
27

DimSum: A Decentralized Approach to Multi-language
Semantics and Verification
MICHAEL SAMMLER,MPI-SWS, Germany

SIMON SPIES,MPI-SWS, Germany

YOUNGJU SONG,MPI-SWS, Germany

EMANUELE D’OSUALDO,MPI-SWS, Germany

ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands

DEEPAK GARG,MPI-SWS, Germany

DEREK DREYER,MPI-SWS, Germany

Prior work onmulti-language program verification has achieved impressive results, including the compositional

verification of complex compilers. But the existing approaches to this problem impose a variety of restrictions

on the overall structure of multi-language programs (e.g., fixing the source language, fixing the set of involved
languages, fixing the memory model, or fixing the semantics of interoperation). In this paper, we explore the

problem of how to avoid such global restrictions.

Concretely, we present DimSum: a new, decentralized approach to multi-language semantics and verifica-

tion, which we have implemented in the Coq proof assistant. Decentralization means that we can define and

reason about languages independently from each other (as independent modules communicating via events),

but also combine and translate between them when necessary (via a library of combinators).

We apply DimSum to a high-level imperative language Rec (with an abstract memory model and function

calls), a low-level assembly language Asm (with a concrete memory model, arbitrary jumps, and syscalls),

and a mathematical specification language Spec. We evaluate DimSum on two case studies: an Asm library

extending Rec with support for pointer comparison, and a coroutine library for Rec written in Asm. In both

cases, we show how DimSum allows the Asm libraries to be abstracted to Rec-level specifications, despite the
behavior of the Asm libraries not being syntactically expressible in Rec itself. We also verify an optimizing

multi-pass compiler from Rec to Asm, showing that it is compatible with these Asm libraries.
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1 INTRODUCTION
To focus and simplify the problem of program verification, it is common to assume that the programs

one is verifying are written in a single, well-defined language. However, many (if not most) real-

world programs are assembled from components written in multiple languages. For example,

programs in languages as diverse as Go, OCaml, Python, Rust, and Swift depend on standard

or legacy libraries written in C; operating systems commonly implement interrupt handling in

assembly code; low-level drivers link with architecture-specific assembly code. It thus remains a

grand challenge to build formal methods that can handle such realistic multi-language programs.

What makes this so difficult is that, to verify a multi-language program, it is often not sufficient to

verify the program’s components separately—we have to additionally reason about the interactions

between them. In particular, at the boundaries, we have to account for the friction that arises from

the language differences. For example, in a high-level language calling other code is often done

through a function call construct with argument names, whereas assembly-like languages typically

use jumps and designated argument registers. The languages could also differ in their representation

of values (e.g., hierarchical vs. flat), their language features (e.g., structured vs. unstructured control
flow), and their memory models (e.g., an abstract memory model where pointers are offsets into

abstract blocks vs. a concrete memory model where pointers are concrete integers).

Much prior work on multi-language verification has focused on the specific important case of

compiler verification, and in particular so-called compositional compiler verification [Neis et al.

2015; Perconti and Ahmed 2014; Stewart et al. 2015; Song et al. 2020; Koenig and Shao 2021]. The

broad goal of compositional compiler verification is to specify and verify compilers in terms of

how they transform individual libraries in a program, so that different libraries may be correctly

linked together even if they are produced by different verified compilers for potentially different

languages. (This is in contrast to the original CompCert [Leroy 2006], for example, which was

verified only as a compiler for whole programs.) Building on the ideas of Matthews and Findler

[2007], Ahmed and collaborators [Ahmed and Blume 2011; Perconti and Ahmed 2014; Mates et al.

2019; Patterson et al. 2017, 2022] have subsequently recognized compositional compiler verification

as an instance of the much broader problem of multi-language semantics: what is the right way
to even define the behavior and interoperation of multi-language programs so as to best support

verified linking of code from different languages and compilers?

In this paper, we propose a new approach to multi-language semantics and verification, which

we realize in a new Coq-based framework we call DimSum. Our approach is based on a simple

observation: if we consider the aforementioned work in the context of multi-language semantics,
then certain aspects of the semantics are fixed up front, thus restricting the flexibility with which

components from different languages can be composed together. In contrast, DimSum is what we

call decentralized: the semantics of a library can be specified (and the library verified) without

regard to the other libraries in the program—without even needing to know in what languages or

under what memory models the other libraries are written.

1.1 Principles of Decentralization
To give a clearer sense of the motivation behind DimSum, let us now articulate four key principles

that we aim to satisfy and explain the ways in which prior approaches do or do not satisfy them.

Principle #1: No fixed source language. Among the first to explore compositional compiler

verification were Hur and collaborators [Benton and Hur 2009, 2010; Hur and Dreyer 2011; Hur et al.

2012]; they developed a line of work that culminated in Pilsner [Neis et al. 2015], a compositionally

verified compiler from an ML-like source language to a low-level assembly target language, which

showcased the ability to soundly link the verified compilations of source-language modules with

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 27. Publication date: January 2023.



DimSum: A Decentralized Approach to Multi-language Semantics and Verification 27:3

tricky, handwritten assembly modules. Despite the sophistication of the Pilsner verification, a key

limitation of the approach used by this line of work was identified by Perconti and Ahmed [2014]:

Pilsner (and the other compilers in its lineage) only permit compiled libraries to be linked with

assembly libraries for which there is some semantically equivalent source module. This limitation

effectively rules out a significant use case for multi-language linking, since one of the main reasons

to link compiled libraries against handwritten assembly libraries is when the latter provide some

functionality that is not expressible in the source language of one’s compiler.

Ahmed et al.’s line of work on multi-language semantics was at least partly motivated by the

goal of lifting this restriction of Hur et al.’s work, a goal which Patterson and Ahmed [2019] later

termed “source-independent linking”. With DimSum, we aim to fulfill this goal as well: we do

not fix any one language as “the source”; rather, we explicitly allow for the possibility of linking

high-level code with low-level (e.g., assembly) libraries that have no high-level semantic equivalent.

Principle #2: No fixed set of languages. Ahmed et al.’s aforementioned research programme

on multi-language semantics takes the approach of combining all interoperating languages into

one big “syntactic multi-language” and providing type-directed wrappers to convert values of one

language to values of the other languages. One advantage of this approach is that it supports

interoperation between libraries in very different languages—libraries which, unlike in Pilsner,

are not expressible in any common source language. Another advantage is that compositional

compiler correctness can then be formalized in terms of contextual equivalence (a very standard

and well-understood criterion) in the syntactic multi-language.

A disadvantage of the syntactic multi-language approach, however, is that it requires one to

fix the set of interoperating languages up front. As a result, it means that proofs about libraries

in any one language must take into account all the other languages comprising the syntactic

multi-language, and such proofs may break if new languages are added to the mix in the future.

With DimSum, we aim to support what we call language-local reasoning: we should not fix the

set of interoperating languages up front, and we should be able to verify a library in one language

without having to worry a priori about the other languages with which that library could be linked.

Principle #3: No fixed memory model. Since the development of CompCert, a wide range of

projects have explored compositionally verified extensions of CompCert, including Compositional

CompCert [Stewart et al. 2015], CompCertX [Gu et al. 2015; Wang et al. 2019], SepCompCert [Kang

et al. 2016], CompCertM [Song et al. 2020], and CompCertO [Koenig and Shao 2021]. With the

exception of SepCompCert, these projects follow Principles #1 and #2 above. However, unlike

Pilsner and Ahmed et al.’s work, these CompCert extensions assume all interoperating languages

to adhere to a particular memory model, namely the CompCert memory model.
1
As noted by

Patterson and Ahmed [2019], this places a significant restriction on the set of languages that can

realistically participate in a multi-language program.

With DimSum, we aim to support linking of libraries written in languages with different memory

models, yet still allow such linking to be reasoned about in a language-local way (as per Principle #2).

We will see a concrete instance of this problem in §2, where we link a language with an abstract

memory model not unlike CompCert’s (i.e., pointers are abstract block ids with offsets) to an

assembly language with a concrete memory model (i.e., pointers are integer addresses).

Principle #4: No fixed notion of linking. A key aspect of multi-language semantics is for-

malizing inter-language linking. Individual languages typically come equipped with their own

pre-existing notions of syntactic linking 𝐿 ∪ 𝐿′, and then on top of that, multi-language semantics

1
Except for CompCertO, this assumption is crucial for the techniques. In the case of CompCertO, the assumption may not

be crucial, but the approach has not been applied to a different memory model than the CompCert one. See §6 for details.
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Program main fn main() ≜ let 𝑥 := yield(0) in print(𝑥); let 𝑥 := yield(0) in print(𝑥); yield(0)

Library stream fn stream(𝑛) ≜ yield(𝑛); stream(𝑛 + 1);

Library yield yield : ... save and restore registers, and switch stack ...

Fig. 1. Example using coroutines.

frameworks often define their own notions of semantic linking 𝐿 ⊕ 𝐿′ in order to characterize

interoperation between different languages. However, in all the work we are aware of, the definition

of semantic linking is fixed up front.

In DimSum, we aim to avoid fixing any “official” notion of semantic linking up front; instead,

we permit users of the framework to develop new, library-specific notions of linking that support

higher-level reasoning principles. To illustrate what this looks like, let us consider a concrete

example, depicted in Fig. 1: we take a high-level language with recursive functions called Rec
and augment it with a coroutine library written in an assembly-like language called Asm.

2
More

specifically, in the example, the two Rec-libraries stream and main are “linked” with each other

through a coroutine Asm-library called yield. The stream function generates an infinite stream of

integers 0, 1, 2, . . . that is consumed by themain function (i.e., themain function prints the first two

elements and then returns the third). For the Asm-library yield, the exact implementation is not

relevant. The only relevant aspect of yield is that it sequentially passes the control back-and-forth

between main and stream whenever yield is called in either.
3

Most approaches to multi-language semantics can reason about this program in one way or

another. For example, what they could do is consider the Asm-program ↓main ∪a ↓stream ∪a yield
where ↓R denotes compilation and then show that it indeed prints 0, then 1, and then returns 2.

What no existing approach can do—and here is where decentralization comes in—is locally extend

the notion of semantic linking in one language (e.g., Rec) due to the presence of a library written

in another language (e.g., the yield-library written in Asm). That is, at the level of Rec, all that
we care about is that yield provides a new form of semantic linking “R1 ⊕coro R2”, where function

calls to yield on one side are perceived as function returns of yield on the other (e.g., the call of
yield(𝑛) in stream is the return of yield(0) in main). This new, custom form of semantic linking

“R1 ⊕coro R2” considerably simplifies reasoning about the interactions of R1 and R2, because we

do not have to consider the Asm-implementation of yield itself. That is, whereas reasoning about

yield drops down to the Asm level and involves reasoning about saving and restoring the stack

pointer and certain other machine registers, reasoning about R1 ⊕coro R2 stays at the level of Rec.

1.2 DimSum
In this paper, we present DimSum, a Coq-based framework for multi-language semantics and

verification that adheres to the four principles of decentralization laid out in §1.1. At the heart

of DimSum lies our novel decentralized multi-language semantics, which forms the basis of all

our reasoning. As a starting point for the semantics, we adopt the same viewpoint as the work

surrounding CompCert [Stewart et al. 2015; Song et al. 2020; Koenig and Shao 2021], namely that

the semantics of a library 𝐿 written in language L is a labeled transition system, which we call a
module. What makes the DimSum approach decentralized is how we reason about these modules.

2
Inspired by Patrignani [2020], we depict Rec in red, sans-serif and Asm in blue, bold.

3
We only consider a statically known set of coroutines so there is no function for spawning a coroutine. The first yield(0)
in main starts the function stream with argument 0.
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We take a page out of the work on process algebra and think of the modules as communicating
processes. More specifically, we associate each language L with a set of events 𝐸L, we give semantics

to a library 𝐿 as a module J𝐿KL ∈ Module(𝐸L), and then we model the interactions of modules

(e.g., jumps) as synchronization on events (e.g., outgoing jumps are synchronized with incoming

jumps). Following the style of process algebra, we build up larger modules from smaller ones using

compositional combinators. For example, we define a suite of language-specific linking operators

𝑀 ⊕L 𝑀 ′ that synchronize modules based on their events, and a collection of wrappers ⌈𝑀⌉L⇌L′

that embed modules from one language L into another language L′.
The resulting approach to multi-language semantics is decentralized in the sense that when we

reason about a particular collection of modules, we only care about their events and the languages

to which these events belong. For example, in the rest of this paper, we consider modules in the

high-level language Rec, the low-level assembly language Asm, and a mathematical specification

language Spec. When we reason about the interactions of two Rec-modules M1 ⊕r M2 (e.g., to
prove that they refine a specification written in Spec), then we only need to know about the calling

convention of Rec and its memory model. In particular, we do not need to take into account the

existence of the language Asm or its memory model in any shape or form. In contrast, when we

reason about an Asm-module M1 interacting with a Rec-module M2, i.e., M1 ⊕a ⌈M2⌉r⇌a, we need

to consider the different calling conventions and memory models of Rec and Asm. As a result,

in DimSum, we can “mix and match” components written in different languages using a collection

of language-specific combinators (e.g., M1 ⊕a M2,M1 ⊕r M2, M1 ⊕coro M2, and ⌈M⌉r⇌a).

To make the simple idea of “multi-language program components as communicating processes”

scale to reasonably complex languages such as Rec and Asm, we bring several ideas from the

literature to bear, albeit casting them in a new light:

(1) Open-world events. The work on fully abstract traces [Jeffrey and Rathke 2005; Laird

2007] introduced the idea of including all the visible parts of the program state in the events.

Previously, the idea was used to prove contextual refinement via trace refinement where the

traces consist of these detailed open-world events. In DimSum, we use similar open-world

events to express the interactions of modules: modules share state (e.g., the program memory),

which has to be exchanged when two modules interact.

(2) Wrappers. The work on multi-language semantics [Matthews and Findler 2007; Ahmed and

Blume 2011] introduced the idea of expressing language translations via wrappers. Previously,

the idea was used to construct a syntactic multi-language using syntactic wrappers that

embed expressions of other languages. In DimSum, we use wrappers at the level of the

semantics: we define translations such as ⌈M⌉r⇌a that operate on modules (i.e., LTSs) and
translate the events between two languages (e.g., Rec and Asm).

(3) Kripke relations. The literature on compiler verification [Leroy and Blazy 2008; Hur and

Dreyer 2011; Perconti and Ahmed 2014; Koenig and Shao 2021] employed the idea of Kripke
relations—relations that maintain evolving internal state in order to track, e.g., relationships
between growing heaps—to reason about program executions. Previously, the idea was used

to build expressive simulation relations for establishing compiler correctness. In DimSum,

the role of expressive simulations is largely filled by our wrappers (see the previous idea) and,

hence, we use Kripke relations to define them. Furthermore, to ease their formalization (in

particular, to avoid explicit reasoning about possible worlds), we encode our Kripke relations

in the separation logic Iris [Jung et al. 2015, 2018].

(4) Rely-guarantee reasoning using angelic non-determinism. The recent work on Con-

ditional Contextual Refinement (CCR) [Song et al. 2023] explored the idea of expressing
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rely-guarantee reasoning between a program component and its environment using an-

gelic and demonic non-determinism. Previously, the idea was used to add user-provided

preconditions and postconditions to contextual refinements. In DimSum, we apply the idea

in our wrappers (e.g., ⌈M⌉r⇌a) to define language-specific protocols between a module and

its environment.

Contributions. In summary, our main contribution is DimSum, a Coq-based framework for

decentralized multi-language semantics and verification. The framework introduces the notion of a

module, refinement between modules, and a library of language-agnostic combinators for linking

and translating modules (§3). We then apply the framework to concrete instantiations:

• An instantiation of DimSum with (1) a high-level imperative language Rec with structured

values, function calls, and an abstract memory model; (2) an assembly language Asm based

on registers, unstructured jumps and a concrete memory model; and (3) a mathematical

specification language Spec, together with linking operators (§4) and wrappers (§5).

• Two Asm libraries that extend Rec with new kinds of functionality: A library for pointer

comparison (§2) and the coroutine library described earlier (§4.3).

• A compositional multi-pass compiler from Rec to Asm (§5).

DimSum is fully mechanized in the Coq proof assistant using Interaction Trees [Xia et al. 2020],

Iris [Jung et al. 2015; Krebbers et al. 2017a; Jung et al. 2018], and the Iris Proof Mode [Krebbers et al.

2017b, 2018]. The Coq development can be found in Sammler et al. [2023b].

Scope of the paper. This paper presents a first step towards exploring a decentralized approach

for multi-language verification. As such, the paper focuses on the setting of a C-like language Rec
and an assembly language Asm. This is similar to the compositional variants of CompCert, except

that the two languages differ in their memory model and program components can interact with

unstructured jumps at the Asm level (and, of course, that Rec and Asm are significantly simpler

than the realistic languages used by CompCert). It would be interesting to consider languages with

other features like closures, garbage collection, types, or concurrency in future work.

Additionally, we focus our attention on safety properties and do not prove liveness properties

(similar to Sprenger et al. [2020], who use process algebra ideas for the verification of distributed

systems). This restriction simplified the development of DimSum’s model (in particular, the notion

of refinement). We believe it should be possible to extend DimSum to support liveness reasoning,

but we leave this to future work.

2 KEY IDEAS
To illustrate the key ideas of DimSum, let us consider a motivating example. We want to verify the

following program using libraries depicted in Fig. 2:

fn main() ≜ local 𝑥 [3];𝑥 [0] ← 1;𝑥 [1] ← 2; \\ 𝑥 ↦→ [1, 2, 0]
memmove(𝑥 + 1, 𝑥 + 0, 2); \\ 𝑥 ↦→ [1, 1, 2]
print(𝑥 [1]); print(𝑥 [2])

The program first initializes the local array x, then moves the contents of x by one to the right

using memmove, and finally prints the last two elements of 𝑥 . It is primarily written in Rec, our
high-level language with recursive functions. The parts that are not written in Rec, print and locle,
are written in Asm, our low-level assembly language, because—as we will soon see—they cannot

be implemented in Rec.
The function memmove is inspired by the corresponding function in the C standard library. It

takes in a source pointer 𝑠 , a destination pointer 𝑑 , and the number of elements 𝑛 that should be
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Library memmove

fn memmove(𝑑, 𝑠, 𝑛) ≜ if locle(𝑑, 𝑠) then memcpy(𝑑, 𝑠, 𝑛, 1) else memcpy(𝑑+𝑛−1, 𝑠+𝑛−1, 𝑛,−1)
fn memcpy(𝑑, 𝑠, 𝑛, 𝑜) ≜ if 0 < 𝑛 then 𝑑 ← !𝑠;memcpy(𝑑 + 𝑜, 𝑠 + 𝑜, 𝑛 − 1, 𝑜)

Library locle locle : sle x0, x0, x1; ret

Library print print : mov x8, PRINT; syscall; ret

Fig. 2. Libraries written in Rec and Asm.

copied over. It then checks whether the source lies to the left or to the right of the destination

in memory using the Asm-library locle. Depending on the outcome, memmove then copies the

memory either front-to-back or back-to-front to the destination. The function memmove varies
the copy direction to ensure that it does not step on its own toes: even if the two pointers overlap,

memmove will never overwrite data that was supposed to be copied later.

The functions print and locle are implemented in Asm. The function locle simply compares its

two arguments with less-or-equal and returns the result. The arguments of locle are in the first

two registers x0 and x1, because the calling convention of Asm is that the arguments are in x0-x8.
The return value is stored in x0. The function print leaves the argument x0 unchanged, stores the
flag for printing in x8, and then triggers a syscall (i.e., a call to the operating system).

What makes this example interesting is that the functions print and locle have to be implemented

in Asm because they cannot be implemented in the high-level language Rec. For print, the reason
is that it makes a syscall, which—similar to C—is not something Rec can do. For locle, the reason is

that it compares two pointers. Comparing pointers in Asm is easy because they are “just” integers.

In contrast, Rec cannot compare pointers natively because it uses an abstract, block-based memory

model (inspired by CompCert [Leroy and Blazy 2008]). That is, conceptually, memory in Rec is
a collection of unordered blocks, and a pointer consists of a block id and an offset into the block.
Since the blocks are unordered, comparing pointers from different blocks (as memmove does when

called with pointers into different blocks) does not make sense from the perspective of Rec.

Verification goal. Our end goal for this example will be to show that the entire program refines

a top-level specification, which says that the program prints 1 and then 2. Let us make this goal

more precise. The program consists of several Rec and Asm-libraries. To obtain a whole program,

we thus have to compile the Rec-libraries to Asm-libraries and then link all the Asm-libraries

together. We end up with the following program:

onetwo ≜ ↓main ∪a ↓memmove ∪a locle ∪a print
Here,main denotes a singleton library containing themain function from above, A1 ∪a A2 denotes

syntactic linking in Asm, and ↓R denotes compilation from of a Rec-library R to an Asm-library.

The compiler will be explained in §5, but its exact definition is not relevant for this example.

For the Asm-program onetwo, we then want to show that it refines a specification onetwospec:

onetwo a⪯s onetwospec
In DimSum, refinement is defined as a notion of simulation, roughly stating that each step of

onetwo can be matched by zero or more steps of onetwospec producing the same externally visible

behavior (for details see §3.1). The specification onetwospec is written in our specification language

Spec, which we will discuss later in this section. Roughly speaking, the specification simply says

that the program prints 1 and then 2.
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Events ∋ e ::= Jump!(r,m) | Jump?(r,m) Events ∋ e ::= Call!(f, v,m) | Call?(f, v,m)
| Syscall!(v1, v2,m) | SyscallRet?(v,m) | Return!(v,m) | Return?(v,m)

Memory ∋ m ≜ Z fin−⇀ Val ∪ {#} Memory ∋ m ≜ Loc fin−⇀ Val

Registers ∋ r ≜ RegisterName→ Val Loc ∋ ℓ ::= {blockid : Id, offset : Z}
Val ∋ v ≜ Z Val ∋ v ::= 𝑧 : Z | 𝑏 : B | ℓ : Loc

RegisterName ∋ x ≜ {x0, . . . , x30, sp, pc} FnName ∋ f ≜ String

Fig. 3. Asm and Rec events.

2.1 Event-Based Semantics
To explain how we define and prove onetwo a⪯s onetwospec, we have to turn to the core building

block of DimSum:modules. Modules are howDimSum assignsmeaning to every program component

(e.g.,memmove, locle, and onetwospec). The entire approach is centered around modules: we define

interpretations of syntactic libraries into semantic modules, we define refinement as a simulation

on modules, we define wrappers between modules of different languages, and we define semantic

linking operators as combinators on modules. We will make the notion of a module precise in §3.

For now, it suffices to know that a module𝑀 ∈ Module(𝐸) is a labeled transition system emitting

events from a language-specific set of events 𝐸.

Event-based communication. The set of events 𝐸 of each module𝑀 ∈ Module(𝐸) varies from
language to language. For a given language, these events formalize how modules interact with their

environment. That is, following the school of process algebra, we model the interaction of program

components as event-based communication (i.e., synchronization on events). For example, the

events of Rec are function calls, and the events of Asm are jumps and syscalls. To scale this simple

idea to stateful languages like Rec and Asm, we borrow an idea from the work on fully abstract

traces [Jeffrey and Rathke 2005; Laird 2007]: the events carry a detailed description of the program
state. As we will see, this enables expressing linking between modules as event synchronization.

The events of Rec and Asm are shown in Fig. 3. Rec-modules (i.e., modules with Rec-events)
can emit function calls with Call!(f, v,m) and accept incoming function calls with Call?(f, v,m). In
general, we distinguish between outgoing events (!) and incoming events (?). In both cases, the events

include the function name f, the arguments v, and the entire memory m. Rec-modules can return

from calls with Return!(v,m) and accept returns from functions they called with Return?(v,m). In
Asm, modules communicate using jumps: Jump!(r,m) and Jump?(r,m). These events contain the

registers r (including the target address of the jump r(pc)) and the programmemorym. Additionally,

Asm-modules can initiate syscalls with Syscall!(v1, v2,m) where v1 is the syscall identifier (e.g.,
PRINT = 8), v2 is the argument of the syscall, and m the memory when performing the syscall.

They can then receive control again from the operating system through SyscallRet?(v,m) with
return value v and resulting memorym. (We assume a syscall calling convention where all registers

except the return register x0 are restored.)
By comparing the events of the two languages, we can quite succinctly see their differences—

the differences that we have to deal with in the proof of onetwo a⪯s onetwospec. First of all, the
two languages use a different function call structure. Calls in Rec are always bracketed with first

a call event and then a return event, while Asm-modules only emit and accept jumps, without

distinguishing calls from returns. The second important distinction is that Asm can do syscalls,

whereas programs written in Rec cannot. This means that for any Asm program doing a syscall,
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there is no corresponding Rec program. The third distinction is that Rec uses a structured model of

values: they can be integers, locations, or Booleans. In Asm, values can only be integers, so pointers

and Booleans are represented as integers. And finally, Rec and Asm use very different memory

models. In Rec the memory model is block based, whereas in Asm, the memory is simply a map

from addresses, i.e., integers, to integers.
4

With the events of Rec and Asm at hand, let us turn to the semantics of their syntactic libraries.

For each language, we define a module semantics J−K− that maps syntactic libraries (i.e., R and A)
into semantic modules (i.e., JRKr ∈ Module(Events) and JAKa ∈ Module(Events)) based on the

operational semantics of the language. The exact definitions of the module semantics will not be

relevant for the rest of this section, so we postpone them to §4.

High-level specifications. Before we can start the verification of onetwo a⪯s onetwospec, we
first have to define the specification onetwospec. For this, we use the specification language Spec.
We will formally define Spec in §3.2. For now, it suffices to know that Spec is a language with
co-inductively defined syntax and the following constructs:

Spec(𝐸) ∋ 𝑝 ::=coind any | vis(𝑒);𝑝 | assume(𝜙); 𝑝 | ∃𝑥 : 𝑇 ;𝑝 (𝑥) | · · · (𝑒 ∈ 𝐸, 𝜙 ∈ Prop)

The construct any means the implementation can do anything, i.e., its behavior is not specified
further. The construct vis(𝑒);𝑝 means the implementation emits the visible event 𝑒 ∈ 𝐸 and

afterwards behaves like 𝑝 . Spec is parametric over the set of events 𝐸 that the programs emits. The

construct assume(𝜙);𝑝 means the implementation must behave like 𝑝 if the proposition 𝜙 is true;

otherwise, it may have any behavior. Finally, the construct ∃𝑥 : 𝑇 ; 𝑝 means the implementation

must non-deterministically choose some 𝑥 : 𝑇 and then behave like 𝑝 (𝑥). As we will see in §2.2,

the fact that programs are defined co-inductively in Spec allows us to express unbounded loops in

the specifications.

With Spec at hand, we can turn to the specification of our example program onetwo. Since
onetwo is an Asm-library, its specification is stated using Asm-events such as jumps and syscalls:

onetwospec ≜ ∃r,m0; vis(Jump?(r,m0)); assume(r(pc) = 𝑎main ∧ has_stack(r(sp),m0));
∃m1; vis(Syscall!(PRINT, 1,m1));∃m2; vis(SyscallRet?(∗,m2)); assume(m2 = m1);
vis(Syscall!(PRINT, 2, ∗)); vis(SyscallRet?(∗, ∗)); any

First, the program can accept any jump to it from the environment with Jump?(r,m0). The following
assume encodes that, during the verification of an implementation against this specification, one

need only consider the choices of r andm0 where the environment decides to jump to the start of the
main function (i.e., the program counter pc points to the first instruction inmain after compilation),

and where the stack pointer sp points to a valid stack in memorym0 (because compiled Rec-libraries
assume a stack). In this case, the implementation will perform a sequence of events: it will print 1

by emitting a syscall and wait for the operating system to return;
5
then, assuming that the print

syscall did not change the memory, it will print 2, and again wait for the operating system to return.

After this point, the specification (for simplicity) uses any so as not to constrain the program’s

behavior further.

4
Technically, a memory address can also be part of a “guard page” denoted by #. An access to a guard page immediately and

safely terminates the program. Each stack is followed by a guard page that is used to detect stack overflow [Tanenbaum and

Bos 2014, Section 11.5].

5
The return value of the syscall is irrelevant so we omit it using ∗. The ∗ notation is interpreted via non-deterministic

choice, i.e., vis(SyscallRet?(∗, ∗)) ;𝑝 is defined as ∃v; ∃m; vis(SyscallRet?(v,m)) ;𝑝 .
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JonetwoKa = J↓main ∪a ↓memmove ∪a locle ∪a printKa (1)

⪯ J↓mainKa ⊕a J↓memmoveKa ⊕a JlocleKa ⊕a JprintKa (2)

⪯ ⌈JmainKr⌉r⇌a ⊕a ⌈JmemmoveKr⌉r⇌a ⊕a JlocleKa ⊕a JprintKa (3)

⪯ ⌈JmainKr⌉r⇌a ⊕a ⌈JmemmoveKr⌉r⇌a ⊕a ⌈JloclespecKs⌉r⇌a ⊕a JprintspecKs (4)

⪯ ⌈JmainKr ⊕r JmemmoveKr ⊕r JloclespecKs⌉r⇌a ⊕a JprintspecKs (5)

⪯ ⌈Jmain ∪r memmoveKr ⊕r JloclespecKs⌉r⇌a ⊕a JprintspecKs (6)

⪯ ⌈JmainspecKs⌉r⇌a ⊕a JprintspecKs (7)

⪯ JonetwospecKs (8)

Fig. 4. Proof outline.

Module refinement. Finally, we can see how our goal onetwo a⪯s onetwospec is defined:

onetwo a⪯s onetwospec ≜ JonetwoKa ⪯ JonetwospecKs

In DimSum, we do not center our reasoning around refinements relating the syntax of two programs

(i.e., libraries), but around refinements relating the semantics of two programs (i.e., modules). Here,

J·Ka is the module semantics ofAsmmentioned earlier, J·Ks is the module semantics of Spec(Events)
(defined in §3.2), and 𝑀1 ⪯ 𝑀2 is the language-agnostic simulation relation of DimSum (defined

in §3.1), which we use as the notion of refinement. Let us now see how to prove this refinement.

2.2 The Proof Strategy
The proof of JonetwoKa ⪯ JonetwospecKs consists of a sequence of refinements, as depicted

in Fig. 4. We can concatenate the sequence into our desired goal, because the refinement relation

𝑀1 ⪯ 𝑀2 is transitive (and reflexive, see Lemma 3.1). The basic proof strategy—and here is where the

decentralization of DimSum comes in—will be to decompose the program into several independent

parts, gradually abstract those parts, and then assemble the entire program again. We will discuss

these steps below. Along the way, we will point out whether the proof step is specific to the example

or a generic reasoning principle for the involved languages (see Fig. 5).

Linking [(1) to (2), generic]. As a first step, we decompose the program onetwo into a collection
of Asm-modules. We do so by replacing the syntactic linking operator A1 ∪a A2 of Asm with the

semantic linking operator M1
d1⊕d2a M2 ofAsm (using asm-link-syn). The syntactic operatorA1 ∪a A2

takes two Asm-libraries A1 and A2 and combines their program code. In contrast, the semantic

linking operator M1
d1⊕d2a M2 takes two Asm-modules M1 and M2 with associated instruction

addresses d1 and d2 and then synchronizes them via their jump events. (We omit d1 and d2 where
they clutter the discussion. We write |A| for the instruction addresses of A.)
Let us take a closer look at the synchronization. Suppose we are linking two Asm-modules

M1 and M2, and M1 is currently executing. If it wants to execute a jump, then it will emit the

event Jump!(r,m) where the value of the program counter r(pc) indicates the destination. If the
destination is in the instructions ofM2, i.e., in d2, thenM2 gets to accept the jump event by emitting

the dual event Jump?(r,m). In this case, the two components have synchronized, exchanging the

values of the registers r and the memory m. To the outside, the synchronization will be hidden: the

combined module M1
d1⊕d2a M2 will do a silent 𝜏-step. If the module M1 decides to jump outside

of M2, i.e., outside of d2, thenM1
d1⊕d2a M2 will simply forward the jump to the environment.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 27. Publication date: January 2023.



DimSum: A Decentralized Approach to Multi-language Semantics and Verification 27:11

asm-link-syn

|A1 | ∩ |A2 | = ∅
JA1 ∪a A2Ka ≡ JA1Ka

|A1 |⊕ |A2 |
a JA2Ka

rec-link-syn

|R1 | ∩ |R2 | = ∅
JR1 ∪r R2Kr ≡ JR1Kr

|R1 |⊕ |R2 |
r JR2Kr

asm-link-horizontal

M1 ⪯ M′1 M2 ⪯ M′2
M1

d1⊕d2a M2 ⪯ M′1
d1⊕d2a M′2

rec-link-horizontal

M1 ⪯ M′1 M2 ⪯ M′2

M1
d1⊕d2r M2 ⪯ M′1

d1⊕d2r M′2

rec-wrapper-compat

M ⪯ M′

⌈M⌉r⇌a ⪯ ⌈M′⌉r⇌a

compiler-correct

↓R defined

J↓RKa ⪯ ⌈JRKr⌉r⇌a

rec-to-asm-link

⌈M1⌉r⇌a ⊕a ⌈M2⌉r⇌a ⪯ ⌈M1 ⊕r M2⌉r⇌a

Fig. 5. Proof rules of DimSum (where𝑀1 ≡ 𝑀2 ≜ (𝑀1 ⪯ 𝑀2 ∧𝑀2 ⪯ 𝑀1)).

There is one additional, subtle property of the linking operator that is used in going from (1)

to (2): horizontal compositionality of M1 ⊕a M2 (asm-link-horizontal). Horizontal compositionality

in DimSum means compatibility with the refinement. We will see several semantic linking oper-

ators in DimSum (i.e., M1 ⊕a M2, M1 ⊕r M2, and M1 ⊕coro M2, ) and they will all be horizontally

compositional. In fact, all these linking operators will be derived from a single, language-generic

linking operator that is horizontally compositional (see §3.3). But no need to get ahead of ourselves.

Module translation [(2) to (3), generic]. In the next step, we reap the benefits of the semantic

linking operator: we can link modules that are not syntactically Asm-libraries, but semantically are

Asm-modules. More precisely, in this step we take the Asm-modules J↓mainKa and J↓memmoveKa
obtained through compilation of the Rec-libraries main and memmove, and then we turn them

into Rec-modules JmainKr and JmemmoveKr inside of a semantic wrapper ⌈·⌉r⇌a. The semantic

wrapper ⌈·⌉r⇌a is an embedding of Recmodules into Asm (i.e., ifM is an Recmodule, then ⌈M⌉r⇌a

is an Asm module), and as such translates between Rec-events and Asm-events on the fly:

JmemmoveKr

⌈·⌉r⇌a

⊕a JlocleKa
Call!(locle, [d, s],m) Jump!(r,m)

Return?(v′,m′) Jump?(r′,m′)

Conceptually, this wrapper is similar to a wrapper in a multi-language semantics of Matthews and

Findler [2007]: it embeds constructs from one language into another. The key distinction of the

wrappers in DimSum is that they are semantic: they operate on modules (i.e., transition systems)

instead of syntactic constructs. As a result, their task is to translate interactions (i.e., events) between
the two languages. Take the interaction ofmemmove and locle depicted above. In this case, the Rec
module issues a call to the function locle with arguments d and s and the memory m. The wrapper

⌈·⌉r⇌a then constructs the corresponding Asm jump event, including the correct representation of

the registers r and of the memorym. When locle eventually jumps back, the wrapper translates the

jump to a corresponding function return. (We will discuss these translations in more detail in §2.3.)

The wrapper ⌈·⌉r⇌a has two important properties. The first (see compiler-correct) is that the

compiled program refines the source program wrapped by ⌈·⌉r⇌a—i.e., our compiler is correct up to

the translation of the wrapper. More specifically, a (syntactically) compiled Rec library ↓R behaves

like the semantically translated source module ⌈JRKr⌉r⇌a. The second (see rec-wrapper-compat) is

that the wrapper is compatible with refinement—this property will be used by the following steps.
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printspec ≜coind ∃r,m; vis(Jump?(r,m)); assume(r(pc) = 𝑎print);
vis(Syscall!(PRINT, r(x0),m));∃v,m′; vis(SyscallRet?(v,m′));
vis(Jump!(r[pc ↦→ r(x30)] [x0 ↦→ v] [x8 ↦→ ∗],m′)); printspec

loclespec ≜coind ∃f, v,m; vis(Call?(f, v,m)); assume(f = locle); assume(v is [ℓ1, ℓ2]);
if ℓ1.blockid = ℓ2.blockid then vis(Return!(ℓ1 .offset ≤ ℓ2.offset,m)); loclespec
else ∃b; vis(Return!(b,m)); loclespec

Fig. 6. Specifications for print and locle.

Abstracting implementations [(3) to (4), example-specific]. In the next step, we replace

the assembly libraries print and locle with high-level specifications written in Spec. We do so to

abstract over the Asm implementation details of both libraries, since we only care about their

interaction behavior with other modules (e.g., their jumps, which values they compute, which

syscalls they trigger). Formally, we prove:

print-correct JprintKa ⪯ JprintspecKs locle-correct JlocleKa ⪯ ⌈JloclespecKs⌉r⇌a

The specifications for print and locle are depicted in Fig. 6. Before even we consider the details of

these specifications, we should discuss one fundamental difference that stands out: printspec is an
Asm-level specification, while loclespec is a Rec-level specification. We can give a Rec specification
to locle, because it has the interaction behavior of a Rec function. More precisely, while we cannot

implement locle in Rec directly, we can still give it a Rec-level specification in Spec, because locle
obeys the calling convention of Rec and triggers no syscalls. In contrast, the same cannot be said

for print, because print does a syscall, which is beyond the interaction behavior of Rec.
Let us now turn to the details of both specifications. The specification printspec accepts jumps

to the start of the print code address. Then it triggers a print syscall of the contents of x0 and

accepts the return value v, which is subsequently returned (by storing it in x0). The return address

is then fetched from register x30 and becomes the next program counter pc. Afterwards, the
specification starts from the beginning again (i.e., with printspec). The last step is important to reuse
the module for subsequent executions of print. It is made possible, because our programs in Spec
are co-inductive, so printspec can refer to itself in its own definition.

The specification loclespec accepts an incoming function call to locle where the arguments are

two locations ℓ1 and ℓ2. If the locations point to the same block in memory (i.e., their block ids are

the same), then loclespec compares their offsets and returns the result. Afterwards, the specification

loops. If the locations point to different blocks in memory, then loclespec non-deterministically

chooses a Boolean b and returns it. The non-deterministic choice here abstracts over the imple-

mentation detail of how exactly the Rec locations are mapped to the concrete Asm memory. This

non-deterministic choice does not cause problems when verifying memmove since 𝑠 and 𝑑 cannot

overlap if they point to different blocks and thus the result of locle is irrelevant.6

Leaving assembly behind [(4) to (6), generic]. In the next two steps, we exploit the fact

that JmainKr, JmemmoveKr, and JloclespecKs obey the Rec interaction behavior: we lift them out

of Asm to reason about them at the level of Rec in the next step. To do so, we introduce two

Rec-linking operators: syntactic linking (R1 ∪r R2) and semantic linking (M1
d1⊕d2r M2), analogous

6
Our Coq development [Sammler et al. 2023b] additionally verifies a stronger version of loclespec that gives a consistent
ordering of locations across multiple calls.
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to Asm. (Here, d1 and d2 refer to the function names of M1 and M2 and we often omit them

to avoid clutter.) We use the linking operators to combine the three Rec-modules into the mod-

ule Jmain ∪r memmoveKr ⊕r JloclespecKs, leveraging that syntactic and semantic linking coincide

for Rec-libraries (see rec-link-syn), that M1 ⊕r M2 is horizontally compositional (see rec-link-

horizontal), and that the wrapper ⌈·⌉r⇌a is compatible with linking (see rec-to-asm-link).

In a typical verification task, we want to leave the level of assembly as much as possible. The

reason is that it is simpler to reason about programs at the level of Rec than it is to reason about

them at the level of Asm. In particular, when we reason about programs at the level of Rec, we do
not have to think about the surrounding wrapper ⌈·⌉r⇌a.

High-level reasoning [(6) to (7), example-specific]. In the next step, we can reap the benefits

from reasoning at the level of Rec. More specifically, we can ignore that JmainKr, JmemmoveKr, and
JloclespecKs are inside of Asm (using the wrapper ⌈·⌉r⇌a) and instead reason about their interactions
at the level of Rec. We can abstract over their implementation details and show:

main-correct Jmain ∪r memmoveKr ⊕r JloclespecKs ⪯ JmainspecKs
Here, mainspec is a Spec specification for the three modules with Rec events:

mainspec ≜ ∃f, v; vis(Call?(f, v, ∗)); assume(f = main); assume(v = []);
∃m1; vis(Call!(print, [1],m1));∃m2; vis(Return?(∗,m2)); assume(m2 = m1);
∃m3; vis(Call!(print, [2],m3));∃m4; vis(Return?(∗,m4)); assume(m4 = m3); any

The combined module will accept any incoming call to the main function. Subsequently, it will call

print with argument 1 and some memory m1, and expect print to return with the same memory.

(Returning with a different memory m2 ≠ m1 will be accepted, but in this case the specification

does provide not any additional guarantees about the behavior of the program.) Subsequently, the

specification will call print with argument 2, accept the corresponding return, and afterwards its

behavior can be arbitrary. (Technically, this specification also needs to accept incoming calls after

the call to print and behave arbitrarily in this case, but we omit this here for simplicity.)

Reasoning with specifications [(7) to (8), example-specific]. In a final step, we turn back to

the printspec module. Recall that the module relies on interaction fundamentally not available at

the level of Rec—syscalls—which is why we reason about it at the level of Asm. Fittingly, we also

have to reason about ⌈JmainspecKs⌉r⇌a ⊕a JprintspecKs at the level of Asm. Typically, reasoning

about programs at the level of Asm can be a daunting task, since there are many low-level details to

consider. However, since we have already condensed the other modules into a single, specification

mainspec, the last step is relatively straightforward:

⌈JmainspecKs⌉r⇌a ⊕a JprintspecKs ⪯ JonetwospecKs
In the proof, we essentially only have to make sure that the calls in main and the jumps in print
line up. The translation of the events is taken care of by the wrapper ⌈·⌉r⇌a, which we discuss next.

2.3 Semantic Language Wrappers
One of the most important building blocks of the proof in §2.2 is the wrapper ⌈·⌉r⇌a, which converts

events from Rec to Asm and back. In this section, we take a closer look at how the wrapper works.

Recall the event exchange between memmove and locle (in §2.2). In this exchange, the wrapper

has to translate between (1) the calling conventions of both languages (e.g., calls and returns in Rec
are jumps in Asm), (2) the values of both languages (e.g., structured values v in Rec are integers v
in Asm), and (3) the memory models of both languages (e.g., the block-based memory m in Rec is a
flat memorym in Asm). As we will discuss below, the two key ingredients to getting this translation

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 27. Publication date: January 2023.



27:14 M. Sammler, S. Spies, Y. Song, E. D’Osualdo, R. Krebbers, D. Garg, and D. Dreyer

Call!(f, v,m) ⇀𝑤 Jump!(r,m) ≜ r(pc) = 𝑎f ∧ v ∼𝑤 r(x0 . . . x8) ∧ |v| ≤ 9 ∧m ∼𝑤 m

Return?(v,m) ↽r′,𝑤 Jump?(r,m) ≜ r(pc) = r′(x30) ∧ v ∼𝑤 r(x0) ∧m ∼𝑤 m ∧
r(x19 . . . x29, sp) = r′(x19 . . . x29, sp)

Fig. 7. Select cases of the calling convention between Rec and Asm.

right are Kripke relations (explained using the direction Rec-to-Asm) and angelic non-determinism
(explained using the direction Asm-to-Rec). In this section, we describe a simplified account of the

wrapper ⌈·⌉r⇌a. Its actual definition is derived from the language generic combinators presented

in §3.3, and can be found in the appendix [Sammler et al. 2023a, §E].

Kripke relations. Let us start with the direction of translating Rec events into Asm events

(e.g., translating Call!(locle, [d, s],m) into Jump!(r,m)). In principle, this direction is relatively

straightforward, because we go from a high-level language with more structure to a low-level

language with less structure (e.g., we map structured values v to integers v). The main challenge in

this direction is that the wrapper has to maintain a mapping from Rec-level block ids to Asm-level

addresses, which remains consistent across function calls. That is, if we translate the location ℓ to

the address v once, then we have to ensure that we pick v again for subsequent calls exposing ℓ ,

because assembly libraries typically expect the location ℓ to not move in between function calls.

To maintain a consistent mapping across function calls, the wrapper ⌈·⌉r⇌a keeps around a

block-id-to-address map𝑤 . In the full definition of the wrapper, this piece of state𝑤 is maintained

using a separation logic relation (akin to the relations in §5). In the simplified account of ⌈·⌉r⇌a that

we discuss here, one can think of the map𝑤 as one component of the internal state of the wrapper.
For example, in the case of translating outgoing calls to jumps, the wrapper transitions as follows:

call-asm

𝜎
Call!(f,v,m)
−−−−−−−−→𝑀 𝜎 ′ Call!(f, v,m) ⇀𝑤′ Jump!(r,m) 𝑤 ⊆ 𝑤 ′

(rec,𝑤, 𝜎)
Jump!(r,m)
−−−−−−−−→ ⌈𝑀 ⌉r⇌a (asm(r),𝑤 ′, 𝜎 ′)

Here, the state of the wrapper contains information about who is currently executing (e.g., rec
or asm(r)), the address mapping𝑤 , and the state of the wrapped module 𝜎 . (The reason why we

record the registers r in asm(r) will become apparent below.) As the wrapper executes, the mapping

𝑤 gradually grows along with the memories, written𝑤 ⊆ 𝑤 ′. In the context of Kripke relations,

the state𝑤 is typically called a world and the relation𝑤 ⊆ 𝑤 ′ is world extension.
The relation Call!(f, v,m) ⇀𝑤 Jump!(r,m) in 2.3, defined in Fig. 7, encodes a part of the calling

convention of Rec and Asm. To define it, we first relate values between both languages:

𝑧 ∼𝑤 𝑧 𝑏 ∼𝑤 (if 𝑏 then 1 else 0) ℓ ∼𝑤 𝑤 (ℓ .blockid) + ℓ .offset

In the case of locations ℓ , we look up the base address for the block in the mapping 𝑤 . The

relation can then be lifted to memories, written m ∼𝑤 m. To translate a call from Rec to Asm
with Call!(f, v,m) ⇀𝑤 Jump!(r,m) we have to translate the components as follows: The program

counter must point to the start address of the function f, the argument values must be stored in the

registers x0 to x8, there may be at most nine arguments,
7
and the memories must be related. While

this definition does incorporate quite a number of technical details about the calling conventions

7
The calling convention of Asm restricts functions to nine registers. We rule out Rec functions with more than nine

arguments in the compiler and restrict the number of function arguments in the wrapper.
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of both languages, there is no way around it: when we call an Asm program, we have to make sure

that its expectations are met, which includes satisfying the calling convention.

Angelic non-determinism. Let us now turn to the reverse direction (Asm-to-Rec). This direc-
tion is more challenging because we need to “guess” the additional structure of the representation

at the level of Rec. For example, consider translating Jump?(r,m) to Return?(v,m) (e.g., when
locle returns from Asm). In this translation, the return value is stored in x0 as an integer and we

need to pick “the right” Rec return value v. The issue is that there can be multiple candidates, but

not all will work. For instance, if locle returns 0 (i.e., the first location is not less-or-equal to the

second) and this 0 is subsequently translated to a location ℓ0 instead of the Boolean false, then
memmove will have undefined behavior. Unfortunately, the wrapper cannot choose the right v
by itself, because locally, it knows possible candidates (e.g., false, 0, and ℓ0), but it does not know

which one will work “down the road”. (Also, Rec is untyped so there is no type system to help

with this choice.) To help the wrapper out, we delegate the choice to a well-meaning angel: we use

angelic non-determinism [Floyd 1967].

Before we discuss angelic non-determinism, let us first explain the calling convention for this

direction (see Fig. 7). The relation for this case, (↽r′,𝑤), takes an additional piece of state: the

register state r′ that we record in asm(r′) when calling Asm-code (see 2.3). The relation requires the

program counter to point to the original return address (in x30), the return values and memories to

be related, and the callee-saved registers x19, . . . , x29, sp to be restored.

Let us turn to angelic non-determinism and how it helps us here. To return from Asm, we have

to define the analogue of 2.3 but for Return?(v,m) ↽r′,𝑤 Jump?(r,m). However, if we follow the

structure of 2.3, then event translation would become a proof obligation for the wrapper including
choosing v and m. That is, applying the hypothetical rule would lead to the obligation:

“∃v,m. (Return?(v,m) ↽r′,𝑤 Jump?(r,m)) ∧ . . . ”

However, what we want here is that the event translation becomes an assumption of the wrapper
including “the right choices” for v and m. In other words, we want something like:

“∀v,m. (Return?(v,m) ↽r′,𝑤 Jump?(r,m)) ⇒ . . . ”

Unfortunately, we cannot literally define an analogue of 2.3 using this precondition, because then

there could only be a single successor state 𝜎 ′ for all possible memories m and values v. There are,
however, typically multiple candidates 𝜎 ′ depending on the choices of m and v. Since the wrapper
does not know how to choose m and v itself, the only sensible option is to continue in all possible
states 𝜎 ′ under the assumption of Return?(v,m) ↽r′,𝑤 Jump?(r,m). That is exactly what angelic
non-determinism allows us to do. (We make formal how in the next section, §3.1.) It will then be

the job of the angel to pick the right m and v, and thereby choose one of the states 𝜎 ′.
Of course, we cannot keep delegating the responsibility to make “the right choices” to the angel

forever. Eventually, we—as the user of DimSum—have to slip into the role of the angel and provide

“the right choices”. In this case, we do so in proving rec-to-asm-link (i.e., ⌈M1⌉r⇌a ⊕a ⌈M2⌉r⇌a ⪯
⌈M1 ⊕r M2⌉r⇌a). Consider the case whereM2 returns toM1. In terms of events, this means we come

from Rec, go through Asm, and then return to Rec again. This path allows us as the user to observe

the right choice: the memory m and value v will be determined byM2 and we, as the angel, can

then forward them to M1. Inspired by CCR [Song et al. 2023], this use of angelic non-determinism

allows us to express rely-guarantee protocols between modules and their environment.

3 MODULES AND REFINEMENT
In this section, we discuss the formal definition of modules and simulation (in §3.1), the meaning of

non-deterministic choices (in §3.2), and the library of compositional combinators (in §3.3).
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𝜎 ∈ Σ

𝜎
nil−−→∗𝑀 Σ

∃Σ′. 𝜎 𝛼1−−→𝑀 Σ′ ∧ ∀𝜎 ′ ∈ Σ′. 𝜎 ′ 𝑒2−→∗𝑀 Σ

𝜎
𝛼1 ::? 𝑒2−−−−−→∗𝑀 Σ

Fig. 8. Multistep execution 𝜎
𝑒−→∗ Σ with 𝛼1 ::? 𝑒2 ≜ if 𝛼1 = 𝑒1 then 𝑒1 :: 𝑒2 else 𝑒2.

3.1 Modules and Refinement in the Abstract
A module 𝑀 ∈ Module(𝐸) is a labeled transition system with events drawn from the set 𝐸 and

demonic and angelic non-determinism. Formally, a module 𝑀 = (𝑆,→, 𝜎0) consists of a set of

states 𝑆 , an initial state 𝜎0
, and a transition relation→ ∈ P(𝑆 × (𝐸 ⊎ {𝜏}) × P(𝑆)). The labels

type 𝛼 ∈ 𝐸 ⊎ {𝜏} indicates that each transition can either emit a visible event 𝑒 ∈ 𝐸 or be silent,

denoted by 𝜏 . Notably, the transitions of a module 𝜎
𝛼−→ Σ go from a single state 𝜎 to a set of

states Σ. The use of a set is inspired by alternating automata [Chandra et al. 1981; Vardi 1995]

and binary multi-relations [Rewitzky 2003] as a means to incorporate both demonic and angelic

non-determinism. Demonic non-determinism works “as usual”: a single state 𝜎 can transition to

multiple sets Σ (i.e., 𝜎 𝛼−→ Σ and 𝜎
𝛼′−→ Σ′ where Σ ≠ Σ′). Angelic non-determinism works differently:

after the transition 𝜎
𝛼−→ Σ, the module is in every state 𝜎 ′ ∈ Σ. This intuition becomes precise when

we consider multi-step executions of a module, depicted in Fig. 8: we pick some successor set Σ
and then proceed for every possible 𝜎 ′ ∈ Σ.

Simulation. For modules𝑀1, 𝑀2 ∈ Module(𝐸), we define refinement as the simulation (⪯co):

𝑀1 ⪯ 𝑀2 ≜ (𝑀1, 𝜎
0

𝑀1

) ⪯co (𝑀2, 𝜎
0

𝑀2

)
(𝑀1, 𝜎1) ⪯co (𝑀2, 𝜎2) ≜coind ∀𝑒, Σ1. 𝜎1

𝛼−→𝑀1
Σ1 ⇒

∃Σ2. 𝜎2
𝛼−→∗𝑀2

Σ2 ∧ ∀𝜎 ′2 ∈ Σ2. ∃𝜎 ′1 ∈ Σ1. (𝑀1, 𝜎
′
1
) ⪯co (𝑀2, 𝜎

′
2
)

Here, (⪯co) is a coinductive simulation inspired by Alur et al. [1998] and Fritz and Wilke [2005]. For

every step of the implementation 𝜎1
𝛼−→𝑀1

Σ1 with label 𝛼 , the simulation demands a corresponding

multi-step of the specification 𝜎2
𝛼−→∗𝑀2

Σ2 (where 𝜎
𝛼−→∗𝑀 Σ is defined as 𝜎

𝛼 ::? nil−−−−−→∗𝑀 Σ). This
part of the definition is standard for a simulation with demonic non-determinism. Then the sides

flip, and for every possible successor state of the specification 𝜎 ′
2
∈ Σ2, the simulation demands a

corresponding state 𝜎 ′
1
∈ Σ1 such that 𝜎 ′

1
and 𝜎 ′

2
are in the simulation again. This second part is

only present in simulations with angelic non-determinism. The simulation is a preorder:

Lemma 3.1. 𝑀1 ⪯ 𝑀2 is reflexive and transitive.

Simulation vs. trace refinement. The reader might wonder why we center our reasoning

around a simulation instead of another form of refinement (e.g., a contextual refinement or a trace

refinement). In DimSum, we work with a simulation, because simulations are sensitive to branching

(i.e., the order of visible events and non-deterministic choices) and branching sensitivity is crucial

to implement linking as event-synchronization, as we will see in §3.2. Fortunately, the simulation

𝑀1 ⪯ 𝑀2 strikes exactly the right balance: it is large enough to contain our desired examples (e.g.,
the compiler passes in §5 and the coroutine linking operator in §4.3), it is compositional enough to

be compatible with the operators of DimSum (see §3.3), and it is small enough to imply a traditional

whole-program trace refinement. More specifically, we define whole-program trace refinement as

𝑀1 ⊑T 𝑀2 ≜ T (𝑀1) ⊆ T (𝑀2) where T (𝑀) ≜
{
𝑒
�� 𝜎0

𝑒−→∗ 𝑆𝑀
}
and, as to be expected, we obtain:

Theorem 3.2. If𝑀1 ⪯ 𝑀2, then𝑀1 ⊑T 𝑀2.
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sim-vis

J𝑝Ks ⪯ J𝑝 ′Ks
Jvis(𝑒);𝑝Ks ⪯ Jvis(𝑒);𝑝 ′Ks

sim-ex-r

∃𝑦 ∈ 𝑇 . 𝑀 ⪯ J𝑝 (𝑦)Ks
𝑀 ⪯ J∃𝑥 : 𝑇 ; 𝑝 (𝑥)Ks

sim-ex-l

∀𝑦 ∈ 𝑇 . J𝑝 (𝑦)Ks ⪯ 𝑀

J∃𝑥 : 𝑇 ;𝑝 (𝑥)Ks ⪯ 𝑀

sim-all-r

∀𝑦 ∈ 𝑇 . 𝑀 ⪯ J𝑝 (𝑦)Ks
𝑀 ⪯ J∀𝑥 : 𝑇 ;𝑝 (𝑥)Ks

sim-all-l

∃𝑦 ∈ 𝑇 . J𝑝 (𝑦)Ks ⪯ 𝑀

J∀𝑥 : 𝑇 ;𝑝 (𝑥)Ks ⪯ 𝑀

Fig. 9. Derived quantifier elimination/introduction rules for Spec-programs.

3.2 Angelic and Demonic Non-Determinism
As we have discussed in §2.3 and §3.1, modules in DimSum have two kinds of non-determinism:

demonic and angelic non-determinism. To understand when we want to use one vs. the other and

how they affect proofs of the simulation 𝑀1 ⪯ 𝑀2, we discuss them in the context of a concrete

example: the specification language Spec. As mentioned in §2.1, we have so far only discussed a

fragment of Spec. Formally, the full language is defined coinductively as follows:

Spec(𝐸) ∋ 𝑝 ::=coind vis(𝑒);𝑝 | ∃𝑥 : 𝑇 ; 𝑝 (𝑥) | ∀𝑥 : 𝑇 ; 𝑝 (𝑥) (𝑒 ∈ 𝐸)
As before, vis(𝑒);𝑝 emits a visible event 𝑒 ∈ 𝐸. The program ∃𝑥 : 𝑇 ; 𝑝 (𝑥) uses demonic non-

determinism—think “∃” reminiscent of the devil’s trident

⋔

—to choose some 𝑥 : 𝑇 and then proceed

as 𝑝 . The program ∀𝑥 : 𝑇 ; 𝑝 (𝑥) uses angelic non-determinism—think “∀” for an inverted A for

angel—to assume a choice 𝑥 : 𝑇 and then proceed as 𝑝 . Besides the analogy, as we will see shortly, the

symbols “∀” and “∃” also have a more literal reading as quantifiers in the context of the simulation.

Formally, the module semantics of a program 𝑝 ∈ Spec(𝐸) is a module J𝑝Ks ≜ (Spec(𝐸),→s, 𝑝)
where programs execute according to the following transition system:

(vis(𝑒);𝑝) 𝑒−→s {𝑝} (∃𝑥 : 𝑇 ; 𝑝 (𝑥)) 𝜏−→s {𝑝 (𝑦)} (for 𝑦 ∈ 𝑇 ) (∀𝑥 : 𝑇 ;𝑝 (𝑥)) 𝜏−→s {𝑝 (𝑦) | 𝑦 ∈ 𝑇 }
We embed constructs of our meta theory (e.g., if 𝜙 then𝑝1 else𝑝2) into Spec8 and, hence, we can
derive the remaining constructs of Spec from §2.1 using the three primitives:

any ≜ ub ≜coind ∀𝑥 : ∅; ub assume(𝜙); 𝑝 ≜ if 𝜙 then𝑝 else ub

nb ≜coind ∃𝑥 : ∅; nb assert(𝜙); 𝑝 ≜ if 𝜙 then𝑝 else nb

The specification any means the program can have any behavior or, in other words, the behavior is

not defined (i.e., ub). Formally, we can represent this behavior as an angelic choice over the empty

set, because𝑀 ⪯ J∀𝑥 : ∅;𝑝Ks for any𝑀 (cf. the definition of (⪯)). The specification nb means the

program has finished executing or, in other words, the program has no behavior anymore. Formally,

we can represent termination as a demonic choice over the empty set: there is no “next” state that

the program can step to. We can then derive the constructs assume(𝜙);𝑝 and assert(𝜙);𝑝 .9

Non-deterministic choices as quantifiers. As mentioned above, the notation for demonic

and angelic choice in Spec is no accident: the different forms of non-determinism have a reading as

logical connectives in a simulation. The interactions of the two kinds of non-determinism with

simulation are depicted in Fig. 9. If we read simulation “⪯” as a form of implication “⇒”, then

the proof rules for the two quantifiers correspond to the introduction and elimination rules for

universal and existential quantification of first-order logic. For example, existential quantification

8Spec is a shallow embedding in Coq and therefore inherits its rich collection of datatypes (e.g.,N, list(𝑇 ) , etc.) and functions.
9
The Coq development uses the (classically) equivalent definitions assume(𝜙) ;𝑝 ≜ ∀_ : 𝜙 ;𝑝 and assert(𝜙) ;𝑝 ≜ ∃_ : 𝜙 ;𝑝 .
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sim-all-all-comm

J∀𝑥 ;∀𝑦;𝑝 (𝑥,𝑦)Ks ⪯ J∀𝑦;∀𝑥 ;𝑝 (𝑥,𝑦)Ks
sim-ex-ex-comm

J∃𝑥 ;∃𝑦;𝑝 (𝑥,𝑦)Ks ⪯ J∃𝑦;∃𝑥 ; 𝑝 (𝑥,𝑦)Ks

sim-ex-all-comm

J∃𝑥 ;∀𝑦;𝑝 (𝑥,𝑦)Ks ⪯ J∀𝑦;∃𝑥 ;𝑝 (𝑥,𝑦)Ks
no-sim-all-ex-comm

J∀𝑦;∃𝑥 ;𝑝 (𝑥,𝑦)Ks ̸⪯ J∃𝑥 ;∀𝑦; 𝑝 (𝑥,𝑦)Ks

sim-ex-vis-comm

J∃𝑥 ; vis(𝑒);𝑝 (𝑥)Ks ⪯ Jvis(𝑒);∃𝑥 ;𝑝 (𝑥)Ks
no-sim-vis-ex-comm

Jvis(𝑒);∃𝑥 ; 𝑝 (𝑥)Ks ̸⪯ J∃𝑥 ; vis(𝑒); 𝑝 (𝑥)Ks

sim-vis-all-comm

Jvis(𝑒);∀𝑥 ;𝑝 (𝑥)Ks ⪯ J∀𝑥 ; vis(𝑒);𝑝 (𝑥)Ks
no-sim-all-vis-comm

J∀𝑥 ; vis(𝑒); 𝑝 (𝑥)Ks ̸⪯ Jvis(𝑒);∀𝑥 ;𝑝Ks

Fig. 10. Admissible and inadmissible quantifier commuting principles for Spec-programs.

∃𝑥 : 𝑇 ;𝑝 on the left side (sim-ex-l) means we need to consider all possible choices of 𝑥 , whereas

existential quantification on the right side (sim-ex-r) means we need to choose 𝑥 . Furthermore, the

quantifiers validate and invalidate all the usual quantifier commuting principles shown in Fig. 10.

The reading of non-deterministic choices as quantifiers generalizes beyond Spec. When we prove

a simulation𝑀1 ⪯ 𝑀2, then demonic non-determinism in𝑀1 means we need to consider all possible

choices; in𝑀2 it means we need to provide a particular choice. For angelic non-determinism, the

rules are flipped. In 𝑀1, we need to provide a particular choice; in 𝑀2, we need to consider all

possible choices. For example, in §2.3, we have discussed angelic non-determinism in the wrapper

⌈M⌉r⇌a. Recall that angelic non-determinism in this case meant that the wrapper can assume “the

right choice” is provided to it by the angel. When we prove the simulation ⌈M1⌉r⇌a ⊕a ⌈M2⌉r⇌a ⪯
⌈M1 ⊕r M2⌉r⇌a, then we have to slip into the role of the angel: for calls from M1 to M2, we obtain

the “right choice” of, e.g., the memory m through demonic non-determinism inM1 (think “∃m”)

and then we pass it on through angelic non-determinism in M2 (think “∀m”).

Branching-sensitivity and linking. What we have not discussed so far is the interaction of

visible events and non-deterministic choices. As it turns out, it is crucial that the simulation𝑀1 ⪯ 𝑀2

preserves the order of visible events and certain choices. More specifically, the rules sim-ex-vis-comm

and sim-vis-all-comm of Fig. 10 are admissible whereas no-sim-vis-ex-comm and no-sim-all-vis-comm

are not. Intuitively, the reason is that linking can “inline” an entire module in the place of a visible

event 𝑒 , so whenever we commute a quantifier over 𝑒 , we are effectively commuting it over all the

choices made “on the other side” of 𝑒 .

To illustrate this point, let us consider a concrete example: we will show that if one admits

the commuting forbidden by no-sim-all-vis-comm, then the simulation is trivial in the sense that

J𝑝1Ks ⪯ J𝑝2Ks for any specifications 𝑝1 and 𝑝2. For this example, we define 𝑝L ≜ ∀𝑥 : ∅; vis(𝐴!); any
and 𝑝R ≜ vis(𝐴?); 𝑝2 and consider what happens when we link them together with a suitably

defined linking operation (i.e., one matching𝐴! with𝐴?). Using the forbidden commuting, we show:

J𝑝1Ks ⪯ J𝑝L ⊕ 𝑝RKs ⪯ J𝑝2Ks
For the first part, J𝑝1Ks ⪯ J𝑝L ⊕ 𝑝RKs, it suffices to observe that 𝑝L ⊕ 𝑝R can be implemented by

any program 𝑝 , because it starts with an angelic choice over an empty set. That is, suppose the

linked program 𝑝L ⊕ 𝑝R starts executing on the left side. Then we are given 𝑥 ∈ ∅ in the proof

of J𝑝𝑖Ks ⪯ J𝑝L ⊕ 𝑝RKs (by sim-all-r) and we are done. For the second part, J𝑝L ⊕ 𝑝RKs ⪯ J𝑝2Ks
we use the commuting rule no-sim-all-vis-comm. With the commuting rule, it suffices to show

J(vis(𝐴!);∀𝑥 : ∅; any) ⊕ (vis(𝐴?);𝑝2)Ks ⪯ J𝑝2Ks, which follows from executing the module: we

start on the left, synchronize on 𝐴 and continue execution on the right, and then continue with 𝑝2.
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product-compat

𝑀1 ⪯ 𝑀 ′
1

𝑀2 ⪯ 𝑀 ′
2

𝑀1 ×𝑀2 ⪯ 𝑀 ′
1
×𝑀 ′

2

filter-compat

𝑀1 ⪯ 𝑀 ′
1

𝑀1 \𝑀2 ⪯ 𝑀 ′
1
\𝑀2

link-compat

𝑀1 ⪯ 𝑀 ′
1

𝑀2 ⪯ 𝑀 ′
2

𝑀1 ⊕𝑋 𝑀2 ⪯ 𝑀 ′
1
⊕𝑋 𝑀 ′

2

wrapper-compat

𝑀 ⪯ 𝑀 ′

⌈𝑀⌉𝑋 ⪯ ⌈𝑀 ′⌉𝑋

Fig. 11. Compositional combinator reasoning principles.

In summary, angelic and demonic non-determinism allow modules to express universal and

existential quantification, which enables the local encoding of assumptions about their environment

and guarantees about their own behavior (as used by the ⌈M⌉r⇌a wrapper). To ensure that the

semantics of operations like linking can be meaningfully expressed as compositions of modules,

DimSum relies on a branch-sensitive simulation that carefully controls the commutation of visible

events and non-deterministic choices.

3.3 Combinators
One of the strong suits of DimSum is that it comes with a compositional set of language-agnostic

combinators. Concretely, DimSum provides out-of-the-box a combinator for the product𝑀1 ×𝑀2

of two modules 𝑀1 and 𝑀2, one for filtering 𝑀1 \𝑀2, one for linking 𝑀1 ⊕𝑋 𝑀2, and one for

stateful wrappers ⌈𝑀⌉𝑋 . The combinators we have encountered so far— ⊕r , ⊕a , and ⌈·⌉r⇌a—are

all language-specific instantiations of these generic combinators (see §4 and §5). To allow for the

compositional reasoning we aim for in DimSum, all of them need to be compatible with simulation,

i.e., they need to be monotone with respect to ⪯, as asserted, for example, by asm-link-horizontal.

The main benefit of expressing the language-specific combinators as instances of the generic

combinators is that the desired compatibility properties—shown in Fig. 11—can be proven once and

for all for the generic combinators.
10
In the following, we will discuss the definition of the product

combinator 𝑀1 ×𝑀2 in detail and, for the sake of brevity, only describe the functionality of the

others (see the appendix [Sammler et al. 2023a, §A] for details).

Product. The product combinator𝑀1 ×𝑀2 ≜ ({E, L,R} × 𝑆𝑀1
× 𝑆𝑀2

,→×, (E, 𝜎0

𝑀1

, 𝜎0

𝑀2

)) builds
the product of two modules 𝑀1 and 𝑀2. It is inspired by parallel composition in process calculi

such as CSP [Hoare 1978; Roscoe 2010] and CCS [Milner et al. 1992; Milner 1999], but restricted to

a particular form of scheduling (depicted in Fig. 12): At any point in time, either the environment,

the left module𝑀1, or the right module𝑀2 is executing. We store whose turn it currently is in a

flag 𝑑 ∈ D ≜ {E, L,R} as part of the state of the module (alongside the state of the two modules

𝑀1 and 𝑀2). If the executing party is one of 𝑀1 or 𝑀2 and executes a silent step (product-step-

l-silent and product-step-r-silent), then it remains their turn. We only switch turns once the

module emits a visible event (product-step-l and product-step-r). Whenever we switch, the next

turn 𝑑 is chosen using demonic non-determinism. If it is currently the environment’s turn, then we

non-deterministically choose 𝑑 for the next step (product-step-env).

The events of the module 𝑒× ≜ left(𝑒, 𝑑) | right(𝑒, 𝑑) | env(𝑑) expose the scheduling choice

of the product combinator (i.e., who is currently executing). We can exploit this information in

other combinators to construct more deterministic schedules. For example, the linking combinator

𝑀1 ⊕𝑋 𝑀2 can filter out certain scheduling choices of 𝑀1 × 𝑀2 and thereby enforce structured

communication between𝑀1 and𝑀2 (as seen in §2.2).

10
Technically, these compatibility properties only hold for modules that do not perform (non-trivial) angelic choices on

steps with visible events. This requirement is trivial to satisfy by moving the angelic choice into a separate silent step.
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product-step-l

𝜎1
𝑒−→ Σ

(L, 𝜎1, 𝜎2)
left(𝑒,𝑑)
−−−−−−→×

{
(𝑑, 𝜎 ′

1
, 𝜎2)

�� 𝜎 ′
1
∈ Σ

}
product-step-l-silent

𝜎1
𝜏−→ Σ

(L, 𝜎1, 𝜎2)
𝜏−→×

{
(L, 𝜎 ′

1
, 𝜎2)

�� 𝜎 ′
1
∈ Σ

}
product-step-r

𝜎2
𝑒−→ Σ

(R, 𝜎1, 𝜎2)
right(𝑒,𝑑)
−−−−−−−→×

{
(𝑑, 𝜎1, 𝜎 ′2)

�� 𝜎 ′
2
∈ Σ

}
product-step-r-silent

𝜎2
𝜏−→ Σ

(R, 𝜎1, 𝜎2)
𝜏−→×

{
(R, 𝜎1, 𝜎 ′2)

�� 𝜎 ′
2
∈ Σ

}
product-step-env

(E, 𝜎1, 𝜎2)
env(𝑑)
−−−−−→× {(𝑑, 𝜎1, 𝜎2)}

Fig. 12. Definition of→×.

Filter. For a module𝑀 ∈ Module(𝐸1), the filter combinator𝑀 \𝑀 ′ ∈ Module(𝐸2) transforms

the events of the left module. That is, intuitively, one can think of the filter 𝑀 ′ as a relation

“𝑒1 ∼ 𝑒2 ⊆ 𝐸1 × 𝐸2” that is used to turn events 𝑒1 ∈ 𝐸1 into events 𝑒2 ∈ 𝐸2 and vice versa. In practice,

expressing the filter𝑀 ′ in terms of a relation is too restrictive, because we sometimes want (1) to

carry state in between the event translations, (2) map a single event to multiple events, and (3) use

angelic and demonic non-determinism to control how the events are filtered. Thus, in DimSum, we

go beyond a relation “𝑒1 ∼ 𝑒2” and instead use a filter module 𝑀 ′. This is similar to the notion of

transducers in automata theory. The idea is that when𝑀 emits an event 𝑒1 ∈ 𝐸1, control is passed
to the module𝑀 ′, which will then execute and emit one or more events to the environment. To be

precise, the filter module𝑀 ′ communicates using the events:

𝑒\ F FromInner(𝑒1 : 𝐸1) | ToInner(𝑒1 : option(𝐸1)) | ToEnv(𝑒2 : 𝐸2) | FromEnv(𝑒2 : 𝐸2)
FromInner(𝑒1) means that𝑀 ′ is willing to accept 𝑒1 from𝑀 , ToInner(𝑒1) means that𝑀 ′ wants to
return control to the module𝑀 , optionally sending it the event 𝑒1, ToEnv(𝑒2) means that𝑀 ′ wants
to send 𝑒2 to the environment, and FromEnv(𝑒2) means that 𝑀 ′ is willing to accept 𝑒2 from the

environment. Throughout all of these interactions, the filter𝑀 ′ can maintain some internal state,

since it itself is a module (i.e., state transition system).
11
We will see an instance of a filter module

below when we discuss the wrapper combinator.

Linking. To express semantic linking in a language-generic way, the linking combinator𝑀1⊕𝑋𝑀2

works as follows. The modules 𝑀1 and 𝑀2 emit tagged events 𝑒?! ∈ 𝐸?! ≜ 𝐸 × {?, !} such as

Jump?(r,m) or Jump!(r,m), where the tag 𝑡 ∈ {?, !} indicates whether the event is incoming (?)
or outgoing (!). It is then the job of the linking operator ⊕𝑋 to flip the event 𝑒?! or replace the event

𝑒?! with a different event 𝑒 ′
?!
(e.g., for the coroutine linking operator in §4.3 calls become returns).

Technically we define𝑀1 ⊕𝑋 𝑀2 ≜ (𝑀1 ×𝑀2) \ link𝑋 : the non-deterministic scheduling of𝑀1 ×𝑀2

is filtered by link𝑋 , which discards out all the interleavings that are “nonsensical”. For example, if

𝑀1 wants to “jump” to the environment, then link𝑋 filters out the interleavings of 𝑀1 ×𝑀2 where

the next turn is L (for𝑀1) or R (for𝑀2).

The parameter 𝑋 = (𝑆,⇝, 𝑠0) determines how the events are linked. It consists of a set of

linking-internal states 𝑆 , an initial state 𝑠0 ∈ 𝑆 , and a relation⇝ ⊆ (D×𝑆 ×𝐸) × ((D×𝑆 ×𝐸) ∪ { })
describing how events should be translated. Concretely, (𝑑, 𝑠, 𝑒) ⇝ (𝑑 ′, 𝑠 ′, 𝑒 ′) means the untagged

11
Readers familiar with process algebra can think of the filter combinator𝑀 \𝑀′ as the process (𝑀 ∥ 𝑀′)\𝐸1 where the

module𝑀′ accepts the events from𝑀 and emits events 𝑒2 ∈ 𝐸2.
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event 𝑒 ∈ 𝐸 coming from direction 𝑑 should go to 𝑑 ′ as the event 𝑒 ′. Behind the scenes, the linking

operator then adds the right tag 𝑡 ∈ {?, !} to 𝑒 ′, depending on whether 𝑒 is part of an incoming

or outgoing event. It is also possible that the event cannot be linked (𝑑, 𝑠, 𝑒) ⇝  , in which

case the linking 𝑀1 ⊕𝑋 𝑀2 has undefined behavior. The linking-internal states 𝑆 are a form of

private state that the linking operator can use to remember information across invocations (e.g.,
a syscall triggered by the left module should return to the left module). We will discuss concrete

instantiations of the linking relation⇝ in §4.

(Kripke) wrappers. For 𝑀 ∈ Module(𝐸1), the wrapper ⌈𝑀⌉𝑋 ≜ 𝑀 \wrap𝑋 ∈ Module(𝐸2)
translates events between languages with events 𝐸1 and 𝐸2 (e.g., between Rec and Asm in the case

of ⌈·⌉r⇌a). The combinator is a special case of filtering where the filter wrap𝑋 encodes a particular

event translation. The parameter 𝑋 = (L,⇀,↽) contains a separation logic L (explained below)

and a pair of Kripke relations (⇀ and ↽) where 𝑒1 ⇀ 𝑒2 controls the translation 𝐸1 to 𝐸2 and

𝑒1 ↽ 𝑒2 controls the translation 𝐸2 to 𝐸1. In both directions, we use non-determinism in the filter

wrap𝑋 to pick “the right” corresponding events. For 𝑒2 ∈ 𝐸2 arriving from the environment, the

filter angelically chooses an event 𝑒1 such that 𝑒1 ↽ 𝑒2. For 𝑒1 ∈ 𝐸1 originating from the module𝑀 ,

the filter demonically chooses an event 𝑒2 such that 𝑒1 ⇀ 𝑒2.

The relations⇀ and↽ are Kripke relations in the sense that they maintain state between events.

Instead of explicitly indexing these relations with a “possible world” (as sketched in §2.3), we

define them in separation logic. That is, their type is ⇀,↽: 𝐸1 × 𝐸2 → PropL where PropL denotes

the type of propositions in the separation logic L (one component of 𝑋 ). The separation logic L
determines which “resources” the relations ⇀ and ↽ can refer to (e.g., a Rec or Asm heap). We

always use separation logics L that are instances of the separation logic framework Iris [Jung et al.

2015, 2018].
12
We will see a concrete choice of L and the relations⇀ and ↽ in §5.

To understand how the wrapper works, it is instructive to discuss the definition of the filter

module wrap𝑋 . It is given by wrap𝑋 ≜ Jwrap(True)Ks where wrap coordinates the exchange

between the wrapped module𝑀 and its environment. The argument of wrap is a separation logic

proposition keeping track of the “resources” that the inner module owns privately (i.e., that are not
shared with the environment). The definition of wrap is given by:

wrap(𝑃1) ≜coind
∃𝑒2; vis(FromEnv(𝑒2));∀𝑒1, 𝑃2; assume(sat(𝑃1 ∗ 𝑃2 ∗ 𝑒1 ↽ 𝑒2)); vis(ToInner(𝑒1));
∃𝑒 ′

1
; vis(FromInner(𝑒 ′

1
));∃𝑒 ′

2
, 𝑃 ′

1
; assert(sat(𝑃 ′

1
∗ 𝑃2 ∗ 𝑒 ′1 ⇀ 𝑒 ′

2
)); vis(ToEnv(𝑒 ′

2
));wrap(𝑃 ′

1
)

Initially, the filter accepts any incoming event 𝑒2 from the environment (with FromEnv(𝑒2)). It then
assumes it is given angelically the corresponding event 𝑒1 for the inner module, which it sends to

the module (with ToInner(𝑒1)). Afterwards, the filter module accepts any response event 𝑒 ′
1
from

the inner module (with FromInner(𝑒 ′
1
)). It then demonically chooses the corresponding event 𝑒 ′

2
to

send to the environment (with ToEnv(𝑒 ′
2
)).

In the exchange between the wrapped module𝑀 and the environment, separation logic proposi-

tions are used to “divide up” the shared state (e.g., the locations in the heap). The wrapped module

exclusively owns some resources 𝑃1 which the environment may not change, and it can update

them to 𝑃 ′
1
during the exchange. The environment exclusively owns some resources 𝑃2 which the

wrapped module must preserve while updating its own state.
13
Finally, during every exchange

12
In fact, readers familiar with Iris can think of the separation logic L as UPred(𝑅) , the separation logic of uniform predicates

over the resource algebra 𝑅, where each instance of the wrapper combinator chooses its own resource algebra 𝑅.
13
The structure of this exchange follows Iris’s frame-preserving update modality [Jung et al. 2018]: Initially, the module

assumes some decomposition of the shared resources, and then it makes sure to only update the exclusively owned resources

𝑃1 to resources 𝑃 ′
1
that remain compatible with the environment resources.
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Library ∋ A ≜ Z fin−⇀ Instr
Instr ∋ c ::= ret | mov x, o | add x1, x2, o | mul x1, x2, o | sle x1, x2, o | syscall

| ldr x1, [x2 + 𝑖] | str x1, [x2 + 𝑖] | jmp o | beq o1, x, o2 | · · ·
Operand ∋ o ::= x : RegisterName | 𝑖 : Z

Execution State ∋ I ::= Wait | Run(r,m) | WaitSyscall(r) | Halted

asm-incoming

r(pc) = a a ∈ |A|

(Wait,A)
Jump?(r,m)
−−−−−−−−−→a {(Run(r,m),A)}

asm-jump-internal

r(pc) = a A(a) = jmp v v ∈ |A|

(Run(r,m),A) 𝜏−→a {(Run(r[pc ↦→ v],m),A)}

asm-jump-external

r(pc) = a A(a) = jmp v v ∉ |A|

(Run(r,m),A)
Jump!(r[pc↦→v],m)
−−−−−−−−−−−−−−→a {(Wait,A)}

Fig. 13. Grammar and excerpt of the operational semantics of Asm.

some parts of the state can be shared between the environment and the wrapped module using the

separation logic relations 𝑒1 ⇀ 𝑒2 and 𝑒1 ↽ 𝑒2 (see §5). The proposition sat(𝑃) (read 𝑃 is satisfiable)

here means that there is some valid underlying resource (e.g., a heap) for which 𝑃 holds.

4 INSTANTIATIONS OF THE FRAMEWORK
4.1 The Language Asm
The language Asm is an idealized assembly language with instructions for arithmetic, jumps,

memory accesses, and syscalls (depicted in Fig. 13).
14
The libraries A of Asm are finite maps from

addresses to instructions. The set of their instruction addresses is defined as |A| = domA.

Module semantics. The semantics of an Asm library A is the module JAKa. We write (→a) for
the transition system (excerpt shown in Fig. 13). The states of the module are of the form 𝜎 = (I,A)
where I is the current execution state, and the initial state is (Wait,A). Conceptually, four different
execution states are possible during the execution ofA: executing (Run(r,m)), waiting for incoming

jumps (Wait), waiting for a syscall to return (WaitSyscall(r), where r preserves the registers across
the syscall), or finished executing (Halted). To explain the transitions, we discuss three cases.

Initially, the module is waiting (Wait) and can accept any incoming jump with arbitrary memory

and registers (see asm-incoming). After accepting the jump (Run(r,m)), the module executes the

instructions of A, updating the current register assignment r and memory m (not shown in the

figure). When the module reaches a jump jmp v (or jumps to an instruction in another way), one of

two things happens: Either the destination v is in the address range of A and we continue executing

in the module (see asm-jump-internal), or the destination v is outside of the address range of A.
In the latter case, the module emits Jump!(r[pc ↦→ v],m) and returns to theWait state. Syscalls
execute analogously to jumps (with WaitSyscall), and a library can finish executing (Halted).

Linking. Syntactically, linking of two Asm libraries (i.e., A1 ∪a A2) means merging the maps

A1 and A2. In case of overlapping addresses, the conflict is resolved by using the instruction from

14
Following Sammler et al. [2022], the Coq development defines the instructions depicted in Fig. 13 as compositions of

micro-instructions. A description of this approach can be found in the appendix [Sammler et al. 2023a, §B].
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asm-link-jump

(𝑑 ′ = L ∧ r(pc) ∈ d1) ∨ (𝑑 ′ = R ∧ r(pc) ∈ d2) ∨ (𝑑 ′ = E ∧ r(pc) ∉ d1 ∪ d2) 𝑑 ≠ 𝑑 ′

(𝑑,None, Jump(r,m))⇝d1,d2 (𝑑 ′,None, Jump(r,m))

rec-link-call

(𝑑 ′ = L ∧ f ∈ d1) ∨ (𝑑 ′ = R ∧ f ∈ d2) ∨ (𝑑 ′ = E ∧ f ∉ d1 ∪ d2) 𝑑 ≠ 𝑑 ′

(𝑑, 𝑑𝑠 ,Call(f, v,m))⇝d1,d2 (𝑑 ′, 𝑑 ::𝑑𝑠 ,Call(f, v,m))

rec-link-ret

𝑑 ≠ 𝑑 ′

(𝑑,𝑑 ′ ::𝑑𝑠 ,Return(v,m))⇝d1,d2 (𝑑 ′, 𝑑𝑠 ,Return(v,m))

coro-link-yield

(𝑑 = L ∧ 𝑑 ′ = R) ∨ (𝑑 = R ∧ 𝑑 ′ = L)
(𝑑, (𝑑,None),Call(yield, [v],m))⇝d1,d2

coro (𝑑 ′, (𝑑 ′,None),Return(v,m))

Fig. 14. Excerpt of the semantic linking relations of Asm (⇝), Rec (⇝), and Rec with coroutines (⇝coro).

Library ∋ R ::= (fn f (𝑥) ≜ local 𝑦 [𝑛]; e),R | ∅
Expr ∋ e ::= v | 𝑥 | e1 ⊕ e2 | let 𝑥 := e1 in e2 | if e1 then e2 else e3 | e1 (e2) | !e | e1 ← e2

BinOp ∋ ⊕ ::= + | < | == | ≤

Fig. 15. Grammar of Rec.

A1 (the choice of A1 over A2 is arbitrary). Semantically, linking is more interesting. If we link

two Asm modules (i.e.,M1
d1⊕d2a M2), then we have to synchronize based on the jump events. To

define M1
d1⊕d2a M2, we use the combinator 𝑀1 ⊕𝑋 𝑀2 from §3.3. In the case of Asm, we pick

𝑋 = (option(D),⇝d1,d2 ,None). For a jump event (see asm-link-jump in Fig. 14), the linking operator

resolves the destination 𝑑 ′ based on the addresses in d1 and d2—jumps that are outside these

addresses are passed on to the environment. Syscalls are propagated to the environment, as

described in the appendix [Sammler et al. 2023a, §C].

4.2 The Language Rec

The language Rec is a simple, high-level language with arithmetic operations, let bindings, mem-

ory operations, conditionals, and (potentially recursive) function calls (depicted in Fig. 15). The

libraries R of Rec are lists of function declarations. Each function declaration contains the name of

the function f, the argument names 𝑥 , local variables 𝑦 which are allocated in the memory, and a

function body e. The set of function names |R| of a library R is defined as the names of the functions

in the list R. The module semantics for Rec is given in the appendix [Sammler et al. 2023a, §D].

The syntactic linking R1 ∪r R2 merges the function declarations of both libraries (again giving

precedence to the left side in case of conflict). Similar to Asm, the semantic linking M1
d1⊕d2r M2 is

an instance of (⊕𝑋 ) where the linking relation is depicted in Fig. 14. The most interesting difference

to Asm is that linking in Rec has to build up and then wind down a call-stack (through calls and

returns), which is maintained as the internal state of (⇝).
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RSSA
(Rec)

R
(Rec)

Rlin
(LinearRec)

Ropt
(LinearRec)

↓R
(Asm)

SSA

JRKr ⪰ JRSSAKr
Linearize

JRSSAKr ⪰ JRlinKr
Mem2Reg

⌈JRlinKr⌉r⇌r ⪰ JRoptKr
Codegen

⌈JRoptKr⌉r⇌a ⪰ J↓RKa

Fig. 16. Structure of our Rec to Asm compiler.

4.3 Coroutine Linking M1 ⊕coro M2

One of the strong suits of DimSum is that it allows multiple semantic linking operators for the same

language. We showcase this using the coroutine linking operatorM1 ⊕coro M2 from the example

in §1.1. Similar to (⊕a) and (⊕r), the operator M1 ⊕coro M2 is an instance of𝑀1 ⊕𝑋 𝑀2. The most

interesting case of its transition relation⇝coro, coro-link-yield, is depicted in Fig. 14.
15
Here, we

can see that the linking operator links calls to yield from M1 (resp. M2) with returns from yield in

M2 (resp.M1). This translation of calls to returns captures the intuitive behavior of the coroutine

library yield (in Fig. 1) at the level of Rec—without mentioning the complex implementation of

yield in Asm.

Verification ofmain and stream. We verify the example in Fig. 1, namely that it prints 0, then 1,

and then returns 2. The proof strategy for this verification is analogous to §2.2:

coro ⪯ JyieldKa ⊕a ⌈JmainKr⌉r⇌a ⊕a ⌈JstreamKr⌉r⇌a ⊕a JprintspecKs
⪯ ⌈JmainKr ⊕coro JstreamKr⌉r⇌a ⊕a JprintspecKs
⪯ ⌈JmainspecKs⌉r⇌a ⊕a JprintspecKs ⪯ JcorospecKs

Here coro denotes the compiled and syntactically linked Asm-program. The specifications corospec
and mainspec are similar to the corresponding specifications in §2. The key steps of this proof are

the second and third step which use the following rules:

coro-link

JyieldKa ⊕a ⌈M1⌉r⇌a⊕a ⌈M2⌉r⇌a ⪯ ⌈M1⊕coroM2⌉r⇌a

main-coro

JmainKr⊕coroJstreamKr ⪯ JmainspecKs

The lemma coro-link is a generic lemma provided by the coroutine library that allows abstracting

the yield library to the M1 ⊕coro M2. This lemma enables us to verify the composition of main and

stream purely at the Rec-level (main-coro)—completely independently of Asm.

5 COMPILER
This section describes our compiler ↓R from Rec to Asm, and how we verify it in DimSum. The

compiler has four passes, depicted in Fig. 16: The first pass, SSA, renames variables such that

each variable is only assigned once, and the second pass, Linearize, converts the program into

A-normal form. The A-normal form is expressed in an intermediate representation, LinearRec,
which is a subset of Rec that only allows let-bindings and if-statements at the top-level and flattens

all nested expressions. The third pass, Mem2Reg, is a non-trivial optimization pass that reduces

memory consumption by turning local variables whose address is never observed into let-bindings

(which can be compiled to registers subsequently). For example, it turns (the A-normal form of)

fn f (𝑥) ≜ local 𝑦 [1];𝑦 ← 𝑥 ; !𝑦 + !𝑦 into fn f (𝑥) ≜ let 𝑦 := 0 in let 𝑦 := 𝑥 in𝑦 +𝑦, because the address
of 𝑦 is never used. The final pass, Codegen, is a standard code-generation pass producing the Asm
code: it takes care of register allocation (including spilling to the stack when necessary), allocating

local variables on the stack, and adhering to the Asm calling convention.

15
The full definition ofM1 ⊕coro M2 can be found in the appendix [Sammler et al. 2023a, §F].
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Compiler correctness. Let us turn to the correctness of the compiler (compiler-correct in §2.2):
16

Theorem 5.1 (Compiler Correctness). If ↓R is defined, then J↓RKa ⪯ ⌈JRKr⌉r⇌a.

Intuitively, compiler correctness says that the compiled assembly code behaves like the original

source program translated by the wrapper—i.e., syntactic translation via the compiler refines

semantic translation via the wrapper ⌈·⌉r⇌a. As we have seen in §2.2, compiler-correct is a useful

result that allows one to replace reasoning about the compiled assembly code with reasoning about

the source program. The ⌈·⌉r⇌a wrapper is defined using the ⌈·⌉𝑋 combinator from §3.3 and can be

found in the appendix [Sammler et al. 2023a, §E].

The compiler correctness result is proven by composing refinements for the individual passes

(the refinements are shown in Fig. 16 above each corresponding pass):

⌈JRKr⌉r⇌a ⪰ ⌈JRSSAKr⌉r⇌a ⪰ ⌈JRlinKr⌉r⇌a ⪰ ⌈⌈JRlinKr⌉r⇌r⌉r⇌a ⪰ ⌈JRoptKr⌉r⇌a ⪰ J↓RKa
The refinements for the SSA and Linearize passes are straightforward Rec refinements, and the

Codegen pass uses the ⌈·⌉r⇌a wrapper to translate between Rec and Asm. The pass Mem2Reg
is special, however, in that it introduces an additional wrapper ⌈·⌉r⇌r. To understand what this

wrapper does and why we have to introduce it, let us first take a step back and consider how

DimSum determines which program transformations are considered semantics-preserving.

Semantics-preserving program transformations. There are two classes of program transfor-

mations that are semantics-preserving in DimSum.

The first class of semantics-preserving program transformations does not change observable parts
of the events. This can be expressed by proving that the transformed program refines the original,

i.e., JR1Kr ⪯ JR2Kr where R1 is the transformed program and R2 the original. This refinement

expresses that the transformed program R1 must emit the same events as the original R2, because

the definition of (⪯) (in §3.1) enforces that the events of R1 and R2 match exactly. Thus, by selecting

which information about the program state to include in its events, a language effectively determines

this first class of semantics-preserving program transformations. For example, Rec includes values v
and heaps m in its events and thus program transformations can change the syntactic structure

of a program—since the program structure is not part of the events—but they cannot alter return

values or the heap that is shared across function calls (unless they fall into the second class). In

the compiler, the SSA and Linearize passes fall into this first class of transformations (see their

correctness statements in Fig. 16).

The second class of semantics-preserving program transformations does change observable parts
of the events. For example, the Mem2Reg transformation falls into this category, because it alters

memory in such away that it becomes impossible to align the events of the transformed programRopt
with the original Rlin. To verify these transformations in DimSum, one can use additional wrappers

to make sure the events do match up. For example, in the case of Mem2Reg, we cannot prove
JRoptKr ⪯ JRlinKr because of the event mismatch, but we can prove JRoptKr ⪯ ⌈JRlinKr⌉r⇌r where

thewrapper ⌈·⌉r⇌r transforms the events of JRlinKr such that theymatch upwith JRoptKr. Concretely,
the ⌈·⌉r⇌r wrapper ensures that private memory locations (i.e., local variables that have never been
shared with the environment via function arguments or return values) are not part of the events,

and thus Mem2Reg is allowed to optimize them away.

While wrappers such as ⌈·⌉r⇌r enable the verification of more program transformations, we also

have to make sure that they do not allow too many transformations (i.e., incorrect transformations).

This constraint is handled implicitly by the compiler correctness statement compiler-correct—it

16
To simplify the presentation, the rule compiler-correct omits some technical details relevant for the translation

between Rec-function names and the corresponding Asm-instruction addresses.
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does not mention any wrappers other than ⌈·⌉r⇌a, and in order to use a new wrapper such as

⌈·⌉r⇌r, we have to show that the additional transformations it enables are also allowed by the

wrapper ⌈·⌉r⇌a. We call this property “vertical compositionality” of the two wrappers (rec-to-asm-

vertical below) and it allows us to prove ⌈⌈JRlinKr⌉r⇌r⌉r⇌a ⪯ ⌈JRlinKr⌉r⇌a in the refinement chain

of compiler-correct.

Vertical compositionality. Vertical compositionality in DimSum means not only proving

transitivity of the simulation relation (⪯), but also that certain “intermediate wrappers” can be

eliminated. For instance, the vertical compositionality result of ⌈·⌉r⇌r in this compiler correctness

proof is given by:

rec-to-asm-vertical ⌈⌈M⌉r⇌r⌉r⇌a ⪯ ⌈M⌉r⇌a

This theorem, like most vertical compositionality theorems, is difficult to prove, since we need to

show that certain Rec-level memory transformations do not change the behavior ofM from the

perspective of Asm in any meaningful way.

Note that in other approaches to multi-language semantics, vertical compositionality typically

either requires composing simulation relations [Neis et al. 2015; Stewart et al. 2015] or proving

the transitivity of contextual refinement [Perconti and Ahmed 2014]. In contrast, in DimSum, the

(Kripke) wrappers ⌈𝑀⌉𝑋 effectively assume the role of “simulation conventions” or “simulation

invariants” in a (Kripke) simulation relation (e.g., relations on memories and values), but they do so

as a module combinator. As a result, proving vertical compositionality in DimSum is not necessarily

simpler, but it is more localized: if we want vertical compositionality of two transformations (i.e.,
two wrappers), then we prove a single simulation (e.g., rec-to-asm-vertical), and no other parts of

the framework are affected, since they are compatible with simulation.

The ⌈·⌉r⇌r wrapper. Let us now turn to the definition of the wrapper ⌈·⌉r⇌r, which is an

instance of the generic combinator ⌈𝑀⌉𝑋 (from §3.3). As explained above, the purpose of ⌈·⌉r⇌r is

to enable optimizing memory locations that are kept private and never shared with the environment

(e.g., via function arguments or return values). To this end, we instantiate ⌈𝑀⌉𝑋 with a separation

logic L inspired by Gäher et al. [2022] that supports assertions for both persistent ownership

of shared locations (ℓ1↔ ℓ2) and exclusive ownership of private memory locations (ℓ1 ↦→E v and
ℓ2 ↦→I v). The assertion ℓ1↔ ℓ2 states that location ℓ1 in the external memory (i.e., the memory of

⌈M⌉r⇌r) always corresponds to ℓ2 in the internal memory (i.e., the memory ofM). The assertion

ℓ ↦→E v conveys exclusive ownership of the locations ℓ in the external memory, and ℓ ↦→I v of ℓ in
the internal memory. Additionally, the separation logic provides the assertion inv(m1,m2) which
connects “ℓ1↔ ℓ2”, “ℓ ↦→E v”, and “ℓ ↦→I v” to the heaps m1 and m2 such that the heaps overlap in

the way described by the assertions. We then instantiate the relations eI ⇀ eE and eI ↽ eE with:

eI ⇀ eE, eI ↽ eE ≜ type(eI) = type(eE) ∗ inv(mem(eI),mem(eE)) ∗∀(v1, v2) ∈ vals(eI, eE). v1↔ v2

This definition consists of three parts: First, the type of the events (i.e., call or return) has to match.

Second, the invariant inv has to hold for the memories contained in the events. Third, the values of

events (e.g., function arguments and return values) must be related (i.e., ℓ1↔ ℓ2 for locations and

equality for integers and Booleans).

Let us now consider how the wrapper ⌈·⌉r⇌r enables the verification of the Mem2Reg pass,

which transforms Rlin to Ropt. Recall that this transformation replaces a local variable allocated

at some location ℓ in Rlin with a let-binding without corresponding allocation in Ropt. To justify

this transformation, we need to prove that the value stored at ℓ in Rlin always corresponds to the

let-bound value in Ropt and, in particular, remains constant across external function calls. To this

end, we use the ℓ ↦→I v assertion, which we obtain at the start of the function when ℓ is allocated on
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the heap, and we keep it in the privately owned part 𝑃1 of the combinator ⌈𝑀⌉𝑋 (see §3.3). That is,

ℓ ↦→I v allows us to track the precise value of ℓ and ensure that it corresponds to the let-bound value
in the optimized program. When calling the environment, we do not need to give up ℓ ↦→I v, because
the location is never exposed and thus never appears in eI ⇀ eE (otherwise the optimization does

not fire). Instead, we can keep ℓ ↦→I v in the privately owned part of the module 𝑃1 and the definition

of wrap ensures that ℓ ↦→I v holds across the function call. Thus, we know ℓ still points to v after
the function call, which allows us to complete the verification of the Mem2Reg pass.

6 RELATEDWORK
CompCert-based approaches to multi-language verification. Although CompCert’s origi-

nal correctness statement [Leroy 2006] only concerns whole programs, it inspired a long line of

work on multi-language verification [Beringer et al. 2014; Ramananandro et al. 2015; Stewart et al.

2015; Kang et al. 2016; Gu et al. 2015; Wang et al. 2019; Song et al. 2020; Koenig and Shao 2021]. The

approach most closely related to DimSum is CompCertO [Koenig and Shao 2021], since its game

semantics-based approach has parallels to the event-based approach of DimSum—e.g., CompCertO’s

language interfaces play a similar role to the event types of DimSum. To scale to the full extent of

CompCert, CompCertO makes design choices specific to the languages of CompCert. In particular,

it provides only a single linking operator that enforces a well-bracketed call structure (unlike

M1 ⊕coro M2), studies only transition systems without private state across function invocations

(unlike ⌈·⌉r⇌a), and—even though CompCertO’s underlying definition of simulation convention

is independent of the memory model—considers only languages with the same memory model

(unlike Rec and Asm).

Compositional CompCert [Stewart et al. 2015], Ramananandro et al. [2015], and CompCertM [Song

et al. 2020] achieve multi-language linking by imposing a common interaction protocol between all

languages. This works well in their setting since all CompCert languages share a notion of values

and memory, but it is unclear how to scale this setup to more heterogeneous languages like Rec
and Asm. Similar to DimSum, Ramananandro et al. use events that contain the complete program

memory. They define linking on traces of call events (i.e., “behaviors”) and prove equivalence

between syntactic and semantic linking similar to asm-link-syn and rec-link-syn. However, their

traces erase the branching structure of the program. In DimSum, sensitivity to branching is crucial

due to the presence of both demonic and angelic non-determinism (see §3.2), so we define linking

directly on transition systems (i.e., “modules”).

CompCertX and (Concurrent) Certified Abstraction Layers [Gu et al. 2015; Wang et al. 2019; Gu

et al. 2018; Vale et al. 2022] have been successfully deployed in the verification of the CertiKOS

verified operating system. However, they impose restrictions on the interaction between different

components, such as forbidding mutual recursion and certain memory sharing patterns. In contrast,

our semantic linking operators M1 ⊕a M2 and M1 ⊕r M2 allow mutual recursion and memory

sharing.

Syntactic multi-languages. Syntactic multi-languages [Matthews and Findler 2007; Perconti

and Ahmed 2014; Patterson et al. 2017; Mates et al. 2019; Patterson et al. 2022] embed source, target,

and intermediate languages into a common multi-language (with “boundary” terms to translate

between languages) and then use the multi-language to, among other things, state and verify

compiler correctness theorems. As this line of work demonstrates, syntactic multi-languages scale

well to typed, higher-order languages. In this paper, we have put the focus on different kinds of

languages: untyped, low-level languages comparable to C and assembly.

Specifications in syntactic multi-languages use contextual equivalence, which is canonical but

has the downside of including the operations (and semantics) of all involved languages in every
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specification. In contrast, when we prove Jmain ∪r memmoveKr ⊕r JloclespecKs ⪯ JmainspecKs
in §2, we only care about the semantics of Rec, not that the modules are embedded in an Asm
context.

Mates et al. [2019] prove correctness of a compiler from a source language without call/cc to

a target language with call/cc and show that compiled code can be linked with a thread library

loosely similar to our coroutine library (§4.3). They do not provide a high-level abstraction like

M1 ⊕coro M2 and instead require clients to reason about the implementation of the library. In their

case, the distinction does not matter much because the target language is reasonably high-level,

but for Rec and Asm, it would involve reasoning about low-level stack and register manipulation.

Recently, Patterson et al. [2022] proved type safety for several, very different multi-languages

by giving a realizability model in an untyped target language. While effective for type safety, the

downside of this approach is that most reasoning happens at the target language. In contrast, an

important goal of DimSum is to lift reasoning to source-level languages as shown by §2 and §4.3.

Pilsner. Building on the work of Hur and collaborators [Benton and Hur 2009, 2010; Hur and

Dreyer 2011; Hur et al. 2012], Pilsner [Neis et al. 2015] verifies two compilers from a higher-order

stateful source language to an assembly target language and shows that the compiled programs can

be safely linked. However, Pilsner prohibits linking with target-level libraries whose observable

functionality is inexpressible in the source; as such, it rules out the examples in §2 and §4.3.

Other approaches. The Cito compiler [Wang et al. 2014; Pit-Claudel et al. 2020] simplifies its

compositional compiler correctness statement by requiring the user to provide specifications for all

external functions. In contrast, while DimSum supports giving specifications for low-level libraries

as seen in §2, they are not required by our compiler correctness theorem.

Conditional Contextual Refinement (CCR) [Song et al. 2023] uses dual (demonic and angelic) non-

determinism to encode a wrapper that can transform the values of function arguments and results

and enforce separation logic preconditions and postconditions. DimSum’s wrappers are inspired

by this idea but apply it to interoperation between different languages and memory models instead

of program verification. While CCR allows linking between different languages (e.g., between an

implementation language and a specification language), this linking shares the drawbacks of some

CompCert-based approaches in that it is restricted to languages with well-bracketed call structure.

Properties of wrappers. The idea of translating between different languages via wrappers

originates in the work on multi-language semantics [Matthews and Findler 2007; Ahmed and Blume

2011]. This prior work on syntactic wrappers identified desirable properties for such wrappers,

including boundary cancellation [Perconti and Ahmed 2014] and embedding-projection pairs [New

and Ahmed 2018]. It would be interesting to investigate how these properties can be phrased in

terms of DimSum’s semantic wrappers.

Process algebra. DimSum’s way of modeling and relating the semantics of modular components

takes inspiration from the 𝜋-calculus [Milner et al. 1992] and Communicating Sequential Processes

(CSP) [Hoare 1978]. The 𝜋-calculus and its predecessor CCS pioneered the idea of characterizing

the behavior of a component in an arbitrary context using labeled transition systems, where the

labels represented potential interaction with the environment, and comparing behavior using

(bi-)simulations. Notably, CSP and Session-Typed variants of 𝜋-calculus [Padovani 2010] include

dual internal and external choice constructs. They are, however, modeling concurrent process

interaction (i.e., offering and selecting among a set of actions), and not, as in DimSum, rely/guarantee-

style contracts with the environment.
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Fully abstract traces. The work on fully abstract trace semantics [Jeffrey and Rathke 2005;

Laird 2007; Abadi and Plotkin 2010; Patrignani et al. 2015] uses events to describe the interaction

between program components similar to the events of Asm and Rec. However, prior work either

focuses on proving full abstraction of the trace semantics or uses fully abstract trace semantics to

prove full abstraction of a compiler, not for reasoning about multi-language programs.

7 FUTUREWORK
This paper presents a first step towards exploring a decentralized approach for multi-language

verification and exercises it on the Rec and Asm languages. In future work, it would be interesting

to explore how to scale DimSum’s approach to bigger languages with different features. Some

language features might be representable by the existing combinators presented in §3.3, but others

might require defining new kinds of combinators—e.g., concurrency, since the existing combinators

only provide sequential interleaving. However, the core concept of DimSum—modules as transition

systems which communicate via events—is in principle quite general (as shown e.g., by the field of

process algebra), so we are hopeful that DimSumwill provide a viable foundation for the verification

of realistic multi-language programs.
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