. Cambridge Conf. on Combinatorics*, ed.: B. Bollobás, Academic
847 Press, New York, 1984, 293–308.

848 25 G. VORONOI. Nouvelles applications des paramètres continus à la théorie des formes quadratiques.
849 *J. Reine Angew. Math.* **133** (1907), 97–178 and **134** (1908), 198–287 and **136** (1909), 67–182.

850 26 J. ZAHL. An improved bound on the number of point-surface incidences in three dimensions. *Contrib.
851 Discrete Math.* **8** (2013), 100–121.

852 27 G.M. ZIEGLER. *Lectures on Polytopes*. Grad. Texts in Math. **152**, Springer, Berlin, Germany, 1995.