It can be used for:
1. stochastic signal processing
2. autoregressive model identification
3. matched (inverse) filter design
4. Histogram analysis (moved to NaN-toolbox)
5. Calcution of the entropy of a timeseries
6. Non-linear analysis (3rd order statistics)
7. smoothing, prediction, filtering
8. Test for Hurwitz and Unit-Circle Polynomials
9. handles missing values (NaN's) (requires NaN-toolbox))
Several criteria (AIC, BIC, FPE, MDL, SBC, CAT, PHI) for the selection of the order of an autoregressivemodel are included. Furthermore includes the toolbox a fast version ifthe Yule-Walker method for estimating Autoregressive parameters, the AutocovarianceFunction (ACovF), Autocorrelation Function (ACF), Partial ACF (PACF),andsome other useful staff. Demo programs can be started with "demo" or "demotsa". Version 2.40 (and higher) provides fast algorithms for testing polynomials; and many functions (e.g. ACovF and the Levinson-Durbin algorithms) are implemented for multiple series.
Latest Version 4.6.3, 26 Jul 2021. Tested with Matlab 8.x and Octave 3.x
refer
to:
Schlögl, A.; "Time Series Analysis - A toolbox for the use with Matlab",
1996-2021.
Further references
on AR modeling and model order selection.
More about: the performance of used algorithms; downloading, changelog.