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Neural responses are highly structured, with population activity

restricted to a small subset of the astronomical range of

possible activity patterns. Characterizing these statistical

regularities is important for understanding circuit computation,

but challenging in practice. Here we review recent approaches

based on the maximum entropy principle used for quantifying

collective behavior in neural activity. We highlight recent

models that capture population-level statistics of neural data,

yielding insights into the organization of the neural code and its

biological substrate. Furthermore, the MaxEnt framework

provides a general recipe for constructing surrogate ensembles

that preserve aspects of the data, but are otherwise maximally

unstructured. This idea can be used to generate a hierarchy of

controls against which rigorous statistical tests are possible.
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From descriptive statistics to probabilistic
models
Neural computation arises through the collective behav-
ior of neural populations [1]. What ‘collective behavior’
means in statistical terms is that the distribution of
activity configurations (or states) explored by the circuit
has nontrivial structure that cannot be explained by
statistical properties of individual cells alone. One funda-
mental challenge for systems neuroscience is to charac-
terize what are the key regularities in neural activity and
how they relate to circuit function.

From the data analysis perspective, finding signatures of
collective behavior in data is critical for understanding
neural coding and information processing [2]. Examples
include functional couplings between neurons [3–5], the
prevalence of redundancy and synergy in the neural code
[6,7], the large-scale organization of neural activity [8,9],
or comparisons of patterned variability in spontaneous
and stimulus evoked activity [10].

Statistics that reflect regularities in neural activity can also
be used as a bridge between theory and experiments,
since models of neural computation predict patterns of
collective activity which can then be compared against
data. For instance, the structure of pairwise correlations
has been investigated for a range of network models
[11,12]. Another classic example is attractor dynamics,
a core concept of computational models describing neural
pattern completion, memory recall, and working memory
activity whose statistical signatures were found in various
circuits [13,14,15!,30!]. More generally, identifying
model-specific regularities in population activity provides
useful ways to validate theories of neural computation
and mechanistic models of network dynamics [16!].

As the role of correlated activity for neural coding and its
mapping to underlying circuitry have recently been
reviewed elsewhere [5,17,16!], we focus our attention
on the more pragmatic question of how to quantify
statistical regularities in neural data. This is becoming
an increasingly critical issue with the advent of recording
technologies that allow tracking the joint activity of large
groups of neurons during behavior [18,19]. The combina-
torial explosion of possible population activity patterns,
paired with relatively limited recording time, massively
complicates data analysis [20,21]. Nonetheless the analy-
sis tools are catching up to the technical developments
[22,23]. One such tool is the maximum entropy (MaxEnt)
framework, an approach which links measurable statistics
of neural activity to corresponding probabilistic models of
such data.

While MaxEnt models have a long history in statistics [25],
physics [24], or ecology [26], they have only recently
gained popularity in neuroscience. We argue that MaxEnt
models offer a natural bridge between two different tradi-
tions for investigating collective behavior in neural activ-
ity. On the one hand, an approach with roots in frequentist
statistics, and often favored by experimentalists, is to
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identify and report single, strong, salient signatures of the
neural computation (e.g. noise correlations). When the
choice of summary statistic is informed by theory, this
comparison becomes a hypothesis test about that theory. It
usually entails a step where data is compared to controls in
which the identified structure is disrupted by some form of
shuffling, either to assess its statistical significance or to
identify its origins. On the other hand, an approach with
roots in Bayesian statistics and often favored by theorists,
is to build a probabilistic model of the neural activity that
predicts the probability of every possible activity configu-
ration. Here the emphasis is on the quality of the model fit.
MaxEnt models link the two approaches by being, at the
same time, bona fide probabilistic models for neural activ-
ity, as well as generalizations of frequentist shuffles. The
goal of this paper is to highlight the use of MaxEnt models
as controls for more complex probabilistic models of the
neural code, with a particular focus on recent maxEnt
models built using simple population level constraints
such as the spike synchrony distribution [27!]. Further-
more, we will argue that sampling from MaxEnt models
provides generalizations of frequentist shuffles and null
distributions for hypothesis testing [28!].

Basic principles for constructing MaxEnt
models
The MaxEnt principle provides a compressed description
of data that is maximally noncommittal with respect to
missing (unspecified) information [24,25]. It reproduces
exactly a set of summary statistics of the data but is
otherwise maximally unstructured (see Box 1). To illus-
trate the basic idea, consider the example of some two-
dimensional real-valued data, drawn from a unknown
distribution Prob(x, y) (Figure 1a). If we constrain the
description of the data to the mean and the standard
deviation of x and y, then we approximate the original
complex distribution by two independent normal distri-
butions. This reduced model is actually a first-order,
sometimes referred to as ‘factorized’, maximum entropy
model of this data. Adding more constraints, for instance
by additionally constraining the correlation of the two
variables, brings the reduced model closer to the true
distribution. In the neuroscience context, where the data
is described by patterns of neural activity, the same
principle applies, but the distributions now live in a much
higher dimensional binary space (for N simultaneously
recorded neurons — 2N possible activity patterns). The
first-order maximum entropy model in this case constrains
the mean firing rate of individual neurons. The pairwise
model, often referred to as the Ising model, additionally
constrains correlations for all possible neuron pairs. Other
higher-order constraints are also possible (Figure 1b).
The main difference is that while in the Gaussian exam-
ple the map between the constraints (mean, covariance)
and the model parameters is very simple, this computa-
tion is much more involved for the Ising model, or other
generalizations. Nonetheless, once we have constructed

the MaxEnt model of the data we have a clear mathe-
matical description for the probability of any activity
pattern and related quantities. Additionally, we can gen-
erate new artificial data with the same statistics, by
sampling from the model.

Traditionally the MaxEnt framework has been used as a
prescription to build accurate probabilistic models of neural
activity [3,29,30!]. However, MaxEnt models can be useful
even when they do not match the data well. In this case,
they signal the fact that there are critical missing features in
our description of the data. For instance, we can build a
MaxEnt model consistent with the (stimulus dependent)
firing rates of individual cells (Figure 2a) and find that it
poorly explains observed population level statistics, such as
the pattern of pairwise correlations (Figure 2b), or the spike
synchrony distribution (Figure 2c). This suggests that there
are significant dependencies in neural activity, beyond
shared stimulus preference.

In the example above, the MaxEnt model consistent with
the measured firing rate of individual cells (or their
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Box 1 Maximum entropy models

The maximum entropy principle provides a strategy for constructing
a probability distribution from a limited set of data points: given a set
of summary statistics of the data, we seek the distribution that
matches these constraints exactly, and is otherwise maximally
unstructured (has maximum entropy). MaxEnt examples include
well-known distributions such as the Gaussian (real valued data,
constrained by mean and variance), the exponential (positive reals,
constrained by mean), or the Ising model (binary vectors, con-
strained by mean and covariance), a popular model for patterns of
neural activity.

For a set of constraints expressed as a set of expectations
E[fi(x)] = ci, the corresponding MaxEnt distribution takes the form

PðxÞ ¼ 1
Z exp

P
jaj f jðxÞ

! "
with normalizing constant Z and parameters

aj, uniquely determined by the data statistics ci computed as some
simple functions fi of the data. For instance, for binary patterns of
neural activity x, fi(x) = xi, and fij(x) = xixj constrains the mean firing

and the covariance of neural responses; fkðxÞ ¼ d
P

ixi % k
# $

(d(0) = 1 and 0 otherwise) constrains the spike synchrony distribution

P
P

ixi ¼ k
# $

. When chained together, more constraints bring the

model progressively closer to the data. Hence MaxEnt provides a
principled way to build increasingly complex structure from relatively
simple (and interpretable) component constraints.

Estimating the parameters is usually done by maximum likelihood.
Unfortunately, the map between parameters and the corresponding
summary statistics requires the enumeration of all possible patterns.
This severely restricts the number of neurons for which the sufficient
statistics can be computed exactly, and additional approximations
(for instance MCMC sampling) are required for more than
N & 20 neurons [57,51]. The issue of computational feasibility is
particularly important in the context of large neural recordings where
the practical applicability of the MaxEnt framework relies on the
ability to estimate and sample quickly from the model. This motivates
efforts to build tractable classes of MaxEnt models [27!,50,48!,51]
and to use techniques that circumvent the parameter fitting proce-
dure by directly sampling from an implicitly defined MaxEnt model
(‘herding’) [58].
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tuning) corresponded simply with the independent (or
conditionally independent) model of neural spiking.
These can be directly obtained by appropriately shuffling
the original data. For the independent model, one can
break all the correlations between neurons by preserving
the number of spikes for each neuron but randomly
reassigning spike times; for the conditionally indepen-
dent model, the same can be achieved by randomly
permuting trial indices for each neuron (Figure 2a). More
generally, neural activity shuffles usually have a direct
correspondence to simple MaxEnt models. The crucial
difference is that MaxEnt models provide a much richer
set of null distributions, for which there exist no known
shuffles. For instance, we can jointly constrain the tuning
of individual cells and their total correlations (Figure 2b),
something hard to achieve by a shuffling procedure.
Iteratively adding more constraints results in a sequence
of surrogate ensembles that are increasingly similar to the
original data, but whose structure can be still traced back
to a set of meaningful sufficient statistics. In this sense,
MaxEnt shouldn’t be seen as providing a single null
distribution, but rather a hierarchy of null distributions
that attempt to explain high-order statistical regularities
in the data as resulting from an increasing number of
simple statistics.

Salient features of the neural code
Pairwise correlations
One key signature of the collective behavior is the
presence of nontrivial pairwise correlations. These are
particularly important as they constrain how much infor-
mation can be encoded in neural activity and the neural
readout required to retrieve it [31]. Additionally, since
Hebbian forms of synaptic plasticity pick up and posi-
tively reinforce correlations in presynaptic and postsyn-
aptic activity [32], changes in correlation structure are a
natural measure of circuit-level effects of learning [33,34].
Because of this, an overwhelming part of the MaxEnt
literature focuses on modeling and interpreting neural
correlations (see also recent reviews [5,17]). The Ising
model has proven successful in capturing the statistics of
moderately sized subpopulation of neurons in the retina
[3], in cortical activity [3], and the hippocampus [35].
However, there are aspects of population activity which
pairwise modes do not capture well. For instance, higher
order moments are required when considering larger
populations (100 cells) [29]. Nonetheless, pairwise Max-
Ent models have been instrumental in investigating the
way neural populations encode information about sensory
stimuli [36], in particular for modeling the distribution of
neural responses conditioned on a stimulus [37,15!].
These works have shown that while noise correlations
can be small on average, they are strong precisely during
those times when the circuit is highly active, thereby
strongly reshaping the population response. These stim-
ulus-dependent patterns of noise correlations organize
neural responses into sets of semantically similar activity
patterns [15!], also reflected in overall probability dis-
tributions of activity patterns with multiple peaks
[13,30!]. These results raise the hypothesis that stimulus
information is encoded not by precise microscopic pat-
terns of neural activity, but rather by the attractor basins
of the probability around these peaks (later tested by
[14]).

Constraints on global activity
Another interesting feature of cortical activity is the fact
that the probability of quiescence (no neuron firing) is
systematically higher in data compared to controls (inde-
pendent, or Ising, see Figure 2c) [27!,38,39,30!,40]. Since
this separation of periods of activity and silence, likely
owed to local inhibitory influences, occurs across circuits
and conditions, it is likely a salient property of the neural
code. Adding this one simple constraint dramatically
improves the ability of the factorized MaxEnt model to
capture the neural activity statistics [40]. More generally,
it is increasingly recognized that low-dimensional fluctua-
tions in populations activity arising due to internal
dynamics (oscillations, top-down modulatory influences,
fluctuations in arousal or attention) explain an important
part of higher order dependencies in neural activity [41–
43]. Moreover, since global fluctuations in neural activity
increase pairwise correlations, they need to be explicitly
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The maximum entropy principle. (a) True data distribution from which
a set of data points (gray crosses) are drawn; the corresponding first-
(second-)order MaxEnt model is a Gaussian with the same mean and
(co-)variance. (b) A summary of common constraints for MaxEnt
models of neural activity.
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controlled for when assessing and interpreting neural
correlations in relation to learning [10,44!,33].

The population spike distribution, P(k), provides a pow-
erful way to characterize global population dependencies.
It is simple and computationally convenient because the
number of constraints is linear in the number of neurons
(versus quadratic for the Ising model). It is also complex
because it specifies dependencies of all orders. Although

the spike synchrony distribution has long been identified
as a salient feature of collective behavior in the hippo-
campus, its utility as a constraint for MaxEnt models has
only been recognized recently [27!,30!]. Constraining
P(k) alone captures a surprising range of features in real
data [27!]. Furthermore, it can naturally be combined
with other constraints such as mean firing or even pairwise
correlations. Studying K-pairwise models, that is maxi-
mum entropy models with pairwise correlations and P(k)
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Figure 2

e.g. firing rates
0000001111110000
0010000010001001
1000000011111111
0001001000010110
1001110000011011
1001100110001110

1011000000001111
1110000000110111

1101100000111111
activity pattern

1000001101110000
1010000010001001

1000000011010111

0001001000010111
1001010010011011
1001100100001110

0110000000110110
1101101000111111

surrogate activity

0001001000010110

statistical feature
of interest, e.g. P(‘00…0’)constraints

maximum  
entropy
 model

data

P -val

Can a statistical feature 
of the data be explained

 by simpler features?

pr
ob

ab
ili

ty

herding

maximum 
likelihood

(MCMC)  
sampling+

e.g. spike synchrony

H0

time

ne
ur

on trial  1
1
2
3

trial  3

trial  2

stimulus 0.025

0.015

0.005

-0.005 0.0150.005 0.025

noise correlations, data

no
is

e 
co

rr
el

at
io

ns
,

 p
re

di
ct

e
d

factorized maxEnt

(a) (b)

shuffling

da
ta

nu
ll 

m
od

el

pairwise 
maxEnt

statistic to-be-tested
(d)

neuron

tim
e

0 10 20 30 40 50
0

0.3

spike synchrony,  k

P
(k

)

independent
data, k-MaxEnt

(c)

Current Opinion in Neurobiology

MaxEnt models as controls. (a) Shuffle that destroys all dependencies but preserves neural tuning (equivalent to a stimulus dependent factorized
MaxEnt models). (b) Discrepancies between measured noise correlations and those predicted by different MaxEnt models. (c) The frequency of
population events involving a given number of spikes (spike synchrony distribution) for recorded CA1 neural activity compared to the
corresponding factorized MaxEnt null model. (d) Hypothesis testing using MaxEnt models: the goal is to determine how likely it is that a particular
statistical regularity of the data (e.g. P(00 ' ' ' 0)) could arise by chance, achieved by comparing data with an ensemble of surrogates obtained by
sampling from the corresponding MaxEnt model. The test statistic is computed for each of these surrogate datasets and its distribution is
compared to the value obtained from the data to assess significance.
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constraint, has revealed that statistical dependencies
reduce the entropy by a quarter from that of an factorized
model in the retina, and that these dependencies are
strong enough to predict the behavior of single neurons
from the rest of the population, without any knowledge of
the stimulus [30!]. More controversially, it has been
suggested that neural activity distributions are close to
critical [27!,8,45], and that this property may be linked to
shared latent variables [46,47]. Recent MaxEnt models
further link the population spike distribution with cell-
specific features [48!], reflecting the fact that the global
network state can affect individual cells to different
degrees (from ‘choristers’ to ‘soloists’) [49]. Furthermore,
there exist analytically tractable versions of MaxEnt
models incorporating these constraints [27!,50,48!,51],
which makes them particularly attractive for characteriz-
ing large populations (Table 1).

One aspect that has so far been largely neglected in the
MaxEnt context is the temporal structure of population
activity. Attempts to model transition probabilities
between binary words directly have so far proved
impractical [52]. A potentially more tractable approach
is to restrict the modeling of temporal structure to
population-level state transitions of the form P(ktjkt%1)
[45], or to constrain time-delayed pairwise correlations
[53,54]. These approaches have been used for the
better statistical characterization of responses ganglion
cells of the salamander retina [54], cortical and hippo-
campal slices in rats [55] and of neural activity in cat
parietal cortex during sleep [53]. Much-needed time
dependent MaxEnt variants could provide tractable
null models for the temporal dynamics of neural activ-
ity, as an alternative to latent linear dynamical systems
models [56].

MaxEnt as null models
As the most random distribution that satisfies a chosen set
of constraints, MaxEnt models naturally provide a null
distribution for quantities that are not directly con-
strained. The idea of using MaxEnt models as null
models for hypothesis testing traces back to work by
Martignon [28!], testing whether effects of a certain order
can be explained in terms of lower moments (for instance
if the occurrence of triplets of activity can be explained in
terms of the firing rates and covariance structure of
component neurons). For a particular MaxEnt model
class (log-linear), confidence bounds can be computed
analytically. Unfortunately, although mathematically
elegant, this approach is computationally infeasible for
realistic neural populations sizes. Still, the core idea can
be adapted to any MaxEnt model, at the cost of having to
compute the null distribution numerically. For instance,
to determine if the frequency of quiescence in data can
be explained by the firing of individual neurons
(Figure 2d), one would construct a factorized MaxEnt
null model. Repeatedly sampling from the MaxEnt
model results in surrogate ensembles which are used
the estimate the frequency of the all-zeros pattern when
neurons fire independently (or any other test statistic). At
this point a P-value can be estimated reporting the
probability of observing the effect of the size of that
observed in the real data (or larger) by chance. The
overall procedure is very similar to traditional strategies
for building confidence bounds by shuffling. The null
model is somewhat stricter (as traditional shuffles typi-
cally preserve the total number of spikes in the data,
while MaxEnt shuffles do not), but it has the advantage
that the same recipe can be applied for complex null
models that don’t have a corresponding known shuffling
procedure. In general the framework allows the choice of
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Table 1

Summary comparison of maximum entropy models

Model Constraints Parameters References

Factorized hxii N [10]
Simultaneous silence hxii, P(k = 0) N + 1 [40]
Population spike distribution P(k), k =

P
ixi N + 1 [27!]

Dyn. population spike distribution P(kt, kt%1, . . . ) (N + 1)NT [45]

Pairwise/Ising hxii, hxixji NðN þ 1Þ
2

[59,3,13]

Dyn. pairwise/Ising hxii, hxttxtj i,hxti xt%1
j i

N þ N2 þ NðN % 1Þ
2

[53]

Stimulus dependent Ising hxijsi, hxixji NSN þ NðN % 1Þ
2

[37]

Stimulus dependent correlations hxijsi, hxixjjsi NS
NðN þ 1Þ

2

[15!]

Population tracking P(k), hxijki N+1 [50]
Generalized k-modulation P(k, xi) N(N + 1) [48!,49]

K-Ising hxii, hxixji, P(k) ðN þ 1ÞðN þ 2Þ
2

[30!]
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constraints and test statistic to be decided in a hypothe-
sis-driven way.

The structure of the neural activity could have been
assessed by directly fitting a MaxEnt model that also
incorporates the statistic of interest as an additional con-
straint and then showing that the extended model does a
better job at explaining the data. Nonetheless, the first
approach may still be preferable in practice for computa-
tional reasons: depending on the hypothesis being tested,
null models may be dramatically easier to fit than the
alternative. This means that the frequentist approach can
be used to test a broader set of hypotheses on real data.
Lastly, increasing model complexity sequentially allows
information gained at one step to inform subsequent
models (as priors). For instance if we discover that residual
correlations that cannot be explained by global constraints
are sparse, then we can incorporate a sparse prior when
building a new MaxEnt model that explicitly constrains
pairwise correlations. Thus, the MaxEnt framework pro-
vides a systematic way to dissect the neural code.

Conclusions and future directions
Here we have argued that the MaxEnt framework pro-
vides general principles for constructing control ensem-
bles for neural activity. The same principles can also be
used for identifying the key regularities captured by
different models. In particular, MaxEnt models could
serve as a baseline comparison to increasingly popular
unsupervised models from machine learning (e.g.
restricted Boltzmann machines, hidden Markov models,
deep nets). Although these popular techniques have more
expressive power, that is, they can model complex dis-
tributions over activity patterns given sufficient data,
interpreting their parameters can be difficult. Comparing
their performance to simpler MaxEnt models is useful not
for answering the question of ‘Which model is better,’ but
to identify the additional statistical structure captured by
the more expressive model. The maximum entropy prin-
ciple can guide our quest for ‘the simplest possible, but
not simpler’ model of neural activity, by providing a
yardstick to make the necessary distinction.
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