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Abstract: 
For an EEG-based Brain-Computer-Interface (BCI) is a new linear classification 
system proposed. The proposed method considers different variance-covariances for 
each class and, therefore, it has an advantage against Linear Discriminant Analysis.  
  
 

Introduction 
Linear classification methods, like Linear Discriminant Analysis (LDA), need less 
examples in order to obtain a reliable classifier (Pfurtscheller et al. 2000). In the past, 
LDA was used, because LDA is able to produce an output which is continuous in time 
as well as in amplitude. LDA was also successfully applied to many different EEG 
parameters, like bandpower values (ERD), as well as common spatial patterns (CSP) 
(Pfurtscheller et al. 2000) and Adaptive autoregressive (AAR) parameters (Schlögl, 
2000).  
 
However, sometimes the LDA output seemed to be biased towards one class. This is 
surprising because LDA provides the weights for the “best” linear separation of the 
data. After more detailed analysis, some results (unpublished) have suggested, that the 
different variability for each class causes this bias in the LDA output. This report 
describes in detail an alternative linear classification method without a bias due to 
different variability.  
 

Linear discriminant analysis (LDA) 
At the beginning lets remind the analysis with linear discriminants. Lets assume each 
data element si has m features. Then, an element si is one point in an dimensional 
feature space. The number of examples is n, each example is assigned to one out of 
two classes C={0,1}; Then, S is a matrix of size nxm, and C is a vector of size n. N0 
and N1 are the number of elements for class 0 and 1, respectively. 
 
The mean µc of each class c is the mean over all si with i being all elements with in 
class c. The total mean µ of the data is  
 
 µ = (N0*µ0 + N1*µ1) / (N0+N1)  (1.1) 
 
The covariance matrix C of the data is the expectation value for  
 
 C = E<(s-µ)T(s-µ)>   (1.2) 
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Then, the weight vector w and the offset w0 are  
 
 w =  C–1 . (µ1 - µ0)T (2.1) 
 w0= - µ . w  (2.2) 
 
The weight vector w determines a separating hyperplane in the m-dimensional feature 
space. The normal distance D(x) of any element x is  
 
 D(x) = x . w + w0 =  (3.1) 
         = (x - µ) . w =  (3.2) 
         = (x - µ) . C–1 . (µ1 - µ0)T (3.3) 
 
If D(x) is larger than 0, x is assigned to class 1, if D(x) is smaller than 0 x is assigned 
to class 0. D(x)=0 defines all elements x that are part of the separating hyperplane.   
 

Mahalanobis distance based classifier (MDBC) 
Lets assume the data elements s have dimension m. We can say, an element si is one 
point in an dimensional feature space. The number of examples is n, each example is 
assigned to one of two classes C={0,1}; Then, S is a matrix of size nxm, and C is a 
vector of size n. N0 and N1 are the number of elements for class 0 and 1, respectively. 
 
The mean µc of each class c is the mean over all si with i being all elements with in 
class c. The covariance matrix Cc for each class c is the expectation value for  
 
 Cc = E<(s-µc)T.(s-µc)>   (4.1) 
   
It can be calculated as the mean over all elements si within the class c.  
 
Now, the mean µc and the covariance Cc determine the multivariate normal 
probability density function (pdf) that corresponds to class c. Now, any point in the n-
dimensional features space can be associated with a certain distance to each class c. 
Because, we have assume a multivariate normal distribution N(µc,Cc), the 
Mahalanobis distance (Mahalanobis, 1936) is an appropriate distance function.  
 
The mahalanobis distance dc of some point x in the feature space to the multivariate 
normal distribution N(µc,Cc) is defined by the following equation 
 
 dc²(x) = (x-µc) . Cc

 -1 . (x-µc) T   (5.1) 
 
 
Furthermore, the differences of the distances D(x) = d1(x) – d0(x) can be calculated;  
 
 D(x) = d1(x) – d0(x) =  (6.1) 
         = ((x-µ1).C1

 -1.(x-µ1) T)1/2 - ((x-µ0).C0
 -1.(x-µ0) T)1/2 (6.2) 

 
If D(x) is larger than 0, x is closer to the pdf of class 0, if D(x) is smaller than zero, x 
is closer to class 1. Lets say D(x) is a discrimination function based on the 
Mahalanobis distance, or MD-based discriminant. A MD-based classification 
(MDBC) is obtained if D(x) is applied to the threshold 0.  
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Discussion 
Both, LDA and MDBC, are based on the mean and the covariance of the data only. In 
other words, only second order statistics is used, both are linear methods, higher order 
statistics and non-linearity are not considered.  
 
The main difference between LDA and MDBC is, that in case of LDA the Variance-
covariance of the whole data is used, whereby in case of MDBC the different 
covariance-matrices are considered for each class. Therefore, MDBC takes into 
account the different variance-covariances. The separating hyperplane can become a 
hypercurve, with D(x)=0, in the n-dimensional feature space.  
 
In both methods, LDA and MDBC, the largest computational effort is due to the 
matrix inversions. The computational effort is of order O(m³). However, the matrix 
inversion can be performed once during the offline analysis. Then, the inverted matrix 
can be used for the online classification.  The order of the computational effort for the 
online classifier increases from a vector multiplication O(m) to a matrix 
multiplication O(m²) for LDA to MDBC, respectively. As long m is limited to some 
hundreds of features, the computational effort is hardly an argument against MDBC.  
 

Conclusion  
If the covariances are similar for both classes, the LDA and the MDBC will yield the 
same results. If the covariance matrices are different in each classes, MDBC takes this 
into account. Hence, the bias due to different variances in the data is removed with 
MDBC. Therefore, the MDBC classifier is preferable to LDA.  
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