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AbstractuThe study focuses on the problems of dimensionality reduction by means of 
principal component analysis (PCA) in the context of single-trial EEG data classification 
(i.e. discriminating between imagined left- and right-hand movement). The principal 
components with the highest variance, however, do not necessarily carry the greatest 
information to enable a discrimination between classes. An EEG data set is presented 
where principal components with high variance cannot be used for discrimination. In 
addition, a method based on linear discriminant analysis (LDA), is introduced that detects 
principal components which can be used for discrimination, leading to data sets of 
reduced dimensionality but similar classification accuracy. 
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1 Introduction 

ANALYSING AND classifying data is very often linked to the 
problem of high dimensionality. Questions arise such as: are 
all attributes useful for classification or can some be omitted? 
Is it possible to merge the information from all the attributes 
into only a few? There are two ways to handle this problem: 
either we can try to omit those attributes that do not contain 
considerable information (feature selection) or we can try to 
combine attributes to form new ones (feature extraction). One 
method for feature extraction is principal component analysis 
(PCA). 

Online analysis and classification of  EEG data is the main 
task in an EEG-based communication system (brain-computer 
interface, BCI). The BCI transforms specific mental activity 
(thoughts) into signals which can be used by subjects with 
severe motor disabilities to improve their communication with 
the environment (PFURTSCHELLER et al., 1993, 1996; 
WOLPAW et  al., 1991, WOLPAW and MCFARLAND 1994). An 
EEG-based BCI can use a linear threshold (MCFARLAND et  al., 
1993) or a neural-network classifier (FLOTZINGER et al., 1994; 
KALCHER et  al., 1996). The latter method was implemented in 
the Graz BCI that tries to separate between imagination of  left- 
and right-hand movement (PFURTSCHELLER et  al. 1997). In 
both cases there are difficulties. First, the analysis of  EEG data 
from two or  more channels results in high-dimensional data 
vectors including all spatiotemporal information. Secondly, 
the number of  examples available for training is relatively 
small compared to their dimensionality (e.g. about 100 exam- 
ples). 
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For the Graz BCI two different data preprocessing methods 
are used: 

(i) Calculation of  band power values in pre-selected fre- 
quency bands and time windows (KALCHER et al., 1996; 
PFURTSCHELLER et al., 1996; PREGENZER et al., 1996) 

(ii) Estimation of adaptive autoregressive (AAR) parameters 
using the least-mean-square (LMS) algorithm (SCHLOGL 
et  al., 1997) 

Also two different classification methods are used: 

(i) Classification of the data according to different classes 
(e.g. right and left motor imagery) using linear discrimi- 
nant analysis (LDA) 

(ii) Classification with the nonlinear leaming vector quanti- 
sation (LVQ) algorithm (FLOTZrNGER et  al., 1992; PEL- 
TORANTA and PFURTSCHELLER 1994) 

The series of  BCI studies is needed to shed light on whether 
it is possible to discriminate between different types of  motor 
imagery EEG-pattems in real-time by classifying features 
derived from EEG signals recorded from the intact scalp. 

The dimensionality of  the data vectors extracted from the 
EEG data needs to be reduced because for most classification 
algorithms it is very difficult to reliably estimate the param- 
eters of  a classifier in high dimensions when only few training 
examples are available. In the literature this problem is often 
referred to as the curse of  dimensionality' (BISHOP, 1995). 
There is hope that by means of  dimensionality reduction using 
linear methods, the error rate of  non-linear classifiers can be 
improved, or at least be kept at the same level as without 
reduction, using fewer attributes. 

The aim of  this paper is to apply PCA to two different 
parameter sets (AAR parameters and band power values) 
extracted from the same raw EEG data and to investigate 
the impact of  the parameter reduction on the results of  
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classification with LDA and LVQ. Data sets from three 
subjects are used. The projection of  data vectors onto single 
principal components (PCs) will be compared to LDA and 
similarities will be pointed out. This leads to a new method for 
detecting class-information in PCs. 

2 Methods 

2.1 Data preprocess ing 

The source for the data reported here are raw EEG data 
taken from the latest Graz BCI experiments where subjects 
had to imagine either left- or right-hand movement in response 
to an arrow pointing to the according direction (PFURTSCHEL- 
LER et al., 1997). The sampling frequency was 128Hz. Data 
from two bipolar recordings close to electrode positions C3 
and C4 (international 10-20 system) were used. 

In a first set of  features (BAND), EEG data from two EEG 
channels recorded during motor imagery were bandpass fil- 
tered using two subject-specific filter bands (subject SI:  
9-13 Hz and 21-26Hz;  subject $2 :10 -12  Hz and 20-23 Hz; 
subject $3: 10-14Hz and 18-26Hz) and a one-second time 
window (for details see PFURTSCHELLER et al., 1997). The 
bandpass filtered values for one second were then squared and 
averaged over 32 consecutive power samples to obtain four 
values per second. This resulted in a 16-dimensional vector for 
the BAND data (four time points x two EEG channels x two 
frequency bands). 

In the second set of  features (AAR), and EEG data from 
each of  the two channels were approximated using an AAR 
model of  order six. Such an AAR model tries to describe a 
signal Yt in the following form: Yt=al , tYt_la2, tYt_2+ 
�9 " " + ap . t  Y t - p  + E t .  Where ai, t denotes the ith AAR parameter 
at timepoint t. Et is considered as white noise with zero mean 
and finite variance. The difference from an AR model is that 
the AAR parameters can change as time changes. 

The AAR parameters were estimated using the least mean 
square (LMS) method and an update coefficient of  0.007 (for 
details see SCHLOGL et al., 1997). The (time) average of  the 
AAR parameters over one second per trial and channel, results 
in a 12-dimensional vector (model order of  six x two EEG 
channels). Details of  each data set can be found in Table 1. 

The linear method for combining different features used in 
this paper is PeA.  P e A  derives the direction of  a set of  
orthogonal vectors that successively point into the direction of  
the highest variance o f  the data set. The PCs of  a data set are 
easily calculated as the eigenvectors of  the covariance matrix 
of  the data set (BISHOP, 1995). They can also be calculated by 
means of  the singular value decomposition of  the original data 
(RIPLEY, 1996). The eigenvalues denote the variance that the 
corresponding PCs (i.e. eigenvectors) account for. 

For dimensionality reduction the m (m < dimension of  the 
data) PCs with highest variance of  the data (above some 
threshold) are often selected. This strategy might neglect 
PCs that contribute to a better discrimination: as shown in 
the example depicted in Fig. 1, the first principal component 
points into the direction of  the highest variance (along the x- 

axis), but the best classification would be along the v-axis. It 
will be shown here on two data sets that this selection strategy 
is, therefore, not suitable for classification problems. 

2.2 Classification 

Two classifiers were used, namely linear discriminant 
analysis (LDA) and learning vector quantisation (LVQ). A 
linear discriminant tries to find an optimal hyperplane to 
separate two classes (here, imaginary left- and right-hand 
movement). For a detailed explanation of  LDA, see elsewhere 
(DUDA and HART, 1973; BISHOP, 1995). 

Apart from LDA, the non-linear classification algorithm 
LVQ is used to see whether the proposed linear dimensionality 
reduction would also yield comparable or even better results 
with a non-linear classification. LVQ tries to represent classes 
with a set of  labelled vectors, so-called codebook vectors. 
Those codebook vectors are fitted to the data in an iterative 
traning algorithm in a training phase. This can be carried out 
by means of several LVQ training algorithms that differ only 
slightly. In our case LVQ3 (KOHONEN, 1995) was used. When 
the training phase is completed, for each new example the 
Euclidean distance to each codebook vector is calculated. The 
resulting class of  the new example is the same as the class of  
the closest codebook vector�9 

In this paper three codebook vectors (optimised for BAND 
data) were used for each class. Details on LVQ can be found 
elsewhere (KOHONEN, 1995; FLOTZ[NGER et al., 1992). 

It should be pointed out that LDA and LVQ were used as 
binary classifiers (i.e. examples were classified as either left- 
or right-hand motor imagery)�9 By introducing a threshold, a 
third 'no decision' class can easily be obtained (KALCHER et 
al., 1996). 

The discrimination information of  a particular feature set 
can be measured indirectly through the error rate calculated by 
averaging three times over a three-fold cross-validation. 
Three-fold cross-validation divides the data set into three 
equally sized, disjunct partitions. First, the two partitions are 
used to train the classifier (LDA or LVQ) and the third one is 
used for testing. Thereafter, the first and the last partition are 
used for training and the second is used for testing. Finally, the 
first partition is used for testing. The resulting cross-validation 
error rate is the average error rate of  the three runs. This is 
done three times and each time the data set is permutated 
differently, resulting in nine runs. For further details on cross- 
validation see elsewhere (MICHIE et aL, 1994). 

Calculating the angle a between LDA (vt) and PC (Vz) was 
done using the following formula. 

cos(a) = v~ .v 2 
V 1 �9 V 2 

This results in angles between 0 ~ and 90 ~ Only angles in this 
range are interesting, as angles close to 90 ~ mean that the LDA 
and PC are orthogonal to each other and thus the PC does not 
contribute to discrimination. Conversely, angles close to 0 ~ 
imply that PCs can be used for discrimination as they define 

Table 1 Size o f  original data sets and their error rate using LDA and LVQ 

examples examples sum of dim. 
subject left right examples 

AAR BAND 

error rate error rate dim. error rate e~or ~te 
LDA LVQ LDA LVQ 

SI 298 291 589 12 
$2 316 317 633 12 
$3 318 315 633 12 

16.92% 22.69% 16 14.15% 18.00% 
24.96% 29.02% 16 22.06% 21.22% 
28.01% 29.01% 16 22.01% 24.17% 
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essentially the same hyperplane. For illustration, an example 
with stimulated data is given in Fig. 1. 

3 Experiments 

3.1 General 

In this paper, we will introduce a new method for feature 
extraction. Fig. 2 shows feature extraction as a two-stage 
process: after transformation of  the original n attributes into 
n new ones (for example using PCA), feature selection is 
performed on these new attributes to reduce dimensionality 
from n to m (BISHOP, 1995; RIPLEY, 1996). 

3.2 Classification o f  original data 

First, the whole original data sets were classified using LDA 
and LVQ to see what error rate could be achieved on the 
originals. 

3.3 Classification o f  transformed data 

For the remaining experiments, the data sets were trans- 
formed into the direction of  their PCs. Therefo/e, the first new 
attribute represented the highest amount of  variation within 
the original data set, the second new attribute the second most 
variation etc. (see above). 

Experiment 1: For each single new attribute, the error rate 
was calculated as described above�9 Additionally, the average 
angle between each PC and the LDs that resulted from the 
cross-validation of  the original data set were calculated. This 
was done to see whether the PCA found on equally good 

attribute 1 new attribute 1 
attribute 2 ~ / new attribute 2 ~ 

�9 ~ linear [// : ' ~  L class 0 ] combination ~ 11 non-linear 
/ [  ]'k,~ew attr,bute m i of attributes .' I J classifier ] "class1 

attribute n new attribute n 

Fig. 2 Feature extraction as a reduction from n old attributes to m 
new attributes by means of a linear combination of the old 
attributes (e.g. PCA); this allows a more reliable estimation 
of non-linear classifiers for the same number of training 
examples 
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vector to discriminate between two classes: the lower the 
angle, the more similar the directions of  two vectors. There- 
fore, the variance of the respective PC represents more class 
information. 

Experiment 2: Next the data sets were classified, increment- 
ing the number of  PCs from 1 to 12 or 16, respectively. As in 
traditional PCA, where one selects a number of  PCs according 
to the amount of  variance in the data one intends to represent, 
at first only the first new attribute was used for classification, 
then the first two new attributes were used and so on. 

Experiment 3: The last experiment was again made with the 
transformed (new) attributes. As before they were sorted, this 
time not according to decreasing explained variance but 
according to the increasing mean angle towards the LD. 

4 Results 

4.1 Classification of  original data 

The cIassification results of  the original data sets can be 
found in Table 1. 

4.2 Classification o f  transformed data 

Experiment 1: The results on data sets from three subjects 
can be found in Fig. 3. Note that the y-axis denotes the error 
rate (percentage) as well as the angle (always below 90 ~ ) and 
the explained variance (percentage). It can be seen that most 
of  the variance (nearly 100%) is explained within the first 
attributes, especially for the AAR parameters, while the error 
rate is only about 50%. 

Experiment 2: The results of  experiment 2 can be seen in 
Fig. 4. The x-axis denotes the dimensionality of  the used data 
set. As in Fig. 3, the y-axis contains two different scales, one 
for the error rate and one for the accumulated variance. Note 
that in the Figures, a first point (zero) was inserted for all 
curves indicating that with zero dimensions, 0% of  the 
variance of  the data set is explained and an error rate of  
50% (baseline error rate for a two-class problem where 50% of  
the examples belong to each class) can be achieved. 

For the results in Table 2 (upper part) all the attributes were 
used that in sum explained at least 95% of  the variance. 

Experiment 3: As before, new attributes were added one by 
one, thus the dimensionality of  the classified data set increased 
from zero to 12 or 16, respectively. The resulting graphs can 
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40 " ~ '  
20 

0 . . . .  

loo1: $2, AAR 
80 . . . . . .  " . . . . .  �9 . - ' " ' " "  . . . .  
60 "'., ;' 
40 " ~  
20 . . . . . . .  

10o [ $3, AAR 
80 . . . . . . . . . . .  ". . . . . . . .  ." 

4 0 ~ 6 0  " ' . . " "  "" . . . .  

20 
0 

number of transformed attribute 

Fig. 3 

2 4 6 8 10 12 2 4 6 8 10 12 14 16 
number of transformed attribute 

Error rate of LD (solid line, in percent), mean angle between 
the PCs and the LD (dashed line, in degrees) and explained 
variance (bold line, in percenO for each single new attribute 
of both data sets of subjects S1, $2 and $3 
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be seen in Fig. 5. As before, the y-axis contains the error rate 
(of  LD) and the amount of  accumulated variance. The x-axis 
depicts the dimensionality of  the classified data set. 

For the results in Table 2 (lower part), all those attributes 
were used where the average angle to the LD was smaller than 
85 ~ Additionally, in this Table it can be seen how much of  the 
variance is used for this discrimination accuracy and which of  
the new attributes were used for classification. 

Table 2 Classification results of  the subsets, attributes chosen according 

5 Discussion 

5.1 Experiment 1 

When feature sets are compared it can be seen that the first 
PC, in general, covers between 35 and 40% of  the variance of  
the bandpass data, whereas for the autoregressive data it 
covers at least 74%. The high variance of  the first PCs 
might stem from attributes which were not properly scaled, 
which is not the case in our data. All attributes for both data 
sets have about the same minimum, maximum and average 
value. 

For the AAR data, most information is contained in com- 
ponents which represent only a very small part of the varia- 
tion. Component 4 of  subject S1, for instance, has an error rate 
of  27%, but is responsible only for 0.12% of  the total 
variation. Conversely, for the BAND data, those new attri- 
butes that contain much information are responsible for a 
much higher part of  the variation. For example, for subject S 1, 
the new attribute 2 has an error rate of  about 30% but is 
responsible for about 20% of  the variation. Note that one 
cannot find a general PC index (e.g. the third or fourth PC) that 
is responsible for good classification results: since the last ten 
PCs of  the AAR data are responsible for about the same 
amount of  variation (which is also very small), their order is 
close to random. 

It should be mentioned that for the AAR data in the angle 
between LD and the PCs is highly correlated with the 
respective error rate of  each PC (correlation coefficients 
0.97, 0.98 and 0.93 for subjects S1, $2 and $3, respectively), 
but not so strongly correlated for the BAND data, except for 
subject $3 (correlation coefficients 0.49, 0.41 and 0.86 for 
subjects S1, $2 and $3, respectively). This fact could stem 
from the different ways in which both data sets were pre- 
processed. For the BAND data, optimal time and frequency 
ranges were already known and the data were proprocessed 
accordingly, i,e. each attribute of  the BAND data contains 
information that can be used for discrimination. The AAR 
data, on the other hand, were not preprocessed at all: the 
autoregressive parameters try to approximate the original 
signal as well as possible and, therefore, also model those 
parts of  the signal that contain all discrimination information 
and 'noise '  that distorts the data. This 'noise '  might stem from 
the background EEG activity, artefacts (e.g. from muscles), 
variance of the stochastic parameter estimation method, inter- 
trial variability, calculation inaccuracies etc. 

5.2 Experiment 2 

Traditional P e A  builds on the (sometimes wrong) assump- 
tion that the first few PCs that represent, for example, 95% of  
the variance of  the original data set already represent the data 
sufficiently. As can be seen in Table 2 the BAND data are 
classified much better than the A A R  data, although about the 
same amount of  variation is explained. In the AAR data 95% 

to their variance (above) and according to their average angle (below) 

AAR 

variance error rate error rate 
Subject attributes dim. explained LDA LVQ 

BAND 

variance error rate error rate 
attributes dim. explained LDA LVQ 

$1 1 1 98.78% 52.12% 50.09% 
$2 1-3 3 95.80% 49.87% 47.76% 
$3 1 1 98.63% 52.08% 49.08% 
$3 4-7, 11-12 6 0.31% 1 7 . 6 5 %  17.83% 
$2 4-9, 11-12 8 3.99% 24.49% 32.44% 
$3 -12 8 0.28% 27.07% 29.75% 

1-7 7 95.46% 19.01% 18.68% 
1-6 6 96.68% 22.12% 20.69% 
1-13 13 95.08% 22.01% 25.17% 
1-2, 9-11, 13-16 9 57.72% 15.22% 18.90% 
2, 6-7, 9-16 11 38.60 21.91% 21.59% 
2-4, 6-7, 9-10, 14 8 45.13% 21.33% 25.07% 
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of the variation of  the data yields error rates which are 
comparable to the baseline error rate on the whole data set. 
For subjects S1 and $3 even more than 98% of  the variance is 
not able to allow discrimination between the two classes. 

When the diagrams in Fig. 4 are compared for AAR and 
BAND data, it can be seen that the error rate for the BAND 
data increases abruptly while adding the first few new attri- 
butes; after the first or second PC, the error rate is always 
smaller than 50%. This is not the case for the AAR param- 
eters: for the first few components the error rates stay at about 
50% and then decrease sharply (e.g. while adding component 
4 for subject S1, Fig. 4). This goes along with a very good 
discrimination result for the single transformed attribute 4 for 
subject S1 (Fig. 3). The same holds for subject $2 with 
attributes 6 and 7 (Fig. 4) and subject $3 with attribute 6 
(Fig. 4). As can be seen, the method of choosing those new 
attributes that represent highest variance does not necessarily 
return those attributes that can best be used for discrimination. 

5.3 Experiment 3 

In Fig. 5, it is very interesting to see that for the AAR data, 
the new attribute that accounts for most of the variance is 
always rated last, with respect to the angle. Also, an error rate 
that is close to the optimal error rate (when using all attributes) 
is reached after only a few attributes. This indicates that for 
the AAR data, nearly all of  the classification information is 
contained in only a few percent of  the variance, whereas for 
the BAND data one needs about half of  the variance. 

Note that LDA results are about equal (4- 1%) to the results 
that were derived from the original data. This can be attributed 
to the linear transformation performed by PCA, followed by 
another linear combination of  attributes by LDA. These two 
linear transformations can easily be merged into one without 
loss of  performance, as long as those PCs that are chosen as 
the basis for classification contain most discrimination infor- 
mation. Note also that the non-linear LVQ scored nearly 5% 
better on the transformed AAR data for subject S1 (17.8% vs. 
22.7%) than on the original data set. This substantiates the 
idea that dimensionality reduction can improve performance. 
It should also be pointed out that for subject $2, the AAR data 
classification was about 3% worse when based on the reduced 
data set than when based on the original data set. 

The reason why LVQ seems to behave a little worse than 
LDA can stem from different reasons. First, LVQ parameters 
were optimised on 16-dimensional BAND data. Secondly, 
features were extracted using a linear method (PCA) but 
LVQ is a non-linear classification algorithm. Thus PCA 
might favour LDA. The last point to note is that only three 
subjects were used for these experiments, therefore no statis- 
tically valid comparison between the two classifiers can be 
given. 

However, our experiments have generally shown that LVQ 
scores better than on BAND data, and LDA yields better 
results with AAR data. 

It could be argued that the linear transformation stage o f  
PCA is redundant because it merely redistributes the informa- 
tion content of  the original attributes (i.e. it is a bijective 
mapping). Looking at experiments 2 and 3 on the original data 
it can be seen that the curve for the error rate is decreasing, but 
more slowly for the AAR data than for the transformed data. 
So for the same error rate, more attributes are needed. 

6 Conclusion 

The results presented in this paper indicate that the unsu- 
pervised method of  extracting 'important'  features (e.g. 
through PCA) only works with some data sets in the context 
of  classificastion. In our case, the BAND data were reduced 
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from 16 to 6, 7 and 13 dimensions (respectively, for subjects 
S1, $2 and $3) and still provided the same classification 
accuracy for LD and LVQ. For the AAR data, however, this 
method did not work at all: the dimensionality was heavily 
reduced (from 12 to 1 and 3 dimensions, respectively) but the 
classification accuracy was close to random. 

By sorting the PCs according to their angle to the original 
LD, class information was added to each component, thus 
making the feature extraction procedure at least partly super- 
vised. By using components with a smaller angle than 85 ~ to 
the LD, satisfactory results were derived for both data sets. For 
the BAND data, the reduction went from 16 down to 8, 9 and 
11, respectively. About the same classification accuracy was 
achieved as on the original data sets. For the AAR data, the 
dimensionality decreased from 12 to 6 and 8, also keeping the 
good classification accuracy from the original data. On one 
occasion LVQ scored even better (5% for subject S 1) and once 
worse (3% for subject $2). In general, however, this new 

fea tu re  extraction procedure seems to perform more reliably 
than unsupervised PCA. 

Instead of  the angle to the LDA, the error rate of  each PC 
could also be used as a sorting criterion. Calculating the error 
rate for each of  the components, however, can be very time 
consuming, especially when there are many dimensions and 
examples. For the AAR data this method gives about the same 
performance due to the high correlation between the error rate 
and the angle, as given in Section 4. For the BAND data it 
yields slightly better results (i.e. fewer components to reach 
similar classification results as with the whole data set). 

Deriving the LDA and consequently calculating angles 
towards it is not very difficult and can be performed quickly. 
Thus, the proposed method describes a reasonably quick and 
partly supervised feature extraction method. For the Graz BCI 
this method could significantly reduce the amount of  data used 
for classification. By examining the weights of  the PCs, one 
can also discover which attributes contribute more to a good 
classification. The most important aspect for the Graz BCI is 
that PCA has to be used in combination with another method 
(e.g. the method presented in this paper) to find those PCs that 
can best be used for classification. 
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