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An nduptive suloregressive (AATR) model is used Tor analyzing event-related EEG changes, Such
un AAR model is applicd 1o single EEG trials of three subjects, recorded over both sensorimotor
areag during imagination of left and right hand moverments, I s found that diserimination bet-
ween both types of motor-imagery s possible using linear discriminant analysis, but the time
paind for optimal elassifleation is different in each subjeet

For the estimation of the AAR poramelers, the Least=mean=squares and the Recursive-leost-
siquares algorithms are compared, In both methods, the update coefficient plays o key role: it de-
termines Lhe adaptation ratio os well as the estimation necurncey, A new method, based on mini-
mizing Lthe prediction error, 8 introdueed Tor determining the update eoefflcient,

Sehltisseluwdrter: Adaptives Autoregressives Modell, Einseltrinl-EEG-Analyse, Kalmon-Filtoe-
rung, RLS- und LMS-Alparithmus, ercignishezopene EEG

Ein Adaptives Autoregressives (AAR-1Modell wird zur Analyse von ereignisbezogenen Verdnde-
rungen im EEG verwendet, Das AAR-Modell wird auf nichi-gemittelte EEG-Daten, die von drei
Personen wihrend der Vorstellung von linker und rechter Hondbewegung iiber dem sensomoto-
rigchen Kortex aufgereichnet wurden, angewandl, Die beiden Arten von Bewegungsvorstellung
kiénpen mil einer hoearen Diskriminanzanalyse unterschicden werden, wobei jedoch der opti-
male Zeitpunke fir die Klassilikatlon von Person zu Person variiert,

Zur Schitzung der AAR-Parameter wurden der Least-mean-squares- und der Recursive-least-
sguares=Algorithmus verglichen, In beiden Methoden spielt der Adaptionskoeffizient eine wich-
tige Holle; Er bestimmil sowaehl die Adaptionsrate als auch die Schitzgenauigkeit. Bine neue Me-
thade zur Bestimmung des Adaptionskoeffizienten, welche auf dem Minimieren des Vorhersage-
fehlers basiert, wird vorgestellt.

Introduction

Single trial analysis is a very important task in EEG
analysis, yet il is also very difficult due to EEG's high
intra- and inter-subject variability. Such an analysis is
important for automatic sleep staging [8] as well as for
the realization of EEG-based communication systems
[14, 3, 6]. Furthermore, single-trial EEG analysis is
important for studying sensory, motor and cognitive
processing within an event-related paradigm.

In many methods of analysis, segmentation of the
data is necessary, where stationary segments are assu-
med (e.g. calculation of frequency spectra, AR parame-
ters [4]). Here, an adaptive {i.e. time-varying) autore-
gressive model (AAR) is used for analyzing event-rela-
ted EEG. The estimation methods are well-established
and have heen developed in linear estimation theory
(originally applied on orbit determination of planets

and satellites), in adaptive filtering algorithms and in

adaptive signal processing tasks [2].

The goals of this paper are:

* to introduce an AAR modeling technique for the
analysis of single trial event-related EEG changes
and to compare two estirnation alporithms,

*+ to demonstrate selecting of control parameters,
with special emphasis on determining the update
coefficient,

* toinvestigate the optimal time point for diserimina-
tion of EEG data recorded during two different
hrain states.

For the investigation, a large number of single EEG
trials from 3 subjects was available. Those subjects
had participated in several sessions of Brain-Compu-
ter-Interface (BCI) experiments, performing imagina-
tion of left and right hand movement [6].
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Figure 1, Experimental paradigm: at second 2, the subject re-
ceived an auditory warning stimulus {,W35"); after presentati-
on of & visual cue at second 3 (target®), the subject perfor-
medd an imaginary lell or right hand movement; from second
3.25 to 4.25 the power of twa selected frequency bands at 2
EEG channels was used for on-line classification; the feed-
back (,FB") was presented visually from second 6 boo 7.
Throughoit the t#al a lixation cross was visible on the moni-
lor,

Method and material
Subjects and ceperimental poradigm

Data from 3 subjects (3, F5 and F7), who took part in
a Brain-Computer-Interface (BCI) experiment, were
available, The subjects were asked Lo imagine left or
right hand movements in response 1o a visual cue sti-
mulus in the form of an arrow on o computer screen
(see Fig, 1), Bach subject participated in 3-4 training
sessions during which EEG was recorded to oblain
subject-specific examples of lefl and right hand move-
ment imagery patterns, EEG was recorded [rom two
bipolar EEG channels over the left and right sensori-
motor hand areas (around C3 and C4 of the internatio-
nal 10-20 syatem) and was sampled at 128 Hz, Each
session consisted of 160 trials, aflter visual artifact re-
jection at least 143 trials remained, For the BCL expe-
riments, subject-specific frequency bands were defined
according Lo the data and a elassifier was constructed
which was applied in further sessions to give feedback.
In these sessions, the EEG of a predefined 1-second ti-
me window {3.25-4.25 5, see Fig. 1) was classified on-
lineg and the classification result was presented in the
interval from second 6 to 7. The on-line classification
accuracy varied between 64 % and 86 %, For a more
detailed description of the data, the reader is referrved
to Plurtscheller et al. [6].

The Adaptive Autoregressive model

The AAR model can be used to describe time-variati-
ons in the signal characteristics: the altribute  adapti-
ve" means that the AR parameters are not constant but
rather time-varying. Just like an AR model can be used
to deseribe stationary EEG, event-related EEG can be
characterized by an AAR model.

An AAR model describes the signal Y, in the following
form:

¥, = a,l,_YI_ 1t az,:Y1-2 L ap_lYi_P +E, (1)

where, in the ideal case, E, is a purely random or white
noise process with zero mean and variance of;. The

difference to an AR model is that the parameters a, ...
a,, ean vary with time. However, it is assumed thal the
parameters just change slowly. For a detailed discus-
sion of non-stationary time series see Priestley [7].

AR models do not model any trend in the signal, i.e.
the mean value of the signal has to be zero. In AAR
maodels, the model parameters represent the signal
characteristics only of a short period of 1ime, A Black-
man window with a width of 128 samples was used to
remove the DC component from the signal; this proce-
dure is equivalent Lo high-pass filtering with a cut-off
frequency of approximately 2 Hz.

A rough estimate of the model order can be derived
from the number of peaks in the spectrum. For each
peak, two AR parameters are needed. Examination of
EEG spectra shows a prevalent existence ol 2-3 peals,
giving an approximate model order of 8. Since the DC
component of the signal has been removed, no additio-
nal coefficient is required,

Estimation of AAR parameters

For the estimation of the AAR parameters, the Least-
mean-square (LMS) [2, 12] and the Recursive least-
sguare (RLS) [2] methods can be used: the RLS algo-
rithm is derived from Kalman Altering for an AR mo-
clel; LMS has been applied Lo biosignals e g by Schack
el al, [9) Tor time=varyving ARMA-models.

FFor the following sections, the AR parameters anc
the past p samples of the time series are delined as vec-
tors:

a=lay..a, AT [2)

Y, =Y, . Y, (3

L T -p

where p is the order of the autoregressive model and
T denotes the transpose of the vector; bold letters indi-
cate vectors.
As can be seen in equation (1), the prediction error
E,, also called the error process, depends on past va-
lues of a, and ¥, | with i<t only. Furthermaore, we can
utilize the fact that with a smaller error process, the
EEG signal is described more accurately by the AAR
model, Thus we define the Mean Square Error (MSE)
N

MSE=N"! ZEJE (4)
1=1

and the total power of the EEG

N
MSY=N"Y'y,” (5)
t=]

Furthermore, we define a ratio between the mean
sqguare error and the total power of the signal:

REV = MEE/MSY ()

The relative error variance (REV) is a measure for the
poodness-of-fit, 1. e. how well the AAR model describes
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the EEG signal Y,. This measure will be used for opti-  a, =a,_, +kE, (13)
mizing the adaptation ratio.

A =MA -kr? (14)

The Least Meon Square Algorithm (LMS)

The LMS estimation method ean be characterized by
the following two formulas:
E =Y by

PR Yy m e B (M

a,=a,+cEY, ; i=1..p {8

with E, being the prediction error and ¢ an update ra-
tio or the ... gein constont that regulates the speed
and stebility of edaptation” ([12], p.100); Haykin [2]
called it the step size parameter. We can denote

c = UC/MSY {9

where UC is called the update coefficient, This has the
advaniage that the adaptation ratio can be defined in-
dependently of the signal power, which is equivalent
to normalizing the signal to a power of unity,

The choice of an appropriate UC is essential for
AAR models. A value between O and 2 has been recom-
mended by Widrow and Stearns ([12], p. 104). However
this suggestion is far too rough, at least the order of
magnitude should be fixed. It is one aim of this paper
to determine an appropriate UC,

Another important issue is the initial values a,.
Two possibilities, initialization with zero and with
average values [estimated by Yule-Walker equation,
[117), will be examined {see Tahle 1),

Table 1, Initialization methods: {(3) with zero and (i) with
average AR parameters, the latter were caleulated [ram the
autocovarignee function of the whole signal (mean autocova-

r:mm:c function over all trials) with the Yule-Waller method,

L denotes s pxp identity matrix,

Algorithm Initialization
LMS0d Bp=[a .- ap.l]]T= [@..o"
LMS03 o =[a,..a 7
i 0 !
es_t;lmnlb_d_ wfpg Yule-Walker method
EL504 = Ay .. aM]'I'z 0. 0"
All = Ip¥p
RLS0G =lay,-
anaiid wﬂﬁ Yule-Walker methad
Ay =01°L,

Kalman filtering or BRecursive Leest Sguares Algo-
rithm (RSL}

The RLS parameter estimation method is characteri-
zed by the following set of equations:

E =% - at—iTYt—l (10}
K= 1_131—1Yt—1 (11)
k=AY, rt+1]| (13)

with, again, E, being the prediction error and k, the
Kalman Gain Vector. The term A%, a value slightly lar-
ger than one, has a similar function as the update coef-
ficient UC in the LMS algerithm: it controls the adap-
tation ratio, A UC with a similar order of magnitude as
for LMS is obtained with the following transformati-
QI

A= 1 - U (15
or
UC=1-2 {16)

Classification System

For single trial classification purposes, the current
AAR model parameters can be read at a specific time
point within each trial. By concatenating the maodel
parameters estimated for each of the available EEG
channels (here, C3 and C4), a high-dimensional data
vector per trial is formed.

The classifier used is Fisher's linear diseriminant
analysis (LIDA) [1]. This method divides the 12-dimen-
sional feature space into two half-gpaces (one per cate-
gory) such that the classification error rate on the trai-
ning datya is minimized. To achieve an estimate of the
generalization ability of the LDA clasgifler, 10-times
10-fold cross-validation was performed on each data
sel {1.e. each session of each subject). For more details
an cross-validation see Bishop [1).

All computations were performed with a precision
of & byte foaling point numbers, using Matlab®4.2
fromm Mathworlks Ine, on an Alpha Workstation,

Results
Estimation of the AAR porameters
Selection of Update Coefficient UC

The adaptation ratio plays an essential role in AAR
madeling, Here the optimal update coefficient wasz fo-
und by minimizing MSE {4), which is eqivalent to mi-
nimizing REV (6). First the order of magnitude was de-
termined, then the inferesting range was studied in de-
tail. For that purpose, update coefficients from the set
{0.0010; 0.0013; 0.0018; 0.0024; 0.0032; (0.0042; 0.0058,;
0.0075; 0.0100; 0.0133; 0.0178; 0.0237T; 0.0316} were in-
vestigated.

Ag can be seen in Fig. 2, there is one UC per data set
where REV is minimal. Thiz is the optimal update co-
efficient UC,,, of the AAR model which descrlbeﬁ the
EEG data besf:

The method of minimizing the MSE to find the op-
timal UC stems from the idea that the EEG can best be
described by an AAR model with a certain adaptation
ratio. This idea is supported by the fact that in all in-
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Figure 2. The relative error varianee HEY of the signal depen- ':I[ﬂ ] b
ding on the update coelficient UC. The different curves show | )
the HEV of F35-1 (subject F3, session 5, channel C3) for the ' UC=0.006
estimalion methods LMS04 and BLS04 (zero initializalion) g5 0
and LMSH and BRLS0S (initialization with average AR para- t ——F36 (RLS04)
meters], The UC where REY is minimal, is indicoted by an ar- | ~m— F5G (ALS04)
row For each curve. 20 |
I F76 (RLS04)
F e . * « F36 {RLS0S)
vesligated cases, only one minimum MSE was found. 19| ®, o " —u— F56 (RLS05)
Maturally, LI'CW, depends on many factors, e.g. initia- —a— F76 (ALS0S)
lization, model order, speed of event-related variation a = f ! = '
0 0.01 0.02 ops UE

of the underlying EEG data, the sampling rate, ete.
However, with the method provided here, LI'L'IIFrI can be
determined more necurately than discussed in the lite-
rature. |2, 12]

In Table 2, the optimal UC for twelve signals (REG
signals recorded at electrodes C3 and C4 from the 5
and B gession of subjects F3, F5 and F7) are shown for
the LMS and RLS algorithms. From these results, an
UC of 0.004 (LMS3) and 0,006 (RLS) was chosen for the
investigation of data from other sessions.

Table 2. Update coefficient obtained by minimizing the rela-
tive error variance for LMS and RLS algorithms with diffe-
rent initialization and lor different signals, SIGMAL indica-
tes the EEG-channel of different recordings, e.g. Fif-1 deno-
tLes subjeet F3, session 5 and channel 1 (C3) whereas Fa5-2 de-
notes the same for channel 2 (C4), The UC chosen Tor further
analysis is given for each algorithm.

SIGNAL  LMS04 LMS0d RLS04 RLS05
fis-1 0018 0.0032 0042 0.0056
{15-2 0.018 0.0032 (.42 0.0042
{36-1 0018 0,0024 0.0042 0.0042
fa6-2 1,024 0. 0024 0.0042 0.0042
fih-1 1.018 00032 0.0066 01, (hAS 4G
f5H-2 0.0148 00042 00075 0TS
[56-1 IR 00032 00075 0.0056
[hG-2 010 (0056 0.0700 0.0100
£756-1 (k32 0.0042 0.0056 0.0056
f7h-2 h.(v2a 0.0042 0.0075 a6
£76-1 0024 0.0024 {1, 0hh32 00032
iT6-2 0.024 0.0032 (hO042 0.0042
chosen - 0,004 LTI 0.006

Initialization of LMS and RLS algorithm

In Table 2 it can be seen that in the case of the RLS
method, UC,_ hardly depends on the initialization. In
comparison, the variation across subjects (F3, F5 and
F7} and across sessions (F75 and F76) is much larger

Figure &, Error rate (10-times 10-fold eross=validation of o
Linear Diseriminunt) depending on the update ratio UC for
the elagstfication time second 5 for different doatn sels; a) re-
sults of LMS03 and LMS04 on the 8 session for subjecls I3,
FO and BTy b same as a) but for RLS algorithms

Therefore we can say that the kind of initialization is
of minor importance in the case of the RLS algorithm.
This is not the case with the LMS algorithm,; zero
initialization (LMS04, see Fig. 2) requires a much big-
ger I_Tlijupl (0,018 instead of 0,0042) than initialization
with average AR parameters (LMS03), The value of
uc,, found with LMS04 is near the limit for consi-
stent estimates:; if UC were chosen only slightly larger,
the error process would inerease substantially and the
AAR parameters would not be reliably estimated. For
some other recording, an UC of 0.018 would already be
too large, Consequently, we cannot use zero initializa-
tion for the LMS algorithm but have to use average in-
itialization values to find a proper update coefficient,

Classification

Influence of the update coelficient

In Fig. 3a the error rates using the LMS algorithm for
different initializations and update coefficients are
shown. It can be seen that the optimum of TJC =0.004,
found by minimizing MSE, has the same order of ma-
gnitude as the UC (0.0024 - 0.0075) that gives the best
classification,

Furthermore, zero initialization (LMS04) seems to
give as good results as LMS03. That is surprising be-
cause we found that the AAR parameters estimated
with LMS304 do not describe the EEG signal very well
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(see Fig. 2, for the LMS04 algorithm REV is much hig- [%] a)

her than for LMS02), One explanation is that for the 50 5 {35

current classification task (imagined lel vs, right hand 40 —8- 136

movement) only the asymmetries between the two a0 a7

channels are evaluated, 20 _:_E:

It can be seen in Fig. 3b that the classification re- 10 —a— {310

sult using the RLS algorithm does not depend on the ——1an

initialization method (graphs are overlapping), Furt- o - : i ! ' . o e

hermore, it can be seen that the optimal update coeffi- = 4 3 o 1[s]

cient of TTC = 0,004 has the same order of magnitude as

the TTC with best classification (0.0042, 00075 and

0.001}. b)

Summarizing, it can be stated that the values of :::‘;

UC...n as delermined by minimizing REV are also good 57

choices for single trial classification, —+— 158
T

Averaging (smoothing) of parameters :::T
—E

It 15 of interest whether smoothing of the AAR para-

meters, as done by Roberls and Tarassenlo [8], has so-

me advantage. Therefore, the averapge parameters over

204, 8, 16, 32 and 128 samples were also used Tor clas-

sification. It was found that sometimes the error rate c)

wis lower while sometimes it was higher, In goneral,

ni advantage was Tound by averaging the estimated ——75

AAR parameters. Henee, smoothing of the AAR para- —a {7

MeLers Seems UNnecessanry, ::I:
L]

Comparing LMS and RLS estimates :::T

It is known [2] that KLS converges faster and/or esti- 0 | T AVE

mates the AAHR parameters more accuralely than LMS 3 1 5 & 7 t[8]

For that reason it can be expected that the classificati-
on error 18 lower with the RLS algorithm, We compa-
redd the elassification results of all sessions (5-11) Tor
subjects F3, Fi and F7 at a fixed classification time
point  (second 3 and for a lixed U{_‘.“m (RLS0G
UC =01, LMS04 UC=0,004), The RLS algorithm
was better in 17 (of 21) cases and gave, on average,
3.9 % better classification results.

Selection of Classification time

Fig. 4 displays the classification error for every 174 s
between second 3.5 and 8, Note that the AAR parame-
ters provide information about the signal characteri-
stics with every sample. For each subject a different
classification time course is oblained which can be ex-
plained by the different imagery strategics employed
by subjects. For subjects F3, F5 and F7 the optimal
classification time poinis are second 5,25, 6.0 and 4.75,
respectively, Overall a classification time at second 5
seems reasonable for this paradigm.

Discunssion

Classification of different EEG patterns recorded du-
ring different imagined movements is possible through

Figure 4, Error rate (10-times 10-fold eross-valldation Linear
Diseriminant Analysis) over classification time for subjects
F3, Fhand F7 and sessions 5110 AVE denctes the average er-
rar rate across sessions, The AAR parameters of channel C3
aned C4 were estimated with the RLS method with model oe-
der 6 and UC = 0,006,

applying non-linear classifiers as for example LVQ [3],

but also through applying linear diserimination me-

thods as used by Waolpaw [13], Both groups use hand
power values as input for the classifier assuming sta-
tionarity over a small time window,

In this paper, an adaptive AR model was used for
single-trial analysis of event-related EEG recorded
during imaginary hand movement, Analyvses of data
from a movement experiment have shown that for
classification of single EEG trials, AAR parameters are
features as good — or even superior — as traditionally
used band-power values [10].

AAR parameters have several advantages compa-
red to other EEG paramelers:

» With AAR parameters it is possible to determine the
optimal classification time point because the AAR
parameters have already been compuled for every
time point,
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» With AAR parameters no individual selection of
frequency bands, as used in [5], is necessary .

* The estimation algoerithms for AAR parameters are
appropriate (i.e. fast enough} for on-line analysis
and no segmentation is necessary.

Using an AAR model, several questions have to be
addressed, e.g. the selection of the model order and the
update coefficient, the initialization values (i.e. a prio-
ri knowledge about the signal), the elimination of the
low freguency components and how to deal with arti-
faets in the EEG. The influence of the model order, the
high-pass filtering and artifacts in the EEG have notl
been evaluated in this paper and are still open topics
in AAR modeling,

A new method for determining UC has been intro-
duced which is based on the principle of minimizing
the mean sguared error and the relative error variance,
Hence, the time-variations of the event-related EEG
are deseribed by an AAR model with an optimal UC.
The optimization can be interpreted as [ollows: UC de-
termines the speed of adaptation; the larger UC, the
faster the variation of the AAR parameters a; but the
faster the adaptation, the lower the accuracy of the
estimated parameters, which means the model is badly
estimated and the MSE increases. On the other hand if
ULC is zero, no adaptation takes place and the parame-
ters are fixed to their initial values; one expects the
MSEE to be higher than in ithe case of modeling the
event-related changes by varying parameters. Thus,
the overall error should decrease if UC i1s greater than
zero. This is always the case in non-stationary signals,
even if the initial AR parameters are estimates of aver-
age values, In statistical terms, this is an optimization
of hias and variance of the estimated parameters.

Furthermore, it has been shown that for UC obtai-
ned by minimized REV, ithe classification results are
near the minimal error. Correspondingly, smoothing of
the estimated AAR parameters has not improved the
classification result notably,

The initialization of the RLS algorithm has a negli-
gible influence on Ucﬁpt as well az on the classification
results. With LMS, the initialization has hardly any in-
fluence on the classification, but for determining the
update coefficient, zero initialization gives an UC
that is too large; an initialization with some typical AR
parameters is therefore recommended.

Surmmarizing, it can be staled that AAR parameter
estimation offers an interesting opportunity for classi-
fication of single-trial data and can be used for the in-
vestigation of event-related EEG data.
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